Recap: Notation for Block Codes

3-Repetition code: k=1, n=3

 Message
 Codeword

 0
 ->
 000

 1
 ->
 111

- How many **erasures** can be recovered?
- How many **errors** can be **detected**?
- Up to how many **errors** can be **corrected**?

Errors are much harder to deal with than erasures. Why?

Need to find out **where** the errors are!

Simple Examples

Single parity check code: k=2, n=3

Message		Codeword
00	->	000
01	->	011
10	->	101
11	->	110

Consider codewords as vertices on a hypercube.

 \odot codeword

n = 3 (hypercube dimensionality) $2^n = 8$ (number of nodes)

Simple Examples

Single parity check code: k=2, n=3

- How many **erasures** can be recovered?
- How many **errors** can be **detected**?
- Up to how many **errors** can be **corrected**?

Systematic codes

Definition: A Systematic code

is one in which the message symbols appear in the codeword in uncoded form

message	codeword
000	000000
001	001 011
010	010 101
011	011 110
100	100 110
101	101 101
110	110 011
111	111 000

Large-scale distributed storage systems

1000s of interconnected servers 100s of petabytes of data

- Commodity components
- Software issues, power failures, maintenance shutdowns

Large-scale distributed storage systems

1000s of interconnected servers

Unavailabilities are the norm rather than the exception

- Commodity components
- Software issues, power failures, maintenance shutdowns

Facebook analytics cluster in production: unavailability statistics

- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran, USENIX HotStorage 2013 and ACM SIGCOMM 2014]

Facebook analytics cluster in production: unavailability statistics

- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran, USENIX HotStorage 2013 and ACM SIGCOMM 2014]

Servers unavailable

Data inaccessible

Applications cannot wait, Data cannot be lost

Data needs to be stored in a redundant fashion

Traditional approach: Replication

• Storing multiple copies of data: Typically 3x-replication

Traditional approach: Replication

....

• Storing multiple copies of data: Typically 3x-replication

Too expensive for large-scale data

3 replicas a b c d

Better alternative: codes!

Erasure codes: how are they used in distributed storage systems? Example: [n=14, k=10] а g h b e f **P1** P2 **P3** P4 g b h а d e С 10 data blocks 4 parity blocks distributed to servers

<u>Almost all large-scale storage systems today</u> <u>employ erasure codes</u> for most of the stored data

Google, Amazon, Microsoft, Meta, IBM, ...

Simple Examples

Single parity check code: k=2, n=3

- How many **erasures** can be recovered?
- How many errors can be detected?
- Up to how many errors can be corrected?

Erasure correction = 1, error detection = 1, error correction = 0

Cannot even correct single error. Why? Codewords are too "close by"

Let's formalize this notion of distance..

Block Codes

Notion of distance between codewords: **Hamming distance** $\Delta(\mathbf{x},\mathbf{y}) =$ number of positions s.t. $x_i \neq y_i$

Minimum distance of a code

$$\mathbf{d} = \min\{\Delta(\mathbf{x},\mathbf{y}) : \mathbf{x},\mathbf{y} \in \mathbf{C}, \ \mathbf{x} \neq \mathbf{y}\}$$

Question: What alphabet did we use so far?

Error Correcting One Bit Messages

How many bits do we need to correct a one bit error on a one bit message?

In general need $d \ge 3$ to correct one error. Why?

Role of Minimum Distance

Theorem:

A code C with minimum distance "d" can:

- 1. detect any (d-1) errors
- 2. recover any (d-1) erasures
- 3. correct any $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors

Intuition: <board>

Stated another way:

For s-bit error detection $d \ge s + 1$ For s-bit error correction $d \ge 2s + 1$

Desired Properties

We look for codes with the following properties:

- 1. Good rate: k/n should be high (low overhead)
- 2. Good distance: d should be large (good error correction)
- 3. Small block size k (helps with latency)
- 4. Fast encoding and decoding
- 5. Others: want to handle bursty/random errors, local decodability, ...

Q:

If no structure in the code, how would one perform encoding?

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity

(Slight detour into number theory)

<u>Groups</u>

A **<u>Group</u>** (G,*,I) is a set G with operator * such that:

- **1.** Closure. For all $a, b \in G$, $a * b \in G$
- **2.** Associativity. For all $a,b,c \in G$, $a^*(b^*c) = (a^*b)^*c$
- **3.** Identity. There exists $I \in G$, such that for all $a \in G$, $a^*I=I^*a=a$
- **4. Inverse.** For every $a \in G$, there exist a unique element $b \in G$, such that a*b=b*a=I
- An **Abelian or Commutative Group** is a Group with the additional condition
 - **5.** Commutativity. For all $a, b \in G$, a*b=b*a

Examples of groups

Q: Examples?

- Integers, Reals or Rationals with Addition
- The nonzero Reals or Rationals with Multiplication
- Non-singular n x n real matrices with Matrix Multiplication
- Permutations over n elements with composition $[0\rightarrow 1, 1\rightarrow 2, 2\rightarrow 0] \circ [0\rightarrow 1, 1\rightarrow 0, 2\rightarrow 2] = [0\rightarrow 0, 1\rightarrow 2, 2\rightarrow 1]$

Often we will be concerned with <u>finite groups</u>, I.e., ones with a finite number of elements.

Groups based on modular arithmetic

The group of positive integers modulo a prime p $Z_p^* \equiv \{1, 2, 3, ..., p-1\}$ $*_p^* \equiv$ multiplication modulo p

Denoted as: $(Z_p^*, *_p)$

Required properties

- 1. Closure. Yes.
- 2. Associativity. Yes.
- 3. Identity. 1.
- 4. Inverse. Yes. (HW)

Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$ $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$

Fields

A <u>Field</u> is a set of elements F with binary operators * and + such that

- 1. (F, +) is an **abelian group**
- (F \ I₊, *) is an <u>abelian group</u> the "multiplicative group"
- 3. **Distribution**: $a^{*}(b+c) = a^{*}b + a^{*}c$
- 4. **<u>Cancellation</u>**: $a^*I_+ = I_+$

Example: The reals and rationals with + and * are fields.

The **order (or size)** of a field is the number of elements. A field of finite order is a **finite field**.

Finite Fields

 \mathbb{Z}_p (p prime) with + and * mod p, is a <u>finite</u> field.

- 1. $(\mathbb{Z}_p, +)$ is an **<u>abelian group</u>** (0 is identity)
- 2. $(\mathbb{Z}_p \setminus 0, *)$ is an **<u>abelian group</u>** (1 is identity)
- 3. **Distribution**: $a^*(b+c) = a^*b + a^*c$
- 4. **<u>Cancellation</u>**: a*0 = 0

We denote this by \mathbb{F}_p or GF(p)

Are there other finite fields? What about ones that fit nicely into bits, bytes and words (i.e with 2^k elements)?