
15-750 Page22

Recap: Notation for Block Codes

• Each message and codeword is of fixed
size

• Notation:

k = |m|
length of the message

n = |c|
length of the codeword

C = “code” = set of codewords

codeword (c)

encoder

noisy
channel

decoder

message (m)

message or error

codeword’ (c’)

“dimension of
the code”

“length of
the code”

Simple Examples

3-Repetition code: k=1, n=3

Message Codeword
0 -> 000
1 -> 111

• How many erasures can be recovered?
• How many errors can be detected?
• Up to how many errors can be corrected?

Errors are much harder to deal with than erasures.
Why?

Need to find out where the errors are!
15-750 Page23

Simple Examples

Single parity check code: k=2, n=3
Message Codeword
00 -> 000
01 -> 011
10 -> 101
11 -> 110

15-750 Page24

Consider codewords as vertices on a hypercube.

000 001

111

100
101

011

110

010
codeword

n = 3 (hypercube dimensionality)
2n = 8 (number of nodes)

Simple Examples

Single parity check code: k=2, n=3

• How many erasures can be recovered?
• How many errors can be detected?
• Up to how many errors can be corrected?

15-750 Page25

000 001

111

100
101

011

110

010

15-750 Page26

Systematic codes

Definition: A Systematic code
is one in which the message
symbols appear in the
codeword in uncoded form

message codeword
000 000000
001 001011
010 010101
011 011110
100 100110
101 101101
110 110011
111 111000

Large-scale distributed storage systems

1000s of interconnected servers

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns

Large-scale distributed storage systems

1000s of interconnected servers

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns

Unavailabilities are the norm
rather than the exception

Facebook analytics cluster in production:
unavailability statistics

day

• Multiple thousands of servers
• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52

#unavailability
events

350

300

250

200

150

100

50

0 0 5 10 15 20 25 30

Facebook analytics cluster in production:
unavailability statistics

day

• Multiple thousands of servers
• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52

#unavailability
events

350

300

250

200

150

100

50

0 0 5 10 15 20 25 30

Daily server unavailability = 0.5 - 1%

Data needs to be stored in a redundant fashion

Servers unavailable

Data inaccessible

Applications cannot wait,
Data cannot be lost

a b c d

a b c d

a b c d

……

distributed on servers
across network

3 replicas
a b c d

a b c d

a b c d

a b c d“blocks”

• Storing multiple copies of data: Typically 3x-replication

Traditional approach: Replication

a b c d

a b c d

a b c d

……

distributed on servers
across network

3 replicas
a b c d

a b c d

a b c d

a b c d“blocks”

• Storing multiple copies of data: Typically 3x-replication

Too expensive for large-scale data

Traditional approach: Replication

Better alternative: codes!

ablock 1

block 2

block 4

block 5

block 3

block 6

a

a

b

b

b

a

b

a+b

a+2b

3-replication Erasure code

block 1

block 2

block 3

Storage overhead = 3x Storage overhead = 2x

block 4

Two data blocks to be stored: and
Tolerate any 2 failures

“parity blocks”

a b

ablock 1

block 2

block 4

block 5

block 3

block 6

a

a

b

b

b

a

b

a+b

a+2b

3-replication Erasure code

block 1

block 2

block 3

Storage overhead = 3x Storage overhead = 2x

block 4

Two data blocks to be stored: and
Tolerate any 2 failures

“parity blocks”

Much less storage
for desired fault tolerance

a b

a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in
distributed storage systems?

distributed to servers

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data blocks 4 parity blocks

Example:
[n=14, k=10]

Almost all large-scale storage systems today
employ erasure codes

for most of the stored data

Google, Amazon, Microsoft, Meta, IBM, ...

Simple Examples

Single parity check code: k=2, n=3

• How many erasures can be recovered?
• How many errors can be detected?
• Up to how many errors can be corrected?

Erasure correction = 1, error detection = 1, error correction = 0

Cannot even correct single error. Why?
Codewords are too “close by”

Let’s formalize this notion of distance..
15-750 Page39

000 001

111

100
101

011

110

010

15-750 Page41

Block Codes

Notion of distance between codewords: Hamming distance
 D(x,y) = number of positions s.t. xi ¹ yi

Minimum distance of a code
d = min{D(x,y) : x,yÎ C, x ¹ y}

Code described as: (n, k, d)q

Question:
What alphabet did we use so far?

å = alphabet
q = |å| = alphabet size
C Í Sn (codewords)

15-750 Page42

Error Correcting One Bit Messages

How many bits do we need to correct a one bit error on
a one bit message?

000 001

111

100
101

011

110

010

00 01

1110

2 bits
0 -> 00, 1-> 11
(n=2,k=1,d=2)

3 bits
0 -> 000, 1-> 111
(n=3,k=1,d=3)

In general need d ³ 3 to correct one error. Why?

Role of Minimum Distance

Theorem:
A code C with minimum distance “d” can:

1. detect any (d-1) errors
2. recover any (d-1) erasures
3. correct any errors

Intuition: <board>

Stated another way:
 For s-bit error detection d ³ s + 1
 For s-bit error correction d ³ 2s + 1

15-750 Page43

Desired Properties

We look for codes with the following properties:

1. Good rate: k/n should be high (low overhead)
2. Good distance: d should be large (good error correction)
3. Small block size k (helps with latency)
4. Fast encoding and decoding
5. Others: want to handle bursty/random errors, local

decodability, ...

15-750 Page44

15-750 Page45

Q:
If no structure in the code, how would one perform encoding?

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity

(Slight detour into number theory)

15-750 Page 47

Groups

A Group (G,*,I) is a set G with operator * such that:
1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a

15-750 Page 48

Examples of groups

Q: Examples?
– Integers, Reals or Rationals with Addition
– The nonzero Reals or Rationals with Multiplication
– Non-singular n x n real matrices with

 Matrix Multiplication
– Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

Often we will be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-750 Page 49

Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp
* º {1, 2, 3, …, p-1} *p º multiplication modulo p

Denoted as: (Zp
*, *p)

Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes. (HW)

Example: Z7
*= {1,2,3,4,5,6}

 1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-750 Page 50

Fields

A Field is a set of elements F with binary operators * and +
such that
1. (F, +) is an abelian group
2. (F \ I+, *) is an abelian group

the “multiplicative group”
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*I+ = I+

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.
A field of finite order is a finite field.

15-750 Page 51

Finite Fields

ℤ! (p prime) with + and * mod p, is a finite field.

1. (ℤ!, +) is an abelian group (0 is identity)
2. (ℤ! \ 0, ∗) is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0 = 0

We denote this by #! or GF(p)

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words

(i.e with 2k elements)?

