
5
Hashing

Hashing is a basic computer science technique used in many different
contexts, from dictionary data structures to load balancing and sym-
metry breaking, to cryptography and complexity theory. In the next
few lectures we will study the following:
• Desirable properties of hash families
• Constructions of hash families with these properties
• Applications of hash functions in various contexts

5.1 Maintaining a Dictionary

To understand the desired properties, let us keep one application in
mind. We want to maintain a dictionary. We have a large universe
of “keys” (say the set of all strings of length at most 80 using the
Roman alphabet), denoted by U. The actual dictionary (say the set
of all English words) is some subset S of this universe. S is typically
much smaller than U. The operations we want to implement are:
• add(x): add the key x to S.
• query(q): is the key q ∈ S?
• delete(x): remove the key x from S.

In some cases, we don’t care about adding and removing keys, we
just care about fast query times—e.g., the actual English dictionary
does not change (or changes so gradually that we can afford to re-
build the data structure when it changes). This is called the static
case. Another special case is when we just add keys: the insertion-only
case. The general case is called the dynamic case, or for emphasis, the
fully-dynamic case.

5.1.1 Desired Properties

In this lecture, let [N] denote the numbers {0, 1, 2, . . . , N − 1}. One
natural approach is to choose a hash function h : U → [M], and store
the key x ∈ S at (or near) the location h(x). What do we want from

24

hash functions:

(i) Small probability of distinct keys colliding: if x ̸= y ∈ S then Pr[h(x) =
h(y)] is “small”.

(ii) Small range: we want the hash table size M to be small. At odds
with first desired property.

(iii) Small number of bits to store the hash function h.

(iv) h is easy to compute.

Here it’s important to ask: what is the probability in above expressions
taken over? There are two choices: (a) we could want that two random Specifically, we are asking: what is the

random experiment? What is the sample
space?

keys x ̸= y do not collide very often (i.e., Prx,y∈U|x ̸=y[h(x) = h(y)] ≤
blah). But the keys in our dictionary are typically not random keys,
so such a guarantee may be useless. Instead, (b) we could choose the
hash function randomly (from some set H of hash functions) and want
that for every pair of distinct elements x and y,

Pr
h←H

[h(x) = h(y)] ≤ blah.

This latter approach is the one we take. In practice people use often hashing
schemes based on cryptographic hash
functions like MD5 and SHA (of which
there are many variants), or Google’s
CityHash/FarmHash. These hash func-
tions are deterministic, and so can only
give the former kind of guarantee (if
at all). If you do use a fixed hash func-
tion, you may have to think through
why there will be few collisions on the
dataset used in your application (or
else, you would cross your fingers and
hope it will be so).

An Important Note: We will assume that the dictionary S is chosen “adversari-
ally”, we have no control over it. We choose h randomly from the family H. This
is the only randomness in the process. Of course the adversary does not see h.
Then we look at the performance of our random h on this worst-case S. It’s like
we’re playing a game, and both of us are choosing our actions simultaneously,
and we want our minimax behavior to be as good as possible.

5.1.2 An Ideal: The Perfectly Random Hash Function

Consider the completely random hash function: for each e ∈ S, we
choose a uniformly random location in [M], and set h(e) to be that
location. Clearly, this has great properties:
• Low collision probability: Prh[h(a) = h(b)] = 1/M for any a ̸= b,

since having fixed where a maps to, there is a 1/M chance that b is
mapped to the same location.
• In fact, even conditioned on knowing where any set of elements

A ⊆ S maps to, the position of any e ∈ S \ A is still random:

Pr
h
[h(e) = α | ∧a∈Ah(a) = αa] = 1/M.

The problem? Storing this hash function requires storing lg2 M bits
for each e ∈ S and hence |S| log2 M overall. Moreover, it is not clear
how to compute h(·) fast, other than doing a table-lookup.

However, perfectly random hash functions are good to keep in
mind: we often develop algorithms assuming we have a perfectly
random hash function. Then we see what properties we needed for

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://google-opensource.blogspot.com/2014/03/introducing-farmhash.html

hashing 25

the analysis (e.g., low collision probability, or small sets of elements
behave as though they are independent), and find good hash func-
tions that have these properties.

5.2 Universal Hashing

The definition of universal hashing tries to capture the most basic
desired property that distinct keys do not collide too often. It was
proposed by Carter and Wegman. Carter and Wegman (1979)

Definition 5.1. A family H of hash functions mapping U to [M] is
called universal if for any two keys x ̸= y ∈ U, we have

Pr
h←H

[
h(x) = h(y)

]
≤ 1

M
.

Make sure you understand the definition. This condition must
hold for every pair of distinct keys, and the randomness is over the
choice of the actual hash function h from the set H.

5.2.1 A Single-Bit Construction

The first construction of a universal hash family is the following.
Consider the (trivial?) case where |U| = 2u and M = 2. The hash
functions are defined as follows.

Take a uniformly random u-bit vector a. For x ∈ U, view x as a u-bit
vector in {0, 1}u, and define

h(x) := a · x

where the calculations are done modulo 2.

Since the hash function is completely defined by the vector a, there
are 2u hash functions in this family Hbasic.

Theorem 5.2. The family of hash functions Hbasic defined above is universal
for M = 2.

Proof. Consider x ̸= y ∈ {0, 1}u. We claim that the probability
that h(x) = h(y) is at most 1/M = 1/2. Since h is a linear map,
h(x) = h(y) ⇐⇒ h(x− y) = 0⃗. Equivalently, we want to show that
for any non-zero vector z ∈ {0, 1}n,

Pr
h←H

[h(z) = 0⃗] = Pr[a · z = 0⃗] ≤ 1/2.

Note that a · z = ∑i∈[u] aizi. Say that zi⋆ equals 1 (since z is non-
zero, there is at least one such coordinate. Now fix all the entries of
a except entry i⋆. For a · z to be zero, it must be the case that ai⋆ =

∑i ̸=i⋆ aizi. But ai⋆ is a random bit, so it equals the value on the right
with probability 1/2. Hence the probability of Az = 0⃗ is

1/2 = 1/M.

https://mathscinet.ams.org/mathscinet-getitem?mr=0532173

26

5.2.2 A Construction with Larger Tables

Of course, a hash table of size M = 2 is not very useful. But we can
immediately get larger hash tables by the simple idea of concatenat-
ing many independently drawn hash functions from the basic hash
family. For M = 2m, do the following:

Take an u×m matrix A and fill it with random bits. For x ∈ U, view x
as a u-bit vector in {0, 1}u, and define

h(x) := Ax

where the calculations are done modulo 2. A

x

h(x) = Ax
=

u

m

Since the hash function is completely defined by the matrix A, there
are 2um hash functions in this family Hmatrix.

Theorem 5.3. The family of hash functions Hmatrix is universal for M =

2m.

Proof. We can view a hash function from this family as obtained by
taking m independent hash functions from Hbasic and concatenating
their results. The probability of collision in each bit is 1/2, so the
probability of colliding in all m bits is 1/2m.

BTW, note that h(⃗0) = 0⃗, so picking a random function from
the hash family Hmatrix does not map each key to a random place.
(Indeed, the definition of universality does not require this.) It just
ensures that the probability of pairwise collisions is small.

5.3 Application #1: Dictionaries

The condition of universality may not seem like much, but it gives
a lot of power. As mentioned above, one of the main applications of
universal hashing is to dictionary data structures. We When many
keys hash to the same location, the hash table can store only one
of them. So we need some way of “resolving” these collisions, and
storing these extra keys. There are many solutions, which you’ve
probably seen before.

Hashing with separate chaining: An easy way to resolve collisions,
also easy to analyze, but it may increase the space usage of the data
structure. Here we maintain a linked list of all the “additional” keys.
So the lookup time at location i becomes proportional to |{x ∈ S |
h(x) = i}|, the number of keys in the dictionary S that map to i.
Hence, when we perform a lookup on key q, we will spend expected
time proportional to

Eh←H
[
|{x ∈ S | h(x) = h(q)}|

]
= ∑

x∈S
Pr

h←H

[
h(x) = h(q)

]
≤ |S|

M
.

hashing 27

Hence, with a table of size M = N = |S|, lookups take expected
constant time. (Also observe that item deletion is easy with separate
chaining.)

Hashing with open addressing: What are other ways of resolving
collisions? One way that requires no extra space is open addressing,
where colliding keys are stored in the array itself. Where? That de-
pends. The most basic idea is linear probing: When you are inserting
x and h(x) is occupied, you look for the smallest index i such that
(h(x) + 1) mod M is free, and store h(x) there. When querying for q,
you look at h(q) and scan linearly until you find q or an empty space.
Observe that deletions are not quite as simple any more. It is known
that linear probing can also be done in expected constant time, but
universal hashing does not suffice to prove this bound: 5-universal
hashing is necessary and sufficient. The necessity was shown by Mihai

Patrascu and Mikkel Thorup, the
sufficiency was shown by Anna Pagh,
Rasmus Pagh and Milan Ruzic.

One can use other probe sequences: e.g., not probe each location
but choose some step size s and look at

h(x), h(x) + s (mod M), h(x) + 2s (mod M), . . .

Or quadratic probing, where you look at

h(x), h(x) + 1 mod M, h(x) + 4 mod M, . . . , h(x) + i2 mod M.

Or you can use a random pattern for each key, chosen according to
its own hash function. Python implements its built-in dictio-

nary data structure using hashing with
open addressing: the hash function
merely uses h(x) = x mod M, and the
considers the probe sequence j0 ← h(x)
and jt ← 5jt−1 + 1 mod M. There
are other bells and whistles too such
as adding on an additional perturba-
tion, see this stackexchange post or the
source code for details.

One can also try to store multiple (usually a constant number of)
keys in the same table location. And there’s a different approach
called cuckoo hashing, which we will discuss later in this chapter.

5.4 Application #2: Perfect Hashing

The results for separate chaining mentioned above hold in expecta-
tion (over the choice of the hash function). Can we hope for worst-
case bounds? For a static dictionary S with |S| = N, there is an
elegant solution that gives worst-case constant lookup time, and uses
only tables of total size O(N). And it only uses universal hashing, If we allow ourselves a table of size

M = Ω(N2), this is easy, because by
the tightness of the birthday paradox—
or the calculation in (5.1)—we could
ensure that all keys map to distinct
locations. But that is a lot of wasted
space.

combined with a two-level hashing idea. Here’s how.
First, we claim that if we hash a set S of size N into a table of size

O(N) using a universal hash family, with probability at least 1/2
no location will have more than O(

√
N) keys mapped to it. Why?

For x, y ∈ S, let Cxy be the indicator random variable for whether
h(x) = h(y), i.e., they “collide”. The total number of collisions is
C = ∑x ̸=y∈S Cxy, and its expectation is

E[C] = E

[
∑

x ̸=y∈S
Cxy

]
= E ∑

x ̸=y∈S
E
[
Cxy
]
≤
(

N
2

)
1
M

. (5.1)

https://stackoverflow.com/questions/327311/how-are-pythons-built-in-dictionaries-implemented
https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c

28

For M = N, say, this is at most N/2. So by Markov’s inequality, we
have Pr[C ≥ N] ≤ 1/2. Moreover, if some location did have

√
2N

keys hashing to it, that location itself would result in (
√

2N
2) ≥ N

collisions. Hence, with probability at least half, the maximum load at
any location is at most

√
2N.

In fact, things are even better than that. If the load at location i
is Li, then the total number of collisions is ∑i∈[M] (

Li
2). And by the

argument above, this is smaller than N (with probability 1/2). Hence
∑i L2

i ≤ 3N. Fix this first-level hash function h∗ : U → [N].
Now we can take all the Li keys that map into location i of the

main table, build a special second-level table for them of size Mi =

O(L2
i), and use the calculation (5.1) with M = O(L2

i) to argue that
using a universal hash family for this second-level hashing from
these Li keys to [Mi] will map all of them into separate locations. So
we can choose a good hash function h∗i for the keys that h∗ maps to
location i.

N

L2
4

L2
6

L2
9

L2
10

To look up q, we look at location i = h∗(q), and then check loca-
tion h∗i (q)—this takes two hash function evaluations. Total space: N
for the first table, then ∑i O(L2

i) for the second level tables, which
is again O(N). (All space is measured in the number of keys.) We
also need to store the hash functions, of course, which adds linear
overhead.

5.5 Pairwise and k-wise Independent Hashing

A couple years after their original paper, Carter and Wegman pro-
posed a stronger requirement which we will call pairwise-independent.1 1 They called it strongly universal but

this terminology does not naturally
generalize to k-tuples. (They use k-
strongly universal to mean something
else, so that doesn’t help.)

Let us define a general notion of being k-wise-independent.

Definition 5.4. A family H of hash functions mapping U to [M] is
called k-wise-independent if for any k distinct keys x1, x2, . . . , xk ∈ U,
and any k values α1, α2, . . . , αk ∈ [M] (not necessarily distinct), we
have

Pr
h←H

[
h(x1) = α1 ∧ h(x2) = α2 ∧ · · · ∧ h(xk) = αk

]
≤ 1

Mk .

Such a hash family is also called k-wise independent. The case k = 2 is
called pairwise independent.

The following facts about k-wise independent hash families are
simple to prove.

Fact 5.5. Suppose H is a k-wise independent family for k ≥ 2. Then
a) H is also (k− 1)-wise independent.
b) For any x ∈ U and α ∈ [M], Pr[h(x) = α] = 1/M.
c) H is universal.

hashing 29

From part (c) above, we see that 2-wise independence is indeed at
least as strong a condition as universality. And one can check that the
construction in Section 5.2.2 is not 2-wise independent (since then it
would also be 1-wise independent by Fact 5.5(a), but Pr[h(⃗0) = 0⃗] =
1 ̸= 1/M). In the next section we give some constructions of 2-wise
independent and k-wise independent hash families.

5.5.1 Construction #1: A Variant on a Familiar Theme

The first construction is a simple modification of the universal hash
family we saw in Section 5.2.2 for the case where |U| = 2u and
M = 2m.

Take an u × m matrix A and fill it with random bits. Pick a random m-bit
vector b ∈ {0, 1}m. For x ∈ U = {0, 1}u, define

h(x) := Ax + b

where the calculations are done modulo 2.

The hash function is defined by the matrix A containing um random
bits, and vector b containing m random bits, there are 2(u+1)m hash
functions in this family H.

Claim 5.6. The family H is 2-wise independent.

Proof. Exercise.

5.5.2 Construction #2: Using Fewer Bits

In the above construction, describing the hash function requires
O(um) bits. A natural question is whether we can do better. Indeed
we can. Here is a related construction:

Take an u × m matrix A. Fill the first row A1,⋆ and the first column A⋆,1
with random bits. For any other entry i, j for i > 1 and j > 1, define
Ai,j = Ai−1,j−1. So all entries in each “northwest-southeast” diagonal in A
are the same.

Also pick a random m-bit vector b ∈ {0, 1}m. For x ∈ U = {0, 1}u, define

h(x) := Ax + b

where the calculations are done modulo 2.

Hence the hash family H consists of 2(u+m−1)+m hash functions,
one for each choice of A and b. You will prove that this family H
is 2-wise independent as part of your homework. Here we need
O(u + m) random bits, and hence the space to store the hash function
is comparable to the space to store a constant number of elements
from U and [M]. Much better than O(um)!

30

5.5.3 Construction #3: Using Finite Fields

Suppose we want to map the universe U = {0, 1}u to [M] = {0, 1}m.
For this construction, we will work with the Galois field GF(2u) (and
we associate strings in U with elements of the field in the natural
way). First, we construct a 2-wise independent map from U to U as
follows.

Pick two random numbers a, b ∈ GF(2u). For any x ∈ U, define

h(x) := ax + b

where the calculations are done over the field GF(2u).

To prove 2-wise independence, note that for x1 ̸= x2 ∈ U,(
h(x1)

h(x2)

)
=

(
1 x1

1 x2

)(
a
b

)

To calculate Pr[h(x1) = α1 ∧ h(x2) = α2], we get

Pr

[(
1 x1

1 x2

)(
a
b

)
=

(
α1

α2

)]
= Pr

(a
b

)
=

(
1 x1

1 x2

)−1(
α1

α2

)
where the matrix is invertible because x1 ̸= x2, and we’re working
over a field. But since a, b are chosen randomly, the chance that each
of them equals some specified values is at most 1/2u × 1/2u = 1/22u,
which is 1/|U|2 as desired for 2-wise independence.

That’s cute. On the other hand, we hashed U → U, which does
not seem useful. But now we could truncate the last u−m bits of the
hash value to get a hash family mapping [2u] to [2m] for m ≤ u; you
can check this is 2-wise independent too.

5.5.4 Construction #4: k-universal Hashing

The construction for k-universal is not very different; let’s consider
hashing GF(2u)→ GF(2u) once again.

Pick k random numbers a0, a1, . . . , ak−1 ∈ GF(2u). For any x ∈ U, define

h(x) := a0 + a1x + a2x2 + . . . + ak−1xk−1

where the calculations are done over the field GF(2u).

The proof of k-universality is similar to that above; this is some-
thing you’ll show in the homework. (In fact you could use any finite
field GF(ps) you want.)

hashing 31

5.6 Optional: Other Hashing Schemes

While the above properties (universality and k-universality) are the
most popular to prove that algorithms work well, here are some other
hashing schemes which are commonly used, and have other good
features.

5.6.1 Simple Tabulation Hashing

One proposal that has been around for some time (even considered
by Carter and Wegman in their 1979 paper on universal hashing)
is that of tabulation hashing. In this case, imagine U = [k]u and
M = 2m.

Tabulation Hashing. Initialize a 2-dimensional u × k array T with
each of the uk entries having a random m-bit string. Then for the key
x = x1x2 . . . xu, define its hash as

h(x) := T[1, x1]⊕ T[2, x2]⊕ . . .⊕ T[u, xu].

Note that the hash function is completely defined by the table,
which contains u · k · m random bits. Hence the size of this hash
family is 2kmu. Is this any good? We can look at the independence
properties of this family, for one.

Theorem 5.7. The hash family H for tabulation hashing is 3-wise indepen-
dent but not 4-wise independent.

However, this is one case where independence properties of the
hash family do not capture how good it is. A recent paper of Pa-
trascu and Thorup showed that the performance of many natural Patrascu and Thorup (2010)

applications (linear probing, cuckoo hashing, balls-into-bins) using
tabulation hashing almost matches the performance of these applica-
tions using truly random hash functions. An extension called twisted
tabulation gives a better behavior for some applications. Patrascu and Thorup (2012)

5.6.2 A 5-universal Variant of Tabulation Hashing

Thorup and Zhang show that if we just write x = x1x2, and use the
hash function

h(x) = T[1, x1]⊕ T[2, x2]⊕ T[3, x1 + x2]

which is slight variant on simple tabulation, then we get 5-universality.
Recall that 5-universal is good for some applications, like for hashing
with linear probing.

https://arxiv.org/abs/1011.5200
https://mathscinet.ams.org/mathscinet-getitem?mr=3185391

32

5.6.3 A Practical Almost-Universal Scheme

One hashing scheme that is not universal (but almost is), and is very
easily implementable is as follows. As usual, we are hashing U →
[M]. Consider the common case where both |U| and M are powers of
2; i.e., |U| = 2u and M = 2m.

Pick a random odd number a in [M]. Define

ha(x) := (ax mod U) div (U/M)

Note that this construction clearly gives us an answer in [M]. It is
also easy to implement: e.g., the div operation can be implemented
by shifting to the right u−m times. But is this any good? It turns out
the collision probability is only twice as bad as ideal.

Theorem 5.8. For the hash family H defined as above, for x ̸= y ∈ U,

Pr
h←H

[h(x) = h(y)] ≤ 2
M

.

(The proof is not very difficult, you should try it as a bonus prob-
lem.)

5.6.4 Further Reading on Fast/Practical Hashing

There has been a lot of work on making hashing fast and practical,
while also maintaining good provable properties – and also to under-
stand why certain hashing schemes work well in practice. Check out
papers by, e.g., Martin Dietzfelbinger, Rasmus Pagh, Mikkel Thorup,
and Mihai Patrascu, and the references therein.

5.7 Bloom Filters

A central application of hashing is for dictionary data structures, as
we saw earlier. In some cases it is acceptable to have a data structure
that occasionally has mistakes.

A Bloom filter is one such data structure. It has the feature that it Burton H. Bloom (1970). Space/time
trade-offs in hash coding with allowable
errors

only has false positives (it may report that a key is present when it
is not, but never the other way). Compensating for this presence of
errors is the fact that it is simple and fast. A common application of a
Bloom filter is as a “filter” (hence the name): if you believe that most
queries are not going to belong to the dictionary, then you could first
use this data structure on the queries: if the answer is No you know
for sure the query key is absent. And if the answer is Yes you can use
a slower data structure to confirm. For example, the Google Chrome

browser uses a Bloom filter to maintain
its list of potentially malicious websites:
it’s OK to have a few false positives, but
fast lookups are essential.

Here’s the data structure.

https://dl.acm.org/doi/10.1145/362686.362692
https://dl.acm.org/doi/10.1145/362686.362692
https://dl.acm.org/doi/10.1145/362686.362692

hashing 33

Keep an array T of M bits, initially all entries are zero. Moreover, you have k
hash functions h1, h2, . . . , hk : U → [M]; for this analysis assume they are
completely random hash functions.

To add a key x ∈ S ⊆ U to the dictionary, set bits T[h1(x)], T[h2(x)], . . . , T[hk(x)]
to 1.

Now, when a query comes for key x ∈ U, check if all the entries T[hi(x)] are
set to 1; if so, answer Yes else answer No.

Just that simple. Note that if the key x was in the dictionary S,
all those bits would be on, and hence we would always answer Yes.
However, it could be that other keys have caused all the k bits in
positions h1(x), h2(x), . . . , hk(x) to be set. What is the probability of
that?

5.7.1 The Analysis

As usual, assume that |S| = N. For any key in S, h1 does not hash
this key to the location ℓ ∈ [M] with probability (1− 1/M). If the
bit T[ℓ] = 0, the same must be is true for all N keys, and all k hash
functions—this happens with probability(

1− 1
M

)kN
≈ e−kN/M.

Denote this probability by p. So each location is 0 with probability
p, and hence the expected fraction of zeros in the table is p. One
can show, by a concentration bound, that the fraction of zeros is
close to p with very high probability; see the survey of Broder and
Mitzenmacher. Broder and Mitzenmacher (2003)

Now for a false positive on some query x, the bits

T[h1(x)], T[h2(x)], . . . , T[hk(x)]

in all the k random locations must be set. Since there are a p fraction
of zeros in the table, this happens with probability

(1− p)k ≈ (1− e−kN/M)k. (5.2)

Just to get a sense of the numbers, suppose M = 2N. Then the
false positive probability is about (1− e−k/2)k—minimizing this as a
function of k gives us a false positive rate of 38%; for M = 8N this
falls to 2%. In general, taking derivatives tells us that the optimal
setting of k is k = (ln 2) · (M/N), which gives false-positive proba-
bility of (0.6185)M/N . In other words, if the false-positive probability
is ε, then the number of bits we use is M ≈ 1.44N log(1/ε)—about
1.44 log(1/ε) bits per entry. The best possible space usage in this

model is log(1/ε) bit per key, so Bloom
filters are off by 44%. See a paper
by Anna Pagh, Rasmus Pagh and S.
Srinivasa Rao for an optimal data
structure.

Bloom filters often arise in applications because of their simplicity
and wide applicability; see the survey by Broder and Mitzenmacher
on many applications in networking.

https://mathscinet.ams.org/mathscinet-getitem?mr=2119995

34

5.8 Cuckoo Hashing

Cuckoo hashing is a form of hashing without any false positives/negatives.
It was was invented by Rasmus Pagh and Flemming Rodler. Due to Pagh and Rodler (2004)

its simplicity, and its good performance in practice, it has become
very popular algorithm. Again, we want to maintain a dictionary
S ⊆ U with N keys.

Take two tables T1 and T2, both of size M = O(N), and two hash functions
h1, h2 : U → [M] from hash family H.2 2 We assume that H is fully-random,

but you can check that choosing H to be
O(log N)-universal suffices.When an element x ∈ S is inserted, if either T1[h1(x)] or T2[h2(x)] is empty,

put the element x in that location. If both locations are occupied, say y is
the element in T1[h1(x)], then place x in T1[h1(x)], and “bump” y from it.
Whenever an element z is bumped from one of its locations Ti[hi(z)] (for
some i ∈ {1, 2}), place it in the other location T3−i[h3−i(z)]. If an insert
causes more than 6 log N bumps, we stop the process, pick a new pair of hash
functions, and rehash all the elements in the table.

If x is queried, if either T1[h1(x)] or T2[h2(x)] contains x say Yes else say No.

If x is deleted, remove it from whichever of T1[h1(x)] or T2[h2(x)] contains it.

Note that deletes and lookups are both constant-time operations.
It only remains to bound the time to perform inserts. It turns out
that inserts are not very expensive, since we usually perform few
bumps, and the complete rebuild of the table is extremely rare. This
is formalized in the following theorem.

Theorem 5.9. The expected time to perform an insert operation is O(1) if
M ≥ 4N.

See these notes from Erik Demaine’s class for a proof. [We’ll
sketch it on the board.] You can also see these notes on Cuckoo
Hashing for Undergraduates by Rasmus Pagh for a different proof.

5.8.1 Discussion of Cuckoo Hashing

In the above description, we used two tables to make the exposition
clearer; we could just use a single table T of size 4M and two hash
functions h1, h2, and a result similar to Theorem 5.9 will still hold.
Now this starts to look more like the two-choices paradigm from the
previous section: the difference being that we are allowed to move
balls around, and also have to move these balls on-the-fly.

One question that we care about is the occupancy rate: the the-
orem says we can store N objects in 4N locations and get constant
insert time and expected constant insert time. That is only using 25%
of the memory! Can we do better? How close to 100% can we get?
It turns out that you can get close to 50% occupancy, but better than
50% causes the linear-time bounds to fail. What happens if we use d

https://mathscinet.ams.org/mathscinet-getitem?mr=2050140
http://courses.csail.mit.edu/6.851/spring12/scribe/lec10.pdf
http://www.it-c.dk/people/pagh/papers/cuckoo-undergrad.pdf
http://www.it-c.dk/people/pagh/papers/cuckoo-undergrad.pdf

hashing 35

hash functions instead of 2? With d = 3, experimentally it seems that
one can get more than 90% occupancy and still linear-time bounds
hold. And what happens when we are allowed to put, say, two or
four items in each location? Again there are experimental conjectures,
but the theory is not fleshed out yet. See this survey for more open
questions and pointers.

Moreover, do we really need O(log N)-universal hash functions?
Such functions are expensive to compute and store. Patrascu and
Thorup showed that simple tabulation hashing (see §5.6.1) gives Patrascu and Thorup (2010)

performance very similar to that of truly-random hash functions.
Cohen and Kane show that we cannot get away with 6-universal hash
functions.

http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf
https://arxiv.org/abs/1011.5200
http://math.stanford.edu/~dankane/cuchkoohashing.pdf

