
8
Searching for Near Neighbors

Notes by Anupam Gupta
In this chapter we consider the setting where we are given a set of
points in a metric space, and we want to create a data structure to
find return points in the data set that are close to given query. This
kind of data structure is not only at the heart of all search engines
today, it underlies many other applications too. We discuss some
of the many ways to solve this problem, some using geometry and
others using hashing.

Formally, the setup for the near-neighbor (NN) problem is the
following:

1. Fix a metric space (X, d).

2. Given a data set S ✓ X with n data points, we can preprocess it to
create a data structure of “small” size, in “small” time.

3. Now, queries q1, q2, . . . 2 X arrive over time, and for each query q
we must return a point in S that is “close” to q.

For instance, the points of the metric space may be the set of all docu-
ments in our corpus, and we may have our favorite notion of distance
between them (say the Jaccard distance, which you will see later in
the lecture). Or we may consider the set of all strings over the alpha-
bet {A, C, G, T} with the edit distance between them.

8.1 Bringing Structure into Raw Data

If we are dealing with unstructured data, say a collection of docu-
ments, there may be very little structure to it. Typically the first step
is to embed it into some kind of geometric space, which we can then
use for our next steps. As an example, suppose we have a collection
of text documents: how can we give it more geometric structure?

1. One approach is to view the documents as ASCII strings, with edit
distance measuring the proximity between them. It is natural, and

66

useful for some contexts (say genome fragments) but difficult to
interpret in others—how can we use this to perform web searches,
for instance?

2. A different approach would be to view these ASCII strings as
vectors and use Euclidean distance between them. Again, difficult
to interpret. If we take the same document and swap the other of
two paragraphs, the distance may change by a lot, but the meaning
may change very little.

3. A different way is to view the document as a bag of words: repre-
sent it as a multiset containing the words in it (along with their
multiplicity). This itself can be represented as a N-dimensional For a ballpark estimate, English roughly

has N = 100, 000 words.vector of numbers, where N is the number of words in our lan-
guage. For example, the phrase “Time flies like an arrow, fruit flies
like a banana” would be represented as

(. . . , 1|{z}
time

, . . . , 1|{z}
banana

, . . . 2|{z}
flies

, . . . , 2|{z}
like

, . . . 1|{z}
arrow

, . . .).

Typically we drop all the stop words like articles and other common
but relatively uninformative words from it.

4. There are some natural problems with such a bag-of-words ap-
proach. Taking two copies of the same document can double the
vector magnitude, but not increase the information. Also, even if
stop-words are dropped, other less meaningful words can form
most of the vector mass. One simple fix to both is the TF/IDF (to-
tal frequency/inverse document frequency) mapping. In this each
word count (for the word w, say) is first divided by the total num-
ber of words in the document (the total frequency part) and then
multiplied by

log
✓

documents in corpus
documents containing w

◆
,

the (log) inverse document frequency.

Figure 8.1: Shingling text: these shin-
gles consist of three words.5. This entire approach ignores the structure of the sentence, which

can be very important in most languages, like in English. To han-
dle this, one approach is to use shingling. In this, a document is
broken not into a bag of words, but into a bag of shingles, where
each shingle consists of a sequence of some k words. (And we
can use the re-normalization ideas used above.) Of course, this
gives an embedding into Nk dimensional space. These result-
ing vectors are very sparse, and hence the sets of interest in most
near-neighbor problems are relatively small (say of size 106 to

searching for near neighbors 67

109, a million to a billion vectors) which lie in some very high-
dimensional space, and each of which is very sparse (with rela-
tively few entries being non-zero).

Figure 8.2: Shingling images: say
shingles of size 10⇥ 10.

This idea of shingling can also be done for images, to turn them
into vectors that be searched for.

8.2 The (Geometric) #-Near-Neighbors Problem

Henceforth, we will assume that our dataset S lie in Rk for some di-
mension k. The distance d(x, y) between two points x, y is measured
either with respect to the standard Euclidean distance

kx� yk2 :=

vuut
k

Â
i=1

(xi � yi)2,

or else they are measured in the `1 or Manhattan taxicab distance

kx� yk1 :=
k

Â
i=1

|xi � yi|.

Let us formally define the #-near-neighbors problem as the follow-
ing: given dataset S of size |S| = n, and a parameter # > 0, preprocess
S so that given any query point q 2 Rk, we can quickly return an
“answer” point a 2 S such that

d(q, a) (1 + #) min
x2S

d(q, x).

Figure 8.3: The #-NN problem. Return-
ing any point within the gray region
(including x⇤) is a valid solution.

The measures of goodness will be (a) the preprocessing time and
space and (b) the query time. There is a natural tension between these
two measures, since the more we compute during the preprocessing,
the less we may have to do at query-time.

8.2.1 Strawman #1: Linear Search

The simplest approach is to not do any preprocessing at all. Then
given a query point q 2 Rk, we just run over the n points, and return
the closest point to it.

1. There is no preprocessing, and the space usage is O(nk) numbers—
the k coordinates for each of n points.

2. The query time is also O(nk).

Clearly the space usage and preprocessing time is excellent, and we
get the absolute nearest point to q. But the query time is nothing to
write home about. Of course, it’s a start: let’s see if we can do better
with some more work.

68

8.2.2 Strawman #2: k-d trees

This data structure should be thought of as a natural k-dimensional This was developed by Jon Bentley,
who was on the CMU faculty in the
1970s-80s.

analog of imposing a binary-tree structure over a line. The idea is to
subdivide space into boxes with fewer and fewer points (or regions in
general), until each box contains a single point.

Specifically, we can assume we start inside a large enough box. For
each box B that contains more than one point, we choose one of the k
dimensions, say i, find the median of the ith-coordinates of the points The choice of the splitting coordinate

at each step is up to the user: it can be
done in a round-robin fashion, or based
on the spread of the points.

inside B, and split B into two boxes using an axis-parallel hyperplane
at this median. (See the figure to the right.)

Figure 8.4: Partitioning the box through
the median of one of the coordinates.

The two children of B now have half the number of points that B
has, so the depth of the tree is log2 n. Each box in the data structure
now stores the points within it, and also the identity of the points
with the maximum and minimum coordinates along each of the
k coordinate axes. (These will be needed for the following query
procedure.) Overall this requires only O(nk log n) bits of space.

Figure 8.5: The recursive partitioning.

Now given a query q point, we start at the root box and go down
the tree to a leaf box by choosing the child containing q at each step.
Let x be the point in this leaf box: this is our initial guess for the
nearest neighbor. Of course, x may not be the closest point, so we try
to refine our guess as we go back up the tree. Suppose a box B has
two children B` and Br obtained by splitting along the first coordi-
nate (with B` to the left of Br), and we have just come returned from
B` with a current guess of x. If the box Br contains a closer point y,
then the first coordinate of y must satisfy y1 q1 + d(q, x). Hence, we
can ignore Br if the minimum first coordinate value among its points
is larger than q1 + d(q, x), else we try to find a closer point to q within
it. This query can spend W(n) time in the worst-case, but empirically
it seems to do well on real-world data sets. (The rule of thumb is Moreover, there are there are variants

of k-d trees (e.g., the random projection
trees of Dasgupta and Freund) that can
give guarantees based on the “intrinsic
dimension” of the data.

that the query time tends to be closer to ⇡ 2k log n on most “well-
behaved” data sets.) This is fine for small k, but even for k = 100 this
kind of runtime can be prohibitive, and is often called the curse of

dimensionality! This is another phrase coined by
Richard Bellman.

8.3 Optional: A Provably Good Variant of k-d Trees

It is possible to alter k-d trees to give a provable worst-case bound
of approximately O(1/#)k on the query time. Note that this is still
exponential in the dimension, and hence is relevant only for small
values of k—but at least we are ensured that we do not spend W(n)
time in the worst case.

The idea will again be to split the data repeatedly, but now we
split the side-lengths of the box in half, instead of splitting the num-

searching for near neighbors 69

ber of points in half. To make this precise, some notation will be
useful: let dmax(S) be the largest distance between any two points in
S, and let dmin(S) be the smallest non-zero distance. We define the
aspect ratio of the point set S to be

D(S) :=
dmax(S)
dmin(S)

.

Here is the construction algorithm for the k-d tree:

Figure 8.6: Partitioning space in smaller
boxes.

1. By translating the points, assume that all points lie in the box
[0, dmax]k. Now break this box into 2k smaller boxes of half the
side-length. Let these 2k boxes be children of the original bound-
ing box, and hence siblings of each other. For each resulting box
that has at more than one point in it, break it into 2k boxes of half
its side-length. And repeat this process. Note that each time we
perform this operation, the side length halves.

2. For each of the resulting boxes that contains at least one point,
choose any point within it as its representative. For simplicity, en-
sure that the representative of any box is also the representative of
its box among the children boxes.

Since each leaf of the tree contains a distinct point from S, each
point in S is a representative of the leaf box that contains it. But as
we go up the tree, the set of representatives becomes smaller, until
there is a single representative at the root.

Figure 8.7: The tree structure that arises
from the partitioning.

Before we move on, let’s bound the total space usage of this data
structure. Since we shatter a box only when it has multiple points,
the side-length of the leaf boxes must be at least dmin

2
p

k
. (To see why,

think about why its parent box was split into smaller boxes!) The
side-length starts off at dmax and halves each time, so the height of
this tree is at most

H := log
✓

dmax

dmin/(2
p

k)

◆
= log D(S) + log k + O(1).

Moreover, each level contains at most n points as representatives, so
the total space usage is at most O(nk H) bits. This is more than the
naive approach only by the (small-ish) logarithmic factor, which is
great.

8.3.1 The Query Procedure and Query Time

Here’s the query procedure at a high level: we keep track of a list L
of ` close points seen thus far, where ` is a parameter we will choose
soon. As we go down the tree, we update this list, and when we

70

reach the leaves, we output the closest point among the ` points still
remaining in L.

The idea is simple: this list L starts off with the representative
point of the root box, which is a weak guess for the near neighbor.
Now in each round, we descend one level of the tree. Suppose at
height h we have some set L of points in hand. These are the repre-
sentatives of some boxes at this height. We look at the 2k children
boxes (at height h � 1) of each of these boxes, and their representa-
tives. Among these |L|2k representatives, we keep the ` points
closest to q, and continue. When we reach the leaves, we return the
best point among the those in L. Here’s the formal procedure:

Algorithm 14: Provably Good k-d Tree

14.1 L { the representative point for the root box }.
14.2 for height h H . . . 1 do

14.3 L0 ∆
14.4 for points x 2 L do

14.5 B box containing x at height h
14.6 L0 L0 [{ representatives of all 2k children boxes of B}
14.7 L the ` points in L0 that are closest to q
14.8 return a arg min{d(q, x) | x 2 L}.

The query time is at most H`2k by construction, since we spend
`2k time per level. The question is: how large do we need to make H
to ensure that the output is a (1 + #)-approximate near-neighbor? It is
possible to prove the following theorem, which we omit for now.

Theorem 8.1. Setting ` := (4/#)k ensures that the answer is always a
(1 + #)-approximate near-neighbor. This makes the query time

H`2k = O(1/#)k log D(S).

Note the exponential dependence in the dimension k, and more-
over the (logarithmic) dependence on the aspect ratio of the data set.
One can combine the ideas from the basic k-d trees and this one, to
alternate splitting according to (a) the number of points in the box
and (b) the side-length of the containing box. This can reduce the
dependence to O(1/#)k log n, which still falls prey to the curse of di-
mensionality. In the next section, we see a hashing-based approach Work of Krauthgamer and Lee, among

others, give variants of this construction
that can reduce the dependence further
to be exponential only in the “intrinsic
dimension” of the data set, but the
exponential behavior remains.

that avoids this exponential dependence, at the cost of a large amount
of preprocessing.

searching for near neighbors 71

8.4 Fixing a Distance Scale

Let’s consider a slightly restricted version of the #-NN problem: given
a data set S and a fixed distance r, build the data structure NNr to
quickly answer queries of the form: Given query point q, return a point
a 2 S such that d(q, a) ⇡ r, if one exists. Formally, we want the follow-
ing guarantees from our data structure:

1. If there exists a point x 2 S with d(q, x) r, it must return a point
a with d(q, a) (1 + #)r,

2. If every point x 2 S has d(q, x) > r, it can either return a point a
with d(q, a) (1 + #)r, or say No.

We call this problem the (#, r)-near-neighbor, or the (#, r)-NN prob-
lem.

Figure 8.8: The (#, r)-NN problem.
Returning any point within the inner
circle or the outer circle is is a valid
solution.

The next theorem shows how to solve the original #-NN problem
using this “fixed scale” version, using the idea of doubling search. The
idea itself is very simple but versatile: solve the problem for all powers of
(1 + #) in some relevant range of values, and choose the best answer. One
needs a bit of care to get the details right, but the idea is just that
simple.

Theorem 8.2. For any # 2 (0, 1) and dataset S of n points, a solu-
tion to (#, r)-NN using A = A(n, #) preprocessing time and space and
Q = Q(n, #) query time can be used to give a solution to (3#)-NN with
O
�

A log D(S)
#

�
preprocessing time and space and O

�
Q log D(S)

#

�
query time.

Proof. The combined data structure is the following: let dmin and
dmax be the smallest non-zero distance and largest distance between
points in S. Then for each value of r of the form

dmin
4

,
dmin

2
(1 + #),

dmin
4

(1 + #)2, · · · ,
dmin

4
(1 + #)i, · · ·

until the value of r exceeds 2dmax
, we maintain a data structure for the

associated (#, r)-NN problem. When a query q arrives, we present it
to each of these data structures and return the best of all the answers.
Since there are We use that

log1+# X =
ln X

ln(1 + #)
.

Now ln(1 + #) 2 [#/2, #] for # 2 [0, 1], so

log1+# X = Q
⇣ ln X

#

⌘
.

log(1+#)
2dmax/#

dmin/4
⇡ O

⇣ log D(S)
#

⌘

values of the exponent i that satisfy the conditions above, the bounds
on the preprocessing time/space and query time follow.

It remains to show that the answer satisfies the requirements of
the (3#)-NN problem. Indeed, suppose the closest point in S to query
q is at distance D. Suppose D lies between r

1+# and r for one of the

72

choices of r we used above. Then the associated (#, r)-NN data struc-
ture will return a point at distance at most

(1 + #)r (1 + #)2D (1 + 3#)D

using # 1 here.
Edge cases here, flesh these out. Else if D is larger than the largest

value of r in our collection, then any point in S an #-NN. Or if D is
smaller than dmin/4

1+# , then the answer for the r = dmin/4 data structure
must be the exact closest point.

8.5 Locality Sensitive Hashing

The idea of regular hashing is this: if x 6= y, we want the probability
of collisions to be tiny. Formally,

x = y =) Pr[h(x) = h(y)] = 1

x 6= y =) Pr[h(x) = h(y)] ⇡ 0.

The first line is trivial, but we’re saying it explicitly to draw the paral-
lels with LSH. The idea of locality sensitive hashing (LSH) is a more
nuanced version of the above, one that takes distances into account.
We want:

d(x, y) close =) Pr[h(x) = h(y)] � large

d(x, y) far =) Pr[h(x) = h(y)] small.

So it’s not just equality and inequality any more, we care about the
collision probabilities of keys that are close and far. In words,

• far items fall in same bin with low probability, and

• close items fall in the same bin with high probability.

A bit more formally and quantitatively: given a values r, #, we want

d(x, y) r =) Pr[h(x) = h(y)] � large pclose

d(x, y) � (1 + #)r =) Pr[h(x) = h(y)] small pfar.

For these constructions to be useful, pclose ⇡ 1 and pfar ⇡ 0, the
former ensuring few false negatives, and the latter ensuring few false
positives.

8.5.1 The Plan

Here’s how almost all the constructions for LSH will proceed:

searching for near neighbors 73

1. First, we get a very weak result, a hashing result where the gap
between pclose and pfar is very tiny. Say

pfar ⇡ pclose � #.

2. Next, we “amplify” this gap. To reduce the probability of far items
colliding, we perform a process we call parallel repetition. Given a The terms parallel repetition and serial

repetition are typically not used in the
context of LSH. But we find it useful:
giving the technique an evocative name
makes it easier to remember.

hash family H, consider the hash family Ht which is obtained by
choosing t hash functions independently, and using all these hash
values in parallel. Namely, the new hash family is H0 := Hk, and
the new hash function h0 maps

h0(x) =
�
h1(x), h2(x), . . . , ht(x)

�
,

where each of the hi’s are independently chosen. Since colliding
in h0 requires us to collide in all the t coordinates, this drives the
probability of far collisions from pfar to (pfar)

t. We choose t to set
this to 1/n, say.

Figure 8.9: Serial repetition.

3. Unfortunately, the probability of close collisions has also dropped,
from pclose to (pclose)

t. So we “amplify” this as well, using what
we call serial repetition. We simply take L independent copies of
the data structure. By linearity of expectation, if x, y are close, they
will collide in an expected L · (pclose)

t number of these copies. If
we set this value close to 1, then the probability of collisions in
none of these L copies is small, by Markov’s inequality.

And that’s it.
Note that steps (2) and (3) are completely generic. They show a

“boosting”-type result—given an LSH with a tiny gap between pclose
and pfar, we can mechanically boost the gap. Of course, a smaller
initial gap means t and hence L will eventually be large, which will
cost us in both space usage and query times.

8.5.2 LSH for Hamming Metrics

The above discussion was abstract, so let us see this in the context
of LSH for Hamming distances. Suppose we have points in the set
{0, 1}k—i.e., k-bit strings—equipped with the Hamming metric. And The Hamming metric counts the number

of bit positions where the two bit
strings differ.

suppose we want to distinguish distance r from � 2r, which means
= 1. How would we do this? We follow the recipe above.

1. First, here’s a simple LSH. Pick a uniformly random bit position
i 2 {1, 2, . . . , k}, and let h(x) = xi. Note that

d(x, y) r =) Pr[h(x) = h(y)] � 1� r
k
=: pclose

d(x, y) � 2r =) Pr[h(x) = h(y)] 1� 2r
k

=: pfar.

74

2. Next, we do parallel repetition (which corresponds to choosing t
bit-positions, with repetition. We want to set t so that (pfar)

t 1/n.
Since ⇣

1� 2r
k

⌘t
 e�(2r/k)·t,

we can set
2r/kt = ln n =) t =

k
2r

ln n.

3. Of course, now the close collision probability has become
⇣

1� r
k

⌘t
⇡ e�(r/k)·t = e�

1
2 ln n =

1p
n

.

So we do “serial repetition”: we make L =
p

n ln n independent
copies of the data structure. Then the probability of a close pair
colliding in at least one of these is

1�
⇣

1� 1p
n

⌘L
⇡ 1� e�L/n = 1� 1

n
.

This is great. We started with a very weak LSH scheme, and by using
parallel and serial repetition, we get a construction where (a) the
probability of a far pair colliding in any fixed table is 1

n , and (b) the
probability of a close pair colliding in at least one table is at least
1� 1

n . We used L ⇡
p

n tables, each obtained by projecting down to
⇡ (k/r) log n random bits.

8.5.3 (#, r)-NN using Locality Sensitive Hashing

To complete the story, let’s just recap how this solves the (#, r)-NN for
Hamming metrics, and also discuss the space and query time for the
construction. The construction is the following:

1. Maintain L different tables: in each table, choose random t coor-
dinates of the bit-vector (with replacement, say). For each of the
{0, 1}t possible values in these t positions, keep track of the points
in S that have those values. E.g., if the t positions are 4, 5, 19, 21,
then the entry in the table corresponding to 0110 will contain a list
of all the elements x 2 S that have

x4 = 0, x5 = 1, x19 = 1, x21 = 0.

Naïvely we would maintain a table of size 2t. Since t � log n, this
is much bigger than n, and so is very wasteful. How should we
reduce the space usage? Conventional hashing! Using a standard
dictionary data structure, we can store this information using only
O(n) space per table. (Check that you see how, else please ask!) So
that’s a total of O(Ln) space, and a similar preprocessing time.

searching for near neighbors 75

2. When a query q arrives, for each of the L tables we look up whether
any of the data points in S agree with q on the chosen t coordi-
nates. In the example above, this requires looking up the table
location q4q5q19q21 and returning the first point among these at
distance at most (1 + #)r.

Now for the probability of success: if there exists a point x with
d(q, x) r, our choice of t and L means h0(x) = h0(q) for at least
one of the tables, with probability 1� 1/n, so the probability of
false negatives is small. Moreover, any points x with d(q, x) >

(1 + #)r (i.e., false positives) have a 1/n change of colliding with q
in any fixed table, so we need to look at only O(1) items per table
before succeeding. Hence, this takes O(1) expected number of
distance computations per table, and hence O(Lk) time overall.

We can summarize this discussion as a theorem:

Theorem 8.3. The LSH data structure for Hamming metrics given above
uses O(n1.5k poly log n) space and preprocessing time, has O(

p
nk) ex-

pected runtime, and is correct with probability at least 1 � 1/n on any
query.

8.5.4 LSH for Vectors in Euclidean Space

Figure 8.10: A random hyperplane
through the origin separates the two
vectors with probabiltiy q/p.

If we have a different metric, we can replace the simple basic LSH
(which was projecting onto a single bit for the Hamming metric
case) by a “good” LSH for that metric space. For instance, given unit
vectors in Euclidean space, one commonly used metric is the cosine
distance: the distance between vectors u, v is the cosine of the angle
between them. A little thought shows that this is nothing but the
inner product

hu, vi .

One good LSH for this distance is to pick a uniformly random half-
space

Z := {x | ha, xi � 0}
through the origin, and define h(v) = 1 if v 2 Z, and 0 otherwise.
One can check that

Pr[h(u) = h(v)] = q/p.

8.5.5 LSH for Sets via the Jaccard Distance

We can use the LSH idea even for unstructured documents, without
doing the steps in §8.1 to map them to vectors. Given two sets A, B,
the Jaccard distance between them is

dJacc(A, B) := 1� |A \ B|
|A [B| .

76

This distance takes values between 0 and 1, and can be checked to be
a metric.

Figure 8.11: The Jaccard similarity of the
two sets is the size of their intersection,
to that of their union. The distance is
one minus their similarity.

An LSH for this metric is the famed minhash hash family: here
we pick a uniformly random permutation of all the elements of the
universe, and map a set A to the element in A that comes first in this
permutation. Note that

h(A) = h(B)

when then have the same first element. This happens with probabil-
ity exactly

|A \ B|
|A [B| = 1� dJacc(A, B).

Again, we can take this basic hash, and then use parallel and serial
repetition to get an excellent data structure out of it.

8.6 Takeaways

Some takeaways to keep in mind:

1. We saw the classic k-d tree data structure, which is based on spa-
tial partitioning. It is easy, popular, and works pretty well. How-
ever, it suffers from the curse of dimensionality: the space and time
to search grows exponentially in the dimension of the data.

2. We then saw some approaches to extend hashing from unstruc-
tured settings (“two elements map to the same place (with high
probability) if and only if they are identical) to the settings with an
underlying metric space: “two elements map to the same place (with
high probability) if and only if they are similar/close”. This does not
have the same “curse of dimensionality” problems, and hence has
tremendous consequences for searching in these metric spaces.

3. The idea was very clean: first reduce the problem to one distance
scale. That is, just figure out whether the closest point is at most
D or at least (1 + #)D. And then use binary search or doubling
search.

4. For a fixed distance scale, the LSH idea is to come up with a hash
function with a (slightly) higher probability of two close items
colliding than for two far items colliding. Then use parallel repeti-
tion to reduce the probability of false positives. Finally, use serial
repetition to reduce the probability of false negatives.

5. We can use this idea for many different metric spaces: Hamming,
vectors, Jaccard, Euclidean, and many others. Please check out
other resources for details on the things we did not cover, if you
are interested. LSH is a popular and widely used approach by
now, and works well both in theory and in practice.

searching for near neighbors 77

We can view LSH as a special-purpose “dimension reduction”
technique. In the coming chapters, we will see some general ap-
proaches to reduce the dimension of a dataset, some based on ran-
domness and others on linear algebra.

	Triangle Counting and Matrix Multiplication
	Counting Triangles in a Graph
	The Complexity of Matrix Multiplication
	Conclusions

	Amortized Analysis and MSTs
	Minimum Spanning Trees
	Amortized Analysis
	The Binary Counter
	The Potential Function Method
	The List-Based Union-Find Data Structure

	Shortest Paths and Heaps
	Dynamic Programming
	Longest Common Subseqeuence
	Space-Efficiency
	(Optional) Finding the LCS in Linear Space

	Hashing
	Maintaining a Dictionary
	Universal Hashing
	Application #1: Dictionaries
	Application #2: Perfect Hashing
	Pairwise and k-wise Independent Hashing
	Optional: Other Hashing Schemes
	Bloom Filters
	Cuckoo Hashing

	The Data Streaming Model
	The Model
	Sampling vs. Hashing
	Streams as Vectors, and Additions/Deletions
	Heavy Hitters
	Optional: Distinct Elements
	Takeaways

	Sampling Algorithms
	Counting Triangles in a Graph
	The First Concentration Bounds
	A Tighter Concentration Bound
	Load Balancing: Balls and Bins
	Load Balancing using Two-Choice Hashing
	Takeaways

	Searching for Near Neighbors
	Bringing Structure into Raw Data
	The (Geometric) -Near-Neighbors Problem
	Optional: A Provably Good Variant of k-d Trees
	Fixing a Distance Scale
	Locality Sensitive Hashing
	Takeaways

	I Interlude: Dimension Reduction
	Network Flows
	The Model
	Applications

	Polynomials and Error Correcting Codes
	Operations on Polynomials
	How Many Roots?
	A New Representation for degree-d Polynomials
	Application: Error Correcting Codes
	Multivariate Polynomials and Matchings (Optional)
	Optional: Proof of the Few-Roots Theorem

