
7
The Data Streaming Model

7.1 The Model

Today’s lecture will be about a slightly different computational model
called the data streaming model. In this model you see elements going
past in a “stream”, and you have very little space to store things. For
example, you might be running a program on an Internet router, the
elements might be IP Addresses, and you have limited space. You
certainly don’t have space to store all the elements in the stream. The
question is: which functions of the input stream can you compute
with what amount of time and space? (For this lecture, we will focus
on space, but similar questions can be asked for update times.)

We will denote the stream elements by

a1, a2, a3, . . . , at, . . .

We assume each stream element is from alphabet U and takes b bits
to represent. For example, the elements might be 32-bit integers IP
Addresses. We imagine we are given some function, and we want to
compute it continually, on every prefix of the stream. Let us denote
a[1:t] = 〈a1, a2, . . . , at〉.

7.1.1 Examples

Let us consider some examples. Suppose we have seen the integers

3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, . . . (�)

• Computing the sum of all the integers seen so far? F(a[1:t]) =

∑t
i=1 ai. We want the outputs to be

3, 4, 21, 25, 16, 48, 149, 152,−570,−567, 333, 337, 369, . . .

If we have seen T numbers so far, the sum is at most T2b and
hence needs at most O(b + log T) space. So we can just keep



46

a counter, and when a new element comes in, we add it to the
counter.

• How about the maximum of the elements so far? F(a[1:t]) =

maxt
i=1 ai. Even easier. The outputs are:

3, 1, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900

We just need to store b bits.

• The median? The outputs on the various prefixes of (�) now are

3, 1, 3, 3, 3, 3, 4, 3, . . .

And doing this will small space is a lot more tricky.

• (“distinct elements”) Or the number of distinct numbers seen so
far? You’d want to output:

1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9 . . .

• (“heavy hitters”) Or the elements that have appeared most often so
far? Hmm...

You can imagine the applications of the data-stream model. An
Internet router might see a lot of packets whiz by, and may want to
figure out which data connections are using the most space? Or how
many different connections have been initiated since midnight? Or
the median (or the 90th percentile) of the file sizes that have been
transferred. Which IP connections are “elephants” (say the ones that
have used more than 0.01% of your bandwidth)? Even if you are not
working at “line speed”, but just looking over the server logs, you Such a router might see tens of millions

of packets per second.may not want to spend too much time to find out the answers, you
may just want to read over the file in one quick pass and come up
with an answer. Such an algorithm might also be cache-friendly. But
how to do this?

Two of the recurring themes in this chapter will be:

• Approximate solutions: in several cases, it will be impossible
to compute the function exactly using small space. Hence we’ll
explore the trade-offs between approximation and space.

• Hashing: this will be a very powerful technique.

7.2 Sampling vs. Hashing

It is natural that we use sampling for some of these problems: after
all, we want to whittle down the amount of data to some manageable



the data streaming model 47

size. But sometimes you should be careful about how you sample
(and why hashing may be good). Here’s an example from the MMDS
book.

Suppose you want to figure out the number of “uniques”, i.e., the
elements that occur exactly once. One way is: pick 10% of the stream by
picking each element of the stream independently at random with probability
0.1, look at the number of uniques in the sample, and scale up the
answer by 10. But this will mis-calcluate the answer. To see why,
suppose the stream of length n has n/2 distinct elements that appear
just once (the “uniques”), and n/4 more distinct elements that appear
exactly twice (the “doubles”). So the correct number of uniques is
n/2.

The sampled stream has expected length 1
10 n. So we sample a

unique element with probability 0.1. But we also see a double el-
ement once if we sample either of its copies not not both, which
happens with probability:

Pr[copy 1 sampled but not 2] + Pr[copy 2 sampled but not 1]

= (0.1)(0.9) + (0.9)(0.1) = 0.18.

This is almost twice as often as the uniques! It means that now we
expect to see 0.1× n/2 + (0.18)× n/4 = n

10 · 19
20 unique elements in

the sample. And our estimate will be that we have 19
20 n unique ele-

ments in the stream, which is very wrong! In fact, by a concentration
bound, you can show that you are incorrect not just in expectation,
but also with very high probability (as n gets large).

The problem, of course, was that we were making independent sam-
pling decisions for each element of the stream. What we should have
done is to make sure that if an element was sampled, all copies of it
were sampled too. And one way of doing this: pick a hash function
that maps the universe to the range [10] = {0, 1, . . . , 9}. And take the
elements that map to 0, say, as part of your sample. Now, if the hash
function is (at least) 1-wise independent (i.e., each value in the range
is equally likely), then we’ll get a 10% sample of the stream in a way
that maintains the fraction of duplicates. Everything is in expectation,
of course, and the variance of this estimator gets higher, so we have
to work around that.

7.3 Streams as Vectors, and Additions/Deletions

An important abstraction will be to view the stream as a vector (in
high dimensional space). Since each element in the stream is an el-
ement of the universe U, you can imagine the stream at time t as a



48

vector xt ∈ Z|U|. Here

xt = (xt
1, xt

2, . . . , xt
|U|)

and xt
i is the number of times the ith element in U has been seen until

time t. (Hence, x0
i = 0 for all i ∈ U.) When the next element comes in

and it is element j, we increment xj by 1.
This brings us a extension of the model: we could have another

model where each element of the stream is either a new element,
or an old element departing. Formally, each time we get an update In data stream jargon, the addition-only

model is called the cash-register model,
whereas the model with both additions
and deletions is called the turnstile
model. I will not use this jargon.

at, it looks like (add, e) or (del, e). We usually assume that for each
element, the number of deletes we see for it is at most the number of
adds we see — the running counts of each element is non-negative.

As an example, suppose U = {A, B, C} and the stream looked like:

(add, A), (add, B), (add, A), (del, B), (del, A), (add, C), . . .

then the vector x ∈ Z|U| evolves as follows:

(1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 0, 0), (1, 0, 0), (1, 0, 1), . . .

This vector notation allows us to formulate some of the problems
more easily:

1. The question of “heavy hitters” is to estimate the “large” entries in
the vector x.

2. The total number of elements currently in the system is just ‖x‖ :=

∑
|U|
i=1 xi. (This is easy.)

3. The number of distinct elements is the number of non-zero entries
in x.

4. We might want to estimate the norms ‖x‖2, ‖x‖p of the vector x.

Let’s consider the (non-trivial) problems one by one.

7.4 Heavy Hitters

There are many ways of formalizing the heavy-hitters problem. Here
is one that is fairly useful. At any time, the ε-heavy-hitters are the
indices i such that xi > ε‖x‖1. Instead of asking to output the set
of exactly those elements that are heavy-hitters, let us work with the
following problem instead.

Problem Count-Query: At any time t, given an index i, output the
value of xt

i with an error of at most ε‖xt‖1. I.e., output an estimate

x̃t
i ∈ xt

i ± ε‖xt‖1.



the data streaming model 49

Given an algorithm for Count-Query, if i is a heavy-hitter it will have
xt

i > ε‖xt‖1, and hence the estimate x̃t
i will be strictly positive. (Of

course saying i is a heavy-hitter any time x̃t
i > 0 is dangerous, since

might give us false positives.) But this is a step in the right direction.
So how should we solve the Count-Query problem? Would sam-

pling work? Suppose we want to find the ε-heavy-hitters: should we
just sample some small fraction of the elements and hope to see all
the heavy hitters in there? This is not clear how to maintain a small
sample size when we allow the stream to contain deletions. Imagine
that N copies of a arrive, then they all depart, then we get a stream
of length

√
N containing just b. The only heavy hitter at the end is

b. But unless we sample each element with probability more than
1/
√

N, we don’t expect to see any b’s. Here we will see how to get
away with storing only poly(1/ε) elements.

7.4.1 A Hashing-Based Solution to Count-Query

We’re going to be using hashing for this approach, simple and ef-
fective. We’ll worry about what properties we need for our hash This algorithm is called the Count-

Min sketch, and is due to Graham
Cormode and S. Muthukrishnan.

functions later, for now assume we have a hash function h : U →
[M] = {0, 1, . . . , M− 1} for some suitably large integer M. Maintain
an array A[1 . . . M] capable of storing non-negative integers.

Algorithm 6: CountMin-Basic

6.1 foreach update at do
6.2 if at == (add, i) then
6.3 A[h(i)] + +

6.4 if at == (del, i) then
6.5 A[h(i)]−−

This was the update procedure. And our estimate for xt
i is

x̃t
i := A(h(i)).

In words, we look at the location h(i) where i gets mapped using the
hash function h, and look at the count A[h(i)] stored at that location.
What does it contain? It contains the current count xi for element i
for sure. But added to it is the current count for any other element
that gets mapped to that location. In math:

A(h(j)) = ∑
j∈U

xt
j · 1(h(j) = h(i)),

where 1(some condition) is a function that evaluates to 1 when the
condition in the parentheses is true, and 0 if it is false. We can rewrite



50

this as

A(h(e)) = xt
i + ∑

j 6=i
xt

j · 1(h(j) = h(i)), (7.1)

or using the definition of the estimate, the error is

x̃t
i − xt

i = ∑
j 6=i

xt
j · 1(h(j) = h(i)). (7.2)

It is too much to hope that no other elements j 6= i hashed to loca-
tion h(i) and the error evaluates to zero. What’s the expected error?
Now we need to assume something good about the hash functions.
Assume that the hash function h is a random draw from a universal
family. Recall the definition of universal:

Definition 7.1. A family H of hash functions from U → [M] is
universal if for any pair of distinct keys x1, x2 ∈ U with x1 6= x2,

Pr[h(x1) = h(x2)] ≤
1
M

.
Recall: we gave a matrix-based con-
struction where each hash function in
the family used (lg M) · (lg |U|) bits to
specify.

Good. So we drew a hash function h from this universal hash
family H, and we used it to map elements to locations {0, 1, . . . , M−
1}. What is its expected error? Taking expectations in (7.2),

E

[
∑
j 6=i

xt
i · 1(h(j) = h(i))

]
= ∑

j 6=i
xt

i · E [1(h(j) = h(e))] (7.3)

= ∑
j 6=i

xt
i · Pr[h(j) = h(i)]

≤ ∑
j 6=i

xt
i · (1/M) (7.4)

=
‖xt‖1 − xt

i
M

≤ ‖x
t‖1

M
.

We used linearity of expectations in equality (7.3). To get (7.4) from
the previous line, we used the definition of a universal hash family.

That’s pretty awesome. (But perhaps not so surprising, once you
think about it.) If we just hash the vector down into a smaller vector
of size M = 1/ε then we get expected error ε‖xt‖1, which sounds
great. Actually, we’d like to do better—instead of just low expected
error, we’d like to get low error with high probability. So let’s see
how to improve things.

7.4.2 Amplification of the Success Probability

Any ideas how to amplify the probability that we are close to the
expectation? Very often independent repetition is a great idea.

Let us pick m hash functions h1, h2, . . . , h` independently from the
universal hash family H. Each hi : U → {0, 1, . . . , M − 1}. We now If we use the matrix-based hash func-

tion construction given in the previous
lecture, this means the (lg M) · (lg |U|)-
bit matrices for each of the ` hash func-
tions must be filled with independent
random bits.



the data streaming model 51

also have ` arrays A1, A2, . . . , A`, one for each hash function. The
algorithm now just uses the kth hash function to choose a location in
the kth array, and increments or decrements the same as before.

Algorithm 7: CountMin

7.1 foreach update at do
7.2 foreach table k = 1 . . . ` do
7.3 if at == (add, i) then
7.4 Ak[h(i)] + +

7.5 if at == (del, i) then
7.6 Ak[h(i)]−−

And what is our new estimate for the number of copies of element
e in our active set? It is

x̃t
i :=

`
min
k=1

Ak(hk(i)).

In other words, each (hk, Ak) pair gives us an estimate, and we take
the least of these. It makes perfect sense — the estimates are all
overestimates, so taking the least of these is the right thing to do. This is very much like a Bloom filter,

which just maintains membership,
whereas this maintains counts. But the
idea is very similar.

But how much better is this estimator than the single-table ver-
sion? Let’s do the math.

1. What is the chance that one single estimator has error more than
2‖xt‖1/M? The expected error is at most ‖xt‖1/M, so by Markov’s
inequality,

Pr
[

error > 2 · ‖x
t‖1

M

]
≤ 1

2
.

2. So the chance that all of the ` repetitions have more than 2‖xt‖1/M
error is

Pr[each of ` repetitions have error ≥ 2‖xt‖1/M]

=
`

∏
k=1

Pr[kth repetition had error ≥ 2‖xt‖1/M]

≤ (1/2)` .

The first equality there used the independence of the hash function
choices.

3. And so our estimate x̃t
i has error at most 2‖xt‖1/M with probabil-

ity at least 1− (1/2)`.

7.4.3 Final Bookkeeping

Let’s set the parameters now. Set M = 2/ε, so that the error bound
2‖xt‖1/M = ε‖xt‖1. Set ` = lg 1/δ, then the failure probability is



52

(1/2)` = δ, and our query will succeed with probability at least 1− δ.
Then for any t and i, the estimate x̃t

i satisfies How small should you make δ? De-
pends on how many queries you want
to do. Suppose you want to make a
query a million times a day, then you
could make δ = 1/109 ≈ 1/230 to
get a 1-in-1000 chance that even one
of your answers has high error. Our
space varies linearly as lg 1/δ, so setting
δ = 1/1018 instead of 1/109 doubles
the space usage, but drops the error
probability by a factor of billion.

Pr
[∣∣x̃i

i − xt
i
∣∣ ≤ ε‖xt‖1

]
≥ 1− δ.

Just as we wanted. And the total space usage is

` ·M counters = O(log 1/δ) ·O(1/ε)

= O(1/ε log 1/δ) counters.

Each counter has to store at most lg T-bit numbers after T time steps.
So a 32-counter can handle a data
stream of length 4 billion. If that is not
enough, there are ways to reduce this
space usage as well, look online for
“approximate counters”.

Space for Hash Functions: We need to store the ` hash functions
as well. How much space does that use? The construction from the
previous lecture used s := (lg M) · (lg U) bits per hash function. Since
M = 2/ε, the total space used for all the ` functions is

` · s = O(log 1/δ) · (lg 1/ε) · (lg U) bits.

In summary, using about 1/ε× poly-logarithmic factors space, and
very simple hashing ideas, we could maintain the counts of elements
in a data stream under both arrivals and departures (up to an error of
ε‖xt‖1).

7.5 Optional: Distinct Elements

Our second example today will be to compute the number of distinct
elements seen in the data stream. (Imagine there are no deletions,
we are in the addition-only model.) So this number is the number of
non-zeroes in the vector xt. Often this is called the zero-norm of xt,
where we define

‖xt‖0 := number of non-zeroes in xt.

How should we do this?

7.5.1 An Exact Solution and a Lower Bound

Of course, if we store x explicitly (using |U| space), we can trivially
solve this problem exactly. Or we could store the (at most) t elements
seen so far, again we could give an exact answer. And indeed, we
cannot do much better if we want no errors. Here’s a proof sketch
for deterministic algorithms (one can extend this to randomized
algorithms with some more work).

Lemma 7.2 (A Lower Bound). Suppose a deterministic algorithm cor-
rectly reports the number of distinct elements for each sequence of length at
most N. Suppose N ≤ 2|U|. Then it must use at least Ω(N) bits of space.



the data streaming model 53

Proof. Consider the situation where first we send in some subset S
of N − 1 elements distinct elements of U. Look at the information
stored by the algorithm. We claim that we should be able to use this
information to identify exactly which of the ( |U|N−1) subsets of U we
have seen so far. This would require We used the approximation that(

m
k

)
≥
(m

k

)k
,

and hence

log2

(
m
k

)
≥ k(log2 m− log2 k).

log2

( |U|
N − 1

)
≥ (N − 1)

(
log2 |U| − log2(N − 1)

)
= Ω(N)

bits of memory.
Why should we be able to uniquely identify the set of elements

until time N − 1? For a contradiction, suppose we could not tell
whether we’d seen S1 or S2 after N − 1 elements had come in. Pick
any element e ∈ S1 \ S2. Now if we gave the algorithm e as the Nth

element, the number of distinct elements seen would be N if we’d
already seen S2, and N − 1 if we’d seen S1. But the algorithm could
not distinguish between the two cases, and would return the same
answer. It would be incorrect in one of the two cases. This contradicts
the claim that the algorithm always correctly reports the number of
distinct elements on streams of length N.

7.5.2 Much Lower Space using Hashing

So we need an approximation if we want to use little space. Let’s use
some hashing magic. Here is the essential idea.

Suppose there are d = ‖x‖0 distinct elements. If we randomly map
d distinct elements onto the line [0, 1], we expect to see the smallest
mapped value at location ≈ 1

d . (I am assuming that we map these
elements consistently, so that multiple copies of an element go to the
same place.) So if the smallest value is δ, one estimator for the number
of elements is 1/δ.

To make this work (and analyze it), we change it slightly: The vari-
ance of the above estimator is large. However, by the same argument,
for any integer s we expect the sth smallest mapped value at s

d . We
use a larger value of s to reduce the variance.

7.5.3 The Algorithm

Assume we have a hash family H with hash functions h : U →
{0, 1, . . . , M− 1}, and we pick a hash function from this family. We’ll
soon figure out the precise properties we’ll want from this hash fam-
ily. Moreover, we will later fix the value of the parameter s to be
some large constant. Here’s the algorithm:

The crucial observation is: it does not matter if you see an element
e once or multiple times — the algorithm will behave the same, since



54

7.1 foreach query, say at time t do
7.2 consider hash values h(a1), h(a2), . . . , h(at) seen so far.
7.3 let Lt be the sth smallest distinct hash value h(ai) in this set.
7.4 output the estimate Dt =

M·s
Lt

.

the output depends on what distinct elements we’ve seen so far. Also,
maintaining the sth smallest element can be done by remembering at
most s elements. (So we want to make s small.)

How does this help? As a thought experiment, if you had d dis-
tinct darts and threw them in the continuous interval [0, M], you
would expect the location of the sth smallest dart to be about s·M

d .
So if the sth smallest dart was at location ` in the interval [0, M], you
would be tempted to equate ` = s·M

d and hence guessing d = s·M
`

would be a good move. Which is precisely why we used the estimate

Dt =
M · s

Lt
.

Of course, all this is in expectation—the following theorem formally
reasons that this estimate is any good.

Theorem 7.3. Consider some time t. If H is a 2-universal hash family
mapping U → {0, 1, . . . , M − 1}, and M is large enough, then both the
following guarantees hold:

Pr[Dt > 2 ‖xt‖0] ≤
3
s

, and (7.5)

Pr[Dt <
‖xt‖0

2
] ≤ 3

s
. (7.6)

We will prove this in the next section. First, let us make some
observations.

1. Setting s = 8 means that the estimate Dt lies within [ ‖x
t‖0
2 , 2‖xt‖0]

with probability at least 1− (1/4 + 1/4) = 1/2. (And we can boost
the success probability by repetitions.)

2. We will see that the estimation error of a factor of 2 can be made
(1 + ε) by changing the parameters s and k.

3. Finally, observe we now use the stronger assumption that that
the hash family is 2-universal or pairwise-independent. Recall the
definition?

Definition 7.4 (2-Universal Hash Family). A family H of hash
functions from U → R is 2-universal if for any pair of distinct keys
x1 6= x2 and any set of values v1, v2 ∈ R,

Pr[h(x1) = v1 ∧ h(x2) = v2] =
1
|R|2 .



the data streaming model 55

In other words, if we just look at two keys, the probability that
they map to two particular values v1, v2 in the range R is the same
as what we would get if we were to map these elements com-
pletely randomly and independently to locations in the R.

7.5.4 Proof of Theorem 7.3

Now for the proof of the theorem. We’ll prove bound (7.6), the other
bound (7.5) is proved identically. Some shorter notation may help.
Let d := ‖xt‖0. Let these d distinct elements be T = {e1, e2, . . . , ed} ⊆
U.

The random variable Lt is the sth smallest distinct hash value seen
until time t. Our estimate is sM

Lt
, and we want this to be at least d/2.

So we want Lt to be at most 2sM
d . In other words,

Pr[ estimate too low ] = Pr[Dt < d/2] = Pr[Lt >
2sM

d
].

Recall T is the set of all d (= ‖xt‖0) distinct elements in U that
have appeared so far. How many of these elements in T hashed to
values greater than 2sM/d? The event that Lt > 2sM/d (which
is what we want to bound the probability of) is the same as saying
that fewer than s of the elements in T hashed to values smaller than
2sM/d. For each i = 1, 2, . . . , d, define the indicator

Xi =

1 if h(ei) ≤ 2sM/d

0 otherwise
(7.7)

Then X = ∑d
i=1 Xi is the number of elements seen that hash to values

below 2sM/d. By the discussion above, we get that

Pr
[

Lt <
2sM

d

]
≤ Pr[X < s].

We will now estimate the RHS.
Next, what is the chance that Xi = 1? The hash h(ei) takes on each

of the M integer values with equal probability, so

Pr[Xi = 1] =
bsM/2dc

M
≥ s

2d
− 1

M
. (7.8)

By linearity of expectations,

E[X] = E

[
d

∑
i=1

Xi

]
=

d

∑
i=1

E [Xi] =
d

∑
i=1

Pr [Xi = 1] ≥ d ·
(

s
2d
− 1

M

)
=

(
s
2
− d

M

)
.

Let’s imagine we set M large enough so that d/M is, say, at most s
100 .

Which means
E[X] ≥

( s
2
− s

100

)
=

49 s
100

.



56

So by Markov’s inequality,

Pr
[
X > s

]
= Pr

[
X >

100
49

E[X]
]
≤ 49

100
.

Good? Well, not so good. We wanted a probability of failure to be
smaller than 2/s, we got it to be slightly less than 1/2. Good try, but
no cigar. Yet.

7.5.5 Enter Chebyshev

To do better, the final ingredient is Chebyshev’s inequality, which you
recall from the previous lecture. For a random variable Z with mean
µ and variance σ2,

Pr
[
|Z− µ| ≥ c σ

]
≤ 1

c2 .

A convenient way to rewrite Chebyshev’s Inequality is

Pr
[
|Z− µ| ≥ C µ

]
≤ σ2

(C µ)2 . (7.9)

Applying Chebyshev’s inequality is useful when the variance of
the random variable Z is small. Fortunately, we have some useful
facts about variances we can use.

• Var(∑i Zi) = ∑i Var(Zi) for pairwise-independent random vari-
ables Zi. (Why?)

• And when Zi is a {0, 1} random variable, Var(Zi) ≤ E[Zi]. (Why?)

Applying this to our random variables X = ∑i Xi, we get

Var(X) = ∑
i

Var(Xi) ≤∑
i

E[Xi] = E(X).

(The first inequality used that the Xi were pairwise independent,
since the hash function was 2-universal.) If you want the estimate to be at most

‖xt‖0
(1+ε)

, then you would want to bound

Pr[X <
E[X]

(1 + ε)
].

A similar calculation should give this
to be at most 3

ε2s , as long as M was
large enough. In that case you would
set s = O(1/ε2) to get some non-trivial
guarantees.

Is this variance “low” enough? Let’s plug into Chebyshev’s in-
equality (7.9) and find out.

Pr[X > s] = Pr[X >
100
49

µX ] ≤ Pr[|X− µX | >
50
49

µX ]

≤ σ2
X

(50/49)2µ2
X
≤ 1

(50/49)2µX
≤ 3

s
.

Which is precisely what we want for the bound (7.5). The proof for
the bound (7.6) is similar and left as an exercise.



the data streaming model 57

7.5.6 Final Bookkeeping

Excellent. We have a hashing-based data structure that answers
“number of distinct elements seen so far” queries, such that each
answer is within a multiplicative factor of 2 of the actual value ‖xt‖0,
with small error probability.

Let’s see how much space we actually used. Recall that for failure
probability 1/2, we could set s = 12, say. And the space to store
the s smallest hash values seen so far is O(s lg M) bits. For the hash
functions themselves, the construction from previous lectures (and
the homework) uses O((lg M) + (lg U)) bits per hash function. So the
total space used for the entire data structure is

O(log M) + (lg U) bits.

What is M? Recall we needed to M large enough so that d/M ≤
s/100. Since d ≤ |U|, the total number of elements in the universe,
set M = Θ(U). Now the total number of bits stored is

O(log U).

And the probability of our estimate Dt being within a factor of 2 of
the correct answer ‖xt‖0 is at least 1/2.

7.6 Takeaways

Here are some of the ideas from this chapter:

1. Data streaming models the settings where data can be big: too big
for the device to store all of its input. “Big” is relative, of course: it
can be that you are using your laptop to handle terabytes of data,
or your phone to handle even gigabytes, or some low-powered
device handing handle megabytes.

2. Streaming algorithms can use only a tiny amount of space, hence
they are often very simple and fast! In fact, you may use these
algorithms even in settings where you have enough space—just
because you want a fast algorithm. It is as though constraining the
space usage forces us to avoid complicated solutions.

3. Hashing (and randomization) is a powerful idea: in case you were
not convinced by the previous chapters, this is yet another applica-
tion where it gives surprising, simple, and smart algorithms!

4. Approximation is another powerful idea: if you allow approximate
answers, you may be able to use a lot less space and time than if
you need exact answers. Of course, it is not suitable for all settings
(as is randomization), but consider it when you need to solve a
problem.



58

5. There is a difference between naïve independent sampling and hash-
ing: the latter is a specific way of sampling where you make the
same (correlated!) decisions for each element. You should be care-
ful, and see what is right for your application.

6. If you have an estimator that is weak, running multiple copies of
such an estimator and aggregating them (by taking the minimum,
or average, or something else) is a common way to increase its
strength. (We will call this idea parallel repetition.)

7. Fashions are cyclic. Streaming was fashionable in the 1970s when
data was stored on tapes. Reading data from tapes was slow (and
there was no random-access), so streaming was the right model to
use. Once we had disk drives, these questions went out of fashion.
But with the era of big data, these are back. (In fact, we often use
some algorithms from the old days!)


