
4
Dynamic Programming

Please read the 15-451 lecture notes on dynamic programming for
the basic concepts, of top-down dynamic programming (or memo-
ization), and bottom-up dynamic programming. (It also talks about
dynamic programming on trees, etc.) These notes here are focused on
the issues of reducing space usage for these DPs.

4.1 Longest Common Subseqeuence

Here is the naive bottom-up dynamic program to find the longest
common subseqeuence (LCS) of two strings S and T. Define M to be
a table with m + 1 rows and n + 1 columns, where M(i, j) computes
the length of the longest common subsequence of the prefixes S1:i

and T1:j.

Algorithm 6: LCS-value(S, T)

6.1 M(0, ⋆) = M(⋆, 0) = 0
6.2 for i = 1 to m do
6.3 for j = 1 to n do
6.4 if Si = Tj then
6.5 M(i, j)← 1 + M(i− 1, j− 1)
6.6 else
6.7 M(i, j)← max(M(i− 1, j), M(i, j− 1))
6.8 return M(m, n)

Theorem 4.1. Algorithm 6 computes the length of the longest common
subsequence of two strings of length m, n in O(mn) time and space.

Figure 4.1: The LCS of ACCTACAG
and CATATACCAG.

4.1.1 Finding the LCS Itself

Having run Algorithm 6 to fill in the table, we can find the LCS itself
in O(m + n) time by just “following the decisions” when filling the



22

table.

Algorithm 7: LCS-Search(S, T)

7.1 i← m, j← n
7.2 while i > 0 or j > 0 do
7.3 if Si = Tj then
7.4 output Si

7.5 i← i− 1, j← j− 1
7.6 else
7.7 if M(i, j) = M(i− 1, j) then i← i− 1 else j← j− 1

Figure 4.2: The LCS of ACCTACAG
and CATATACCAG is ATACAG.

(Exercise: One of the strings T has been accidentally deleted, but
you still have the string S, and the table M(·, ·). Show how to output
the LCS in O(m + n) time)

4.2 Space-Efficiency

The above bottom-up algorithm for the LCS problem always takes
O(mn) time and space. A very recent result shows that the quadratic
runtime is necessary in general, but we can reduce the space usage.
The crucial observations are simple: (a) we care only about the value
of M(m, n), and (b) the update rule for a cell M(i, j) depends only on
M(i− 1, j− 1), M(i− 1, j) and M(i, j− 1), which belong to the same
row or previous row as the current cell (i, j) being filled in. Hence we
can fill the table row-by-row, “keeping in mind” only rows i− 1 and i
when filling in row i. Formally, we define the table M to have only 2
rows and n + 1 columns, and change the algorithm as follows:

Algorithm 8: Low-Space LCS(S, T)

8.1 M(0, ⋆) = M(⋆, 0) = 0
8.2 for i = 1 to m do
8.3 for j = 1 to n do
8.4 if Si = Tj then
8.5 M(i mod 2, j)← 1 + M(i− 1 mod 2, j− 1)
8.6 else
8.7 M(i mod 2, j)←

max(M(i− 1 mod 2, j), M(i mod 2, j− 1))
8.8 return M(m mod 2, n)

Theorem 4.2. Algorithm 8 computes the length of the longest common sub-
sequence of two strings of length m, n in O(mn) time and O(min(m, n))
space



dynamic programming 23

4.3 (Optional) Finding the LCS in Linear Space

How can we find the actual LCS using O(m + n) space: clearly the
search algorithm given in Algorithm 7 will no longer work, since we
don’t have the entire table. Hence we need to be smarter: the lovely
idea here can be called “guess the mid-point”. This idea is essentially that used by

Savitch for his classical result relat-
ing log-space computation to non-
deterministic log-space.

The main observation is this: there exists a value q such that

LCS(S1:m, T1:n) = LCS(S1:m/2, T1,q) + LCS(Sm/2+1,m, Tq+1,n). (4.1)

I visualize this as follows: when we follow the optimal solution up
from M(m, n) to M(0, 0), this optimal solution must cross row m/2 at
some point—this point (m/2, q) must provide this partition. Add a
picture here.

Now using Algorithm 8 on S1:m/2 and T, and on the reversed
strings Sm/2+1,m and T, we can find the index q that achieves the
equality (4.1). Now we can recurse on the two halves

Algorithm 9: Low-Space LCS-Search(S, T)

9.1 run Algorithm 8 on S1:m/2 and T, and on reversed Sm/2+1,m

and T
9.2 find q that satisfies equality (4.1)
9.3 recurse on S1:m/2, T1:q, and on Sm/2+1,m, Tq+1,n.

Theorem 4.3. Algorithm 9 runs in time O(mn) and space O(m + n).

Proof. For the runtime, note that the first line of the algorithm runs in
O(mn) time, using Theorem 4.2. Now a linear-time scan can find the
value q that minimizes the sum LCS(S1:m/2, T1,q)+ LCS(Sm/2+1,m, Tq+1,n).
Now for the inductive proof, assume that the rumtime of the recur-
sive calls is at most c(m/2)q + c(m/2)(n− q) = c(m/2)n. Summing
this all up, we get at most cmn.


