9
Network Flows

In this chapter we talk about the network flow problem, how to find
maximum flows in networks, and how to use network flows to model
and solve many different kinds of discrete optimization problems, in-
cluding those in airline scheduling, baseball elimination, and project
selection.

9.1 The Model

Consider a directed graph G = (V, E), where each edge has a capac-
ity u, > 0. As always, the graph has n vertices and m edges. We have
two special vertices: the source s and the sink t.

An s-t flow f is a function that assigns a value to each edge in the
network such that

1. The flow “respects” edge-capacities: i.e.,, 0 < f(e) < u, for every
edge.

2. The flow is conserved at each internal node, so that the amount
entering equals the amount leaving: formally,
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3. No flow enters the source s or leaves the sink ¢ (so that for every
edge us and every edge tv we have f(us) = 0 and f(tv) = 0.

The value val(f) of the flow is the total amount of flow on the
edges leaving the source, i.e., val(F) := Y, f(su). The goal of
the MaxFLow problem is to find an s-f flow of maximum value. If
the source and sink are clear from context, we drop the s-f words,
and just refer to f as a flow, and a flow with maximum value as a
maximum flow.

In this chapter, we have two goals: (a) we show how to solve the
MaxFLow problem, and (b) to solve other optimization problems by
reducing them to MaxFrow.

Figure 9.1: A flow network with edge
capacities in black.

Imagine sending some incompressive
fluid (water/oil) from s to ¢ along these
edges (where each edge you can think
of as a pipe, whose cross-sectional area
is its capacity). The question we ask us:
what is the maximum rate at which you
can send flow in steady-state?
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Figure 9.2: Flow values denoted in

red. This is a maximum flow in this
network.

Show that this value also equals the to-
tal flow entering the sink, i.e., Y., f(0vt).



74

9.1.1 The Results: MaxFlow

One of the most important results concerns maximum flows in net-
works with integer capacities.

Theorem 9.1 (Integral Max-Flow). Given an instance of network flow
where the edge capacities are integers, there exist a maximum flow that is
integral, that is, where all values f(e) are also integers.

How can find such a maximum flow? We will see algorithms later,
but let us state the result here.

Theorem 9.2 (Ford-Fulkerson). Given an instance of network flow where
the edge capacities are integers, the Ford-Fulkerson augmenting paths al-
gorithm finds a maximum (integral) flow in time O(mF*), where F* is the
value of such a maximum flow.

In some cases, this algorithm may be too slow. In particular, the
flow algorithm does not run in time polynomial in the input length.
(That’s not the only problem—if the edge capacities are not integers,
the Ford-Fulkerson algorithm may not terminate.) Thankfully, there
are other algorithms.

Theorem 9.3 (Better Algorithms). Given an instance of network flow
where the edge capacities are integers, and the maximum flow value is F,
the fattest augmenting path algorithm finds a maximum (integral) flow in
time O(m?log F). Given any instance (even with non-integer capacities)
the shortest augmenting path algorithm runs in time O(mn?).

These are not the fastest algorithms currently known: we now
know how to solve maximum flows in time O(mn'/3), but we will
not be covering these in this course.

9.1.2  Flow Decompositions

One useful concept is the idea of a flow-decomposition: given an
s-t flow, a flow-decomposition is a collection of directed s-t paths
Py, Py, ..., Ps along with non-negative flow values ¢1, ¢y, ..., ¢s, such
that for each edge uv

fuo) =Y ¢
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Moreover, the total flow should be the network is val(f) = Y_; ¢;. (See
the examples on the right.) Visually, the decomposition shows how
the flow f can be represented as the sum of flows along single paths.

Theorem 9.4 (Flow Decomposition Theorem). Any s-t-flow f admits a

flow decomposition using at most m paths. Moreover this decomposition can
be found in polynomial time. (Finally, if the flow f is integral, then the flow
decomposition also assigns integral ¢; values for each path.)

We do not claim that each and every
maximum flow in such a network takes
on integer values, just that there exist
maximum flows with this integrality.

Figure 9.3: A flow decomposition of the
above flow. Note that the decomposi-
tion sends integer amounts of flow on
each path.
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Proof. Drop all edges that carry zero flow f. Find any s-f path P in
this graph. Define ¢ for this path to be min,cp f(e), the smallest flow
value on any edge of this path. Now define a new flow f’ from f by
subtracting ¢ on each edge of P: that is, for any edge e € E,

f(e) = fle) = ¢ Lep)-

(Please check that f’ is a flow.) Note that f’ is non-zero only on the
edges that had non-zero flow in f. Moreover it is zero on the edge

on P that had least flow in f. So the number of edges with non-zero
flow in f is less than in f, and we induct on f’. Since there are at
most m edges to start off, and finding each path takes O(m) time
(using DFS or BFS), we get a runtime of O(m?). 0O

9.1.3 Flows and Cuts

A concept that is “dual” to an s-t-flow is an s-t-cut. Such a cut

is a subset C of edges which intersects all the s-t paths; that is,
deleting these edges means there are no remaining s-t paths. The
value/capacity of this cut C is val(C) := Y ,cc U, the sum of capacities
of edges in C. Note that the entire set of edges E is clearly a cut, and
the object of interest will be a cut of smallest capacity.

Claim 9.5. Given any flow f and any cut C,
val(f) < val(C).

Proof. Consider the flow f and its flow decomposition, say using
paths Pj, P, ..., Ps. For each path P; there is at least one edge ¢; € C
that belongs to P;. Since the flow ¢; on the path P; is at most the
capacity of any edge on it, ¢; < u,,. Hence,

val(f) = Zgbi < Zuei < wval(C). O

>
This means, every cut gives an upper bound on the possible max-
flow value. The next (and famous) theorem says that there always \
exists a cut whose value equals the value of the max-flow. o
instance, there exist an s-t flow f* and an s-t cut C*, such that Figure 9.4: A minimum cut in our
example.
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Theorem 9.6 (MaxFlow /MinCut Theorem). Given any network flow O

val(f*) = val(C").

Moreover, if all the edge capacities are integers, we can find f* that is an

integral flow.
As a thought experiment, suppose
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Hence, if f* is purported to be a max-flow then we can “prove” someone gave you a tree and claimed it

it is a max-flow by showing a cut whose value matches that of the prove it? Or the same question, but

was an MST. How would you quickly

with a path P that was claimed to be a

shortest path?
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flow. And in a dual way, we can show a purported cut C* is indeed

a minimum cut by showing that there is a flow whose value matches
that of the cut. In a very strong sense, the objects s-t flows and s-t
cut complement each other: we say they are dual objects. As we will
see later, the notion of duality will be central in linear programming.
(And indeed the above theorem will be a special case of the notion of
strong duality of linear programs.

9.2 Applications



