Recap: Block Codes

Each message and codeword is of fixed size Σ = codeword alphabet **k** = $|m|$ **n** = $|c|$ **q** = $|\Sigma|$ **C** = "code" = set of codewords $C \subseteq \Sigma^{n}$ (codewords)

 Δ (**x**,**y**) = number of positions s.t. $x_i \neq y_i$ **d** = min{ Δ (x,y) : x,y \in C, x \neq y}

Code described as: **(n,k,d)q**

Recap: Role of Minimum Distance

Theorem:

A code C with minimum distance "d" can:

- 1. detect any (d-1) errors
- 2. recover any (d-1) erasures
- 3. correct any $\left|\frac{d-1}{2}\right|$ errors

Stated another way:

For s-bit error detection $d \geq s + 1$

For s-bit error correction $d \geq 2s + 1$

To correct a erasures and b errors if $d \ge a + 2b + 1$

Desired Properties

We look for codes with the following properties:

- 1. Good rate: k/n should be high (low overhead)
- 2. Good distance: d should be large (good error correction)
- 3. Small block size k (helps with latency)
- 4. Fast encoding and decoding
- 5. Others: want to handle bursty/random errors, local decodability, ...

 Q :

If no structure in the code, how would one perform encoding?

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is **linearity**

Linear Codes

If Σ is a finite field, then Σ ⁿ is a vector space **Definition**: C is a linear code if it is a linear subspace of Σ ⁿ of dimension k.

This means that there is a set of k independent vectors $v_i \in \sum^n (1 \le i \le k)$ that span the subspace.

i.e. every codeword can be written as:

 $c = a_1 v_1 + a_2 v_2 + \ldots + a_k v_k$ where $a_i \in \Sigma$

"Basis (or spanning) Vectors"

Some Properties of Linear Codes

- 1. Linear combination of two codewords is a codeword.
- 2. Minimum distance (d) = weight of least weight (non-zero) codewords

(Weight of a vector refers to the Hamming weight of a vector, which is equal to the number of non-zero symbols in the vector)

$$
d = \min_{\begin{array}{c} c_i, c_j \in C \\ c_i, c_j \in C \\ i \neq j \end{array}} |c_i - c_j|
$$

= min $|c|$
 $c \in C$
 $c \neq 0$

Generator and Parity Check Matrices

3. Every linear code has two matrices associated with it.

1. Generator Matrix:

A k x n matrix **G** such that: $C = \{ xG \mid x \in \Sigma^k \}$

(Note: Here vectors are "row vectors".)

Made from stacking the spanning vectors

Generator and Parity Check Matrices

2. Parity Check Matrix:

An $(n - k)$ x n matrix **H** such that: $C = \{y \in \Sigma^n | Hy^T = 0\}$ (Codewords are the null space of H.)

Advantages of Linear Codes

- Encoding is efficient (vector-matrix multiply)
- Error detection is efficient (vector-matrix multiply)
- **Syndrome** (HyT) has error information
- How to decode? In general, have q^{n-k} sized table for decoding (one for each syndrome). Useful if n-k is small, else want (and there exist) other more efficient decoding algorithms.

The d of linear codes

Theorem: Linear codes have distance d if every set of (d-1) columns of **H** are linearly independent, but there is a set of d columns that are linearly dependent.

Proof sketch: Ideas?

For linear codes, distance equals least weight of non-zero codeword. Each codeword gives some collection of columns that must sum to zero.

Example and "Standard Form"

"Standard form" of G for systematic codes: $[I_k A]$.

(7,4,3) Hamming code

Relationship of G and H

Theorem: For binary codes, if G is in standard form $[I_k]$ then $H = [-A^T I_{n-k}]$

Example of (7,4,3) Hamming code:

Relationship of G and H

Proof:

Two parts to prove: (exercise)

1. Suppose that x is a message. Then $H(xG)^T = 0$.

2. Conversely, suppose that $Hy^T = 0$. Then y is a codeword.

Singleton bound

Theorem: For every (n, k, d) _a code, $n \geq (k + d - 1)$

Another way to look at this: $d \leq (n - k + 1)$

(We will not go into the proof of this theorem in this course due to limited time on this topic.)

Codes that meet Singleton bound with equality are called **Maximum Distance Separable (MDS)**

Maximum Distance Separable (MDS)

Only two binary MDS codes!

Q: What are they?

- 1. Repetition codes $(k = 1)$
- 2. Single-parity check codes $(n-k = 1)$

Need to go beyond the binary alphabet. Finite fields!