
2
Amortized Analysis and MSTs

2.1 Minimum Spanning Trees

Given a connected graph G = (V, E), a spanning tree is a subgraph
T = (V, E′) with E′ ⊆ E that has no cycles (so it is a tree), and has
a single connected component (and hence is spanning). If each edge
e has a cost/weight w(e), the cost/weight of the tree T is ∑e∈E′ w(e).
The goal of the MST (minimum-cost spanning tree) problem is to find
a spanning tree with least weight.

Figure 2.1: A minimum-cost spanning
tree (abstract foliage). Opt(imization)
art by Bob Bosch

In 1956, Joseph Kruskal proposed the following greedy algoritm
that repeatedly selects the least-cost edge that does not form a cy-
cle with previously selected edges. Stated another way: As always,

Algorithm 4: Kruskal’s MST Algorithm

4.1 T ← ∅
4.2 Sort edges so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em).
4.3 for i← 1 . . . m do
4.4 if T ∪ {ei} does not contain a cycle then
4.5 T ← T ∪ {ei}
4.6 return T

we will ask the two questions: Is this algorithm correct? And how
efficient is it?

Theorem 2.1. Given any connected graph G, Kruskal’s MST Algorithm
outputs the minimum-cost spanning tree.

Proof. The first observation is that the subgraph T is indeed a span-
ning tree: it is acyclic by construction, and it ultimately forms a con-
nected subgraph. Indeed, if T contained a disconnected component
C, then the connectivity of G means there is at least one edge be-
tween C and V \ C—and the first such edge would be added to T.

To show it is a minimum-cost spanning tree, define a set S of
edges to be safe if there exists some MST that contains all edges in

https://twitter.com/baabbaash/status/1485294926959198216

12

S. We will prove that the edges in T maintained by the algorithm are
always safe. So when the algorithm stops with a spanning tree T, the
only MST containing T is T itself: so T is an MST.

To prove the safety of edges in T, we use induction. As a base
case, observe that the empty set is safe. The following lemma shows
the inductive step.

Lemma 2.2. Suppose S is safe. If C is some (maximal) connected compo-
nent formed by the edges of S, and e is the minimum-cost edge crossing from
C to V \ C, then S ∪ {e} is also safe.

Proof. Take any MST T∗ containing S (but not e). If e = {u, v},
consider the u-v path in T∗. Since exactly one of the vertices {u, v}
belongs to C and the other not, there must be a unique edge f on
this path with one endpoint in C and the other outside. This means
T′ := T∗ − f + e is another spanning tree. Moreover, since e had the
least cost among all edges crossing the cut from C to V \ C, we have
w(e) ≤ w(f). This means the new spanning tree T′ has no higher
cost, and hence is also an MST, showing that S ∪ {e} is also safe.

Now each time we add an edge ei in Kruskal’s algorithm, the edge
connects two different connected components C, C′ (because it does
not create any cycles). Since we consider edges in non-decreasing
order of costs, it is the cheapest edge crossing from C to V \ C (and
also from C′ to V \ C′). This means T ∪ {ei} is also safe, hence we end
with a safe set set, which is the MST.

2.1.1 The Running Time

The algorithm statement above is a bit vague, because it does not
explain how to check whether T ∪ {ei} is acyclic. One simple way
is to just run depth-first search on T to check if the endpoints of ei are
already in the same connected component: this would take O(n) time
in general. Since there are m edges, we get an O(mn) runtime. There
is also the time to sort the m edges, which is O(m log m), but that is
asymptotically smaller than O(mn) for simple graphs. Simple graphs are those with no self-

loops, and no parallel edges. We can
always remove these in a linear-time
processing. You can show that any
simple graph has at most (n

2) edges, and
any connected graph has at least n− 1
edges.

But since we are the ones building T, we can store some extra
information that can allow to do this cycle-checking much faster.
We maintain an extra data structure, called the Set Union/Find data
structure, that offers the following operations:

• MakeSet(u): create a new sington set containing element u.

• Find(u): return the “name” of the set containing element u. The
name can change over time, and the only property we require
from the name is that if we do two consecutive finds for u and v

amortized analysis and msts 13

(without any unions between them) then Find(u) = Find(v) if and
only if u and v belong to the same set.

• Union(u, v): merge the sets containing u, v.

Given these operations, we can flesh out the algorithm even more:

Algorithm 5: Kruskal’s MST Algorithm (Again)

5.1 T ← ∅
5.2 for v ∈ V do MakeSet(v)
5.3 Sort edges so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em).
5.4 for i← 1 . . . m do
5.5 let edge ei = {u, v}
5.6 if Find(u) ̸= Find(v) then
5.7 Union(u, v)
5.8 T ← T ∪ {ei}
5.9 return T

Apart from sorting m numbers (which can be done in time O(m log m)

using MergeSort or HeapSort, say, this algorithm performs n Make-
Set, 2m Find, and n − 1 Union operations. It is easy to make sure Each Union reduces the number of

components by 1 and there are n
vertices, so the total number of unions
is n− 1.

that we can implement each of these operations to take time O(n) per
operation. But now we show how to implement them so that they
take only O(log n) on average per operation! Formally we now show
that:

Theorem 2.3. The Set Union/Find data structure has a list-based im-
plementation where any sequence of M makesets, U unions, and F finds
(starting from an empty state) takes time O(M + F + U log U).

This is enough to ensure that the total runtime of Kruskal’s algo-
rithm is O(m log m) + O(m + n + n log n); the first term dominates to
give a net runtime of O(m log m).

In fact, we can implement the data strcture quite a bit better:

Theorem 2.4. The Set Union/Find data structure has a tree-based im-
plementation where any sequence of M makesets, U unions, and F finds
(starting from an empty state) takes time O(M) + O((F + U) log∗U).

Here the log∗ function is the iterated logarithm, which is loosely
the number of times the logarithm function should be applied to
get a result smaller than 2. For details of this proof (and further im-
provements), see the notes on Union/Find from 15-451/651. Note,
however, that the asymptotic runtime of Kruskal’s algorithm does
not improve, since the bottleneck is the O(m log m) time to sort m
numbers.

