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Recap: RS code: Polynomials viewpoint
Message:  [m0, m1,…, mk-1] where mi Î GF(q)

Consider the polynomial of degree k-1
P(x) = mk-1 xk-1 +  + m1 x + m0

RS code: Codeword: [P(41), P(42), …, P(4n)]
                 (distinct 4i‘s)

To make the 4i‘s in P(4i) distinct, need field size q ≥ n

That is, need sufficiently large field size for desired codeword 
length. 



Recap: Generator matrix of RS code
What is the generator matrix?

“Vandermonde matrix”
Special property of Vandermonde matrices: Full rank (columns 

linearly independent)
Very useful in constructing codes.
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Polynomials and their degrees
Fundamental theorem of Algebra: Any non-zero polynomial 

of degree m has at most m roots (over any field).

Corollary 1: If two degree-m polynomials P, Q agree on m+1 
points (i.e., if 5 6% = 8(6%) for 6&, 6', … , 6(), then P = Q.

Corollary 2: Given any m+1 points (6%, :%), there is at most
one degree-m polynomial that has 5 6% = :% for all these i.

Theorem: Given any m+1 points (6%, :%), there is exactly one 
degree-m polynomial that has 5 6% = :% for all these i.

 Proof: e.g., use Lagrange interpolation.

In our case, m=k-1
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Minimum distance of an (n, k) RS code

Theorem: RS codes have minimum distance d = (* − - + 1)
Proof: Any ideas?
Hint: Is it a linear code?
1. RS is a linear code: if we add two codewords corresponding 

to P(x) and Q(x), we get a codeword corresponding to the 
polynomial P(x) + Q(x). Similarly any linear combination..

2. So look at the least weight codeword. It is the evaluation of a 
polynomial of degree k-1 at some n points. So it can be zero 
on only k-1 points. Hence non-zero on at most (n-(k-1)) 
points. This means distance at least n-k+1

Apply Singleton bound
Meets Singleton bound: RS codes are MDS



Decoding: Recovering Erasures
Recovering from at most (d-1) erasures:

Received codeword: 
[P(41), *, P(42), …,*, P(4n)]: at most (d-1) symbols erased
(where * = erased)
Ideas?
1. At most n-k symbols erased
2. So have P(4i) for at least k evaluations
3. Interpolation to recover the polynomial

Matrix viewpoint: Solving system of linear equations
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Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1   ⇒ * ≥ - + 2<  )
Naïve algo: 

– Find k+s symbols that agree on a degree (k-1) poly P(x).
• There must exist one: since originally k + 2s symbols 

agreed and at most s are in error 
    (i.e., “guess” the n-s uncorrupted locations) 

– Can we go wrong? 
    Are there k+s symbols that agree on the wrong  
    degree (k-1) polynomial P’(x)? No.

• Any subset of k symbols will define P’(x)
• Since at most s out of the k+s symbols are in error, 

P’(x) = p(x)
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Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1)

Naïve algo: 
– Find k+s symbols that agree on a degree (k-1) poly P(x).

• There must exist one: since originally k + 2s symbols 
agreed and at most s are in error 

    (i.e., “guess” the n-s uncorrupted locations) 

This suggests a brute-force approach, very inefficient. 
 “guess” = “enumerate”, so time is (n choose s) ~ n^s.

 
More efficient algorithms exist: <polynomial>
“The Berlekamp Welch Algorithm” (results in solving a 

system of n linear equations; uses “error” polynomials)
 =(*") algorithms exist



Codes based on graphs
• Optimized for fast (de)coding
• Based on graphical constructions
• Constructions based on properties of expander graphs

15-750 Page81



15-750 Page85

(a, b) Expander Graphs (bipartite)

Properties
– Expansion: every small subset (k ≤ an) on left has 

many (≥ bk) neighbors on right
– Low degree – not technically part of the definition, 

but typically assumed

k nodes
(k ≤ an) at least bk nodes
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d-regular graphs

An undirected graph is d-regular if every vertex has d 
neighbors.

A bipartite graph is d-left-regular if every vertex on the left 
has d neighbors on the right.

We consider only d-left-regular constructions. 
(And call it d-regular with abuse of notation.)
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (b)

Randomized constructions
– A random d-regular graph is an expander with a high probability
– Time consuming and cannot be stored compactly

Explicit constructions
– Cayley graphs, Ramanujan graphs etc
– Typical technique – start with a small expander, apply operations 

to increase its size
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Theorem: For every constant 0 < c < 1, can construct bipartite 
graphs with 

  n nodes on left, 
 cn on right,
 d-regular (left), 

 that are  (4, 3d/4) expanders, for constants 4 and d that are 
functions of c alone.

“Any set containing at most alpha fraction of the left has (3d/4) 
times as many neighbors on the right”

Expander Graphs: Constructions
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Tornado codes
(Luby Mitzenmacher Shokrollahi Spielman 2001)

Goal: low (linear-time) complexity encoding and decoding

We will focus on erasure recovery
– Each bit either reaches intact, or is lost.
– We know the positions of the lost bits.
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The random erasure model

Random erasure model:
• Each bit is erased with some probability p (say ½ here)
• Known: a random linear code with rate < 1-p works 

(why?)

For simplicity.
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Message 
bits Parity 

bits

c6 = m3 Å m7

m3

m7
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Tornado codes

• Have d-left-regular bipartite graphs with k nodes on the 
left and pk on the right.

m1

m2

m3

mk

c1

cpk

degree = d

k = # of message bits

• Let’s again assume 3d/4-expansion.



15-750 Page101

Tornado codes: Encoding

Why is it linear time?
(Hint: Look at the number of edges)

Computes the sum modulo 2 
of its neighbors

m1

m2

m3

mk

c1

cpk

Number of edges = kd
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Tornado codes: Decoding
First, assume that all the parity bits are intact
Find a parity bit such that only one of its neighbors is 

erased (an unshared neighbor)
Fix the erased bit, and repeat.

m1

m2

m1+m2+c1 = m3

mk

c1

cpk

“Unshared neighbor”
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Tornado codes: Decoding
Intuition:
Want to always find such a parity bit with “Unshared neighbor” property.

 Consider the set of corrupted message bit and their neighbors.
 (Suppose this set is small.)
 => at least one message bit has an unshared neighbor.

m1
m2

mk

c1

cpk

Has an 
unshared 
neighbor
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Tornado codes: Decoding

Can we always find unshared neighbors?

Expander graphs give us this property if expansion > d/2
 (similar argument to one above)

Also, [Luby et al] show that if we construct the graph from a 
specific kind of degree distribution, then we can always find 
unshared neighbors.
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What if parity bits are lost?

Cascading
– Use another bipartite graph to construct another level of 

parity bits for the parity bits
– Final level is encoded using RS or some other code

k k/2
k/4

stop when k/2t 
“small enough”

total bits n £ k(1 + ½ + ¼ + …)
                   = 2k
rate = k/n = ½. 

(assuming p =1/2)
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Tornado codes enc/dec complexity

Encoding time?
– for the first t stages : |E| = d x |V| = O(k)
– for the last stage: poly(last size) = O(k) by design.

Decoding time?
– start from the last stage and move left
– Last stage is O(k) by design
– Rest proportional to |E| = O(k)

So get very fast (linear-time) coding and decoding.
 100s-10,000 times faster than RS


