
1
Triangle Counting and Matrix Multiplication

In the first lecture of the course, we will see how the seemingly sim-
ple problem of counting the number of triangles in a graph gives rise
to interesting algorithmic ideas, and some unexpected connections.

1.1 Counting Triangles in a Graph

Given an undirected graph G = (V, E), the triangle counting prob-
lem asks for the number of triangles in this graph. For example, the
graph on the right contains 4 triangles. This problem arises in the
analysis of social networks: the density of triangles in the graph (i.e.,
the number of triangles divided by (n

3)) is called the global clustering
coefficient of a network.

How fast can we solve this triangle-counting problem? Clearly, this
answer depends on the size of the graph. In worst-case analysis, we
fix some parameters of the graph: say, the number of nodes |V| (typ-
ically denoted by n) and/or the number of edges |E| (denoted by m),
and gives a worst-case bound on the running-time of the algorithm
for any graph with at most n nodes and m edges. Let’s see some In this course, when dealing with

graphs, we will use n = |V| and
m = |E|, typically without comment.

examples of such algorithms and their analyses.

1.1.1 Attempt I: The Naïve Algorithm

A first naïve algorithm is to enumerate over all triples {u, v, w} of
the vertex set V and count how many of these form a triangle. (We
divide by 6 to compensate for the overcounting we count each trian-
gle 3! = 6 times.) There are (n

3) such triples, and if we assume that
checking the presence of an edge can be done in constant time, this
takes O(n3) time.1 This algorithm’s runtime does not depend on how 1 This is a good time to ask how the

graph is represented. For this algo-
rithm, assume we are given the input
as an adjacency matrix A ∈ {0, 1}n×n,
where Auv = 1 if the edge {u, v} is
present, and 0 otherwise. A different
representation would be as an adjacency
list, where each vertex has a linked list
giving its adjacent edges.

dense the graph is, how many edges it has, it always takes the same
amount of time—which suggests a way to improve on it.

4

Algorithm 1: The Naïve Algorithm for Counting Triangles

1.1 C ← 0
1.2 for u = 1 . . . n do
1.3 for v = i . . . n do
1.4 for w = j . . . n do
1.5 if u, v, w is a triangle then
1.6 C ← C + 1
1.7 return C/6.

1.1.2 Attempt I: The Edge-Scan Algorithm

A different algorithm is to enumerate over all vertices v ∈ V, then
to enumerate over all pairs of edges vu, vw incident to v, and check
if these edges are part of a triangle (i.e., if {u, w} is an edge of the
graph or not).

Algorithm 2: Edge-Scan for Counting Triangles

2.1 C ← 0
2.2 for v = 1 . . . n do
2.3 for each pair of edges vu, vw incident to v do
2.4 if u, v, w is a triangle then
2.5 C ← C + 1
2.6 return C/3.

If dv is the degree of the vertex v—the number of edges incident
to v—there are (dV

2) such pairs of edges to be checked for vertex v.
Hence the total number of pairs of edges is

∑
v

(
dv

2

)
≤∑

v
d2

v ≤ dmax ∑
v

dv = dmax · 2m ≤ O(nm).

Here we used the fact that the sum of the degrees equals twice the
number of edges of the graph—each edge is counted twice in the
sum, one from each end. (This is sometimes called the Handshake
lemma.)

Figure 1.1: A Star graph.

In the calculations above, observe that each step of the analysis
potentially weakens the quantitive bound, makes it less nuanced but
more universal, and therefore easier to write and interpret. The final
bound is only in terms of the number of nodes n and edges m, as
we wanted. Moreover, since each graph has at most (n

2) edges, we
have m = O(n2), so the O(mn) bound clearly subsumes the previous
O(n3) bound. Moreover, our analysis is “tight” for the algorithm:
running the algorithm on the star graph on the right takes O(n2)

triangle counting and matrix multiplication 5

time, but since m = n− 1 = O(n) in this case, this O(n2) matches the
O(mn) upper bound we proved.

Exercise 1.1. Can we get a matching example for every choice of n
and m ≤ (n

2)?

Let’s improve Algorithm 2 further in two ways: the first is directly
inspired by star graph above, whereas the second is surprising and
will lead to other connections.

1.1.3 Attempt III: The Low-Degree Advantage

For the first improvement, observe that Algorithm 2 above count each
triangle multiple times, once from each of its vertices. How about
cutting down the search space? Here’s one way: order the nodes in
increasing order of their degree, so that

d1 ≤ d2 ≤ d3 ≤ · · · ≤ dn−1 ≤ dn.

Now, when looking for triangles from node v, only consider pairs of
edges going from v to higher numbered nodes. (Think about what
this would do on the star graph example above: it would look over
all the leaves, which have unit degree, and so determine that there
are no triangles in the graph in O(n) time.) You could try to prove
the following (slightly tricky) exercise either now, else you will prob-
ably see it in HW#1.

Exercise 1.2. Show that the runtime of this algorithm is O(m1.5).

1.1.4 Attempt IV: A New Hope

A powerful way to get better algorithms, and indeed to solve prob-
lems in general, is to change the representation!

Suppose we write the graph as the adjacency matrix A ∈ {0, 1}n×n.
Since we have a matrix (with entries zeros and ones) we can think
about the rich set of operations we are allowed to perform with ma-
trices. In later lectures, we will use many of the advanced properties
of matrices, but today let’s look at the most basic of operations. We
are allowed to add and multiply matrices. If you multiply the matrix A
with itself, the entry

(A · A)ij =
n

∑
k=1

Aik Akj.

We get a contribution of one for each index k where there is an edge
ik as well as an edge kj—in other words, the (i, j)th entry of A2 counts
the number of two-hop paths from i to j! Since a triangle {i, j, k}

6

Algorithm 3: Counting Triangles by Matrix Squaring

3.1 C ← 0
3.2 compute A2

3.3 for i = 1 . . . n do
3.4 for j = 1 . . . n do
3.5 C ← C + Aij · (A2)ij

3.6 return C/3.

means we have a two-hop path ik, kj as well as an edge ij, we can use
matrix A and its square A2 to count the number of triangles:

Clearly, we can do all steps except Line 3.2 in O(n2) time, so the
question is now: how fast can compute the square of a matrix? In
general, given two n × n matrices A, B, how fast can be multiply
them? If we denote this time by TMM(n), then we can clearly square
a matrix (i.e., compute the product of A with itself) in this time, and
hence count the number of triangles in time

O(n2) + TMM(n).

We now focus on the question: how low can TMM(n) be?

1.2 The Complexity of Matrix Multiplication

As always, it is useful to start off with the naïve algorithm for a prob-
lem. And in this case, this comes directly from the definition:

(AB)ij =
n

∑
k=1

AikBkj.

So computing each entry of AB takes n multiplies, and n − 1 addi-
tions. That’s O(n) time. And there are n2 entries, so we get O(n3)

time to multiply two n× n matrices. Beware of thinking of the definition of
a problem as the only way, or even the
“right” way to solve it. E.g., the defini-
tion of sorting suggests an algorithm
that takes n! time: try all orderings until
you find one where each element is
smaller than the one following it. But
we can sort n numbers in O(n log n)
time, using MergeSort or (randomized)
QuickSort.

Can we do better? The answer, surprisingly, is Yes. This sub-cubic
algorithm for matrix multiplication was a surprise when it was first
discovered, and still seems surprising to me. How else could you
multiply two matrices faster? Even the definition takes O(n3) steps
to implement. This, by the way, is a dangerous way to reason about
things. There is no reason that the definition would suggest the right
way to implement something. Since the definition suggests an al-
gorithm that uses O(n3) steps, and we want to do faster, we should
step away from the definition, and try to see other ways to solve the
problem.

For the rest of this section, we assume that the entries of the matri-
ces are numbers belonging to some ring, and we can add and multi-
ply them in constant time. A ring is a set of numbers, for which

we have a well-defined notion of
addition and multiplication: we also
have numbers 0 and 1 such that a + 0 =
a and a× 1 = a. Finally, we also have,
each number a has an additive inverse
(−a) such that a + (−a) = 0. For
instance, the set of integers with the
usual notions of sum and product form
a ring.

triangle counting and matrix multiplication 7

1.2.1 Approach I: Divide and Conquer

One approach is the simple and powerful divide-and-conquer paradigm:
can we implement multiply two n × n matrices using fewer than 8
multiplications of n/2× n/2 matrices? For simplicity, assume that n
is even, and hence view the product AB[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]

A little thought shows that the answer is[
A11B11 + A12B22 A11B21 + A12B22

A21B11 + A22B22 A21B21 + A22B22

]
(1.1)

Now the strategy is clear: we can use 8 products of half-sized matri-
ces to compute the products in (1.1), and then use 8 more additions
to get the answer. Finally, if n = 2, then the half-sized matrices can As we will see, sums are cheap, and

hence we would be happy to use any
larger constant number of additions.

be multiplied in constant time.
Great! How much time does this take? If T(n) is the time to multi-

ply n× n matrices, then

T(n) = 8 T(n/2) + 8n2.

In fact, to show the differing role of these two factors of 8, let’s write
this as:

T(n) = 8 T(n/2) + c n2.

The best way to solve this is to “unroll” it: use the definition to write
T(n/2) in terms of T(n/4):

T(n) = 8 (8T(n/4) + c(n/2)2) + cn2

= 82 T(n/4) + cn2(1 + 2)

And in general, we can go on to get

= 8i T(n/2i) + cn2(1 + 2 + · · ·+ 2i−1).

So if we go until i = log2 n, we get

= 8log2 n T(1) + cn2(1 + 2 + · · ·+ 2log2 n−1).

Great. Let’s see:
8log2 n = nlog2 8 = n3.

And
(1 + 2 + . . . + 2i−1) = (2i − 1)

which again gives

cn2(1 + 2 + · · ·+ 2log2 n−1) = cn2(2log2 n − 1) = cn2(n− 1).

8

Hmm, both the terms give us n3 again. That’s a disappointment: we
did all this work, and sadly did not get much better than the cubic
runtime we’d got earlier.

It turns out that we’re close, as we will soon see. But before we see
how to use this technology to actually do better, observe that improv-
ing the number of additions would only have changed the constant
term. On the other hand, changing the number of multiplications
from 8 to 7 would really make a difference, since it would change the
8log2 n to 7log2 n = nlog2 7.

Indeed, it’s worth observing this carefully: given the recursive
structure, changing 8 recursive calls to 7 changes the recursion tree
to have far fewer leaves. And that’s where most of the work in this
recursive algorithm happens, so the improvement is tremendous.

1.2.2 Approach II: Conquer Smarter

When Volker Strassen was trying to solve this problem, he realized
he should start at the bottom, at the case n = 2: could he multiply two
2× 2 matrices in less than 8 scalar multiplications (plus a small constant
number of additions)? I.e.,

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
= ??

If he could, and if this solution did not use very much about scalar
multiplication, then maybe he could use the same idea in the induc-
tive step.

He used another great algorithmic idea first: he tried to prove a
lower bound. He tried to show that his goal was not possible. And
indeed, he soon showed that six multiplications were not enough,
no matter how smartly one used them. But he could not rule out the
possibility that seven multiplies sufficed.

So then he returned to the question of getting an algorithm.
Clearly, he could not just multiply the eight numbers that formed
the input pairwise and sum them up, that evidently would fail. So he
started to combine them together, and soon realized he could do the
2× 2 matrix multiplication with 7 scalar multiplications! If we define Strassen’s original construction was

cosmetically different; we present a
more symmetric solution with a nicer
“geometric” structure.

triangle counting and matrix multiplication 9

S1 = (a11 + a21)(b11 + b12)

S2 = (a12 + a22)(b21 + b22)

S3 = (a11 − a22)(b11 + b22)

S4 = a11 (b12 − b22)

S5 = (a21 + a22) b11

S6 = (a11 + a12) b22

S7 = a22 (b21 − b11)

then a little algebra shows that the product AB is[
S2 + S3 − S6 − S7 S4 + S6

S5 + S7 S1 − S3 − S4 − S5

]
(1.2)

Moreover, this uses nothing special about scalar multiplication: this
same recursive formula works to solve the general n× n matrix mul-
tiplication using 7 multiplications of matrices of half the size (plus 18
matrix additions). Hence, the total runtime of multiplying two n× n
matrices can be can be written using the recursion

T(n) = 7 T(n/2) + 18n2.

And the same simple arguments we used to solve the recursion above
show: Again, the constant hidden in the

big-Oh is 18.T(n) = O(nlog2 7) = O(n2.81).

Strassen had broken the n3 barrier for matrix multiplication!

1.2.3 A Visual Explanation of Strassen’s Formula⋆

Figure 1.2: Strassen’s Multiplications.

There have been several attempts at making the calculations above
more transparent and less mysterious. One that I particularly like
is the a geometric depiction of the algorithm (shown in the figure)
that I learned from Mike Paterson: each purple edge and red cycle
represents one multiplication, where empty circles denote negations.

1.2.4 A Recap, and Future Work

To me, the main take-away from Strassen’s approach is that divide-
and-conquer works: one can multiply half-sized matrices using 7
multiplies, and that makes the difference. The exact structure of these
multiplies is mysterious (and eventually has some deep connections),
but these are not important at the first cut. For example, faced with
this question, you could try to write a program to enumerate over
all small combinations of multiplications and additions to find this
solution. (Using the symmetry of the problem can help you cut the
search space further.)

10

Strassen’s approach was a real breakthrough: a series of subse-
quent works improved the exponent of n down to 2.38 (Coppersmith
and Winograd, 1989). Since then, the improvements have slowed
down quite a bit. Moreover, the improvements beyond Strassen’s are
important theoretically, but they are complicated and the constants
in the big-Oh are larger, making them less practical. Strassen’s algo- The best current result is due to Josh

Alman and Virginia Vassilevska
Williams (a CMU alumna).

rithm, however, is something that can be used practically, especially
in large parallel and distributed applications; see, e.g., papers and
discussions here.

1.3 Conclusions

Here are some take-aways from this lecture:

1. The definition of a problem may suggest an algorithm, but it may
not be the “right” algorithm. This happened for both the triangle
counting problem, and then later for matrix multiplication.

2. Similary, choose the right representation for the data, don’t always
use the representation given as input. For example, choosing the
adjacency matrix representation instead of, say, the adjacency list
representation, allowed us to get a faster algorithm.

3. If you are stuck proving upper bounds (algorithms), try to prove
a lower bound. You may succeed! Or else, it may nudge you in
the right direction (“why am I not being able to prove a lower
bound?”)

4. For me, the real moral of Strassen’s algorithm is not the magic way
of reducing the number of multiplies to 7, but the fact that divide-
and-conquer allows us to translate this constant-factor reduction
from 8 to 7 multiplies into an asymptotic improvement, using the
power of recursion. In fact, the second most important take-away
is that the best way of computing X + Y may not be to compute X
and Y separately and then to sum them, but instead to compute
them some other way.

We will use these ideas repeatedly in the coming weeks. As for
open questions, here are two immediate ones:

1. Give an algorithm to find a triangle in a graph (if one exists) in
linear time O(m)? Any runtime faster than O(m1.5) would be
pretty good!

2. Multiply matrices in time faster than n2.38, which is the current
world record.

https://dl.acm.org/doi/10.1145/2556647.2556660

