
Recap: Singleton bound

Theorem:  For every (n , k, d)q code,  ! ≥ ($ + & − 1)

Another way to look at this:  d ≤ (! − $ + 1)

Codes that meet Singleton bound with equality are called
Maximum Distance Separable (MDS)
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Recap: 
Maximum Distance Separable (MDS)

Only two binary MDS codes! 

Q: What are they?

1. Repetition codes (k = 1)
2. Single-parity check codes (n-k = 1)

Need to go beyond the binary alphabet.
Finite fields!
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Reed-Solmon (RS) codes
One of the most widely codes
• Storage systems, communication systems
• Bar codes (2-dimensional Reed-Solomon bar codes)
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PDF-417 
QR code

Aztec code DataMatrix code

images: wikipedia
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RS code: Polynomials viewpoint
Message:  [a0, a1,…, ak-1] where ai Î GF(q)

Consider the polynomial of degree k-1
P(x) = ak-1 xk-1 + ! + a1 x + a0

RS code: Codeword: [P(,1), P(,2), …, P(,n)]
(distinct ,i‘s)

To make the ,i‘s in P(,i) distinct, need field size q ≥ n

That is, need sufficiently large field size for desired codeword 
length. 
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Minimum distance of an (n, k) RS code
Theorem: RS codes have minimum distance d = (! − $ + 1)
Proof: Any ideas?
Hint: Is it a linear code?
1. RS is a linear code: if we add two codewords corresponding 

to P(x) and Q(x), we get a codeword corresponding to the 
polynomial P(x) + Q(x). Similarly any linear combination..

2. So look at the least weight codeword. It is the evaluation of a 
polynomial of degree k-1 at some n points. So it can be zero 
on only k-1 points. Hence non-zero on at most (n-(k-1)) 
points. This means distance at least n-k+1

Apply Singleton bound
Meets Singleton bound: RS codes are MDS



Generator matrix of RS code
What is the generator matrix?

“Vandermonde matrix”
Special property of Vandermonde matrices: Full rank (columns 

linearly independent)
Very useful in constructing codes.
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G codeword=
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Polynomials and their degrees
Fundamental theorem of Algebra: Any non-zero polynomial 

of degree m has at most m roots (over any field).

Corollary 1: If two degree-k polynomials P, Q agree on m+1 
locations (i.e., if . /! = 0(/!) for /", /#, … , /$), then P = Q.

Corollary 2: Given any m+1 points (/!, 3!), there is at most
one degree-m polynomial that has . /! = 3! for all these i.

Theorem: Given any m+1 points (/!, 3!), there is exactly one 
degree-m polynomial that has . /! = 3! for all these i.
Proof: e.g., use Lagrange interpolation.



Decoding: Recovering Erasures
Recovering from at most (d-1) erasures:

Received codeword: 
[P(,1), *, P(,2), …,*, P(,n)]: at most (d-1) symbols erased
(where * = erased)
Ideas?
1. At most n-k symbols erased
2. So have P(,i) for at least k evaluations
3. Interpolation to recover the polynomial

Matrix viewpoint: Solving system of linear equations
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Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1)

Naïve algo: 
– Find k+s symbols that agree on a degree (k-1) poly P(x).

• There must exist one: since originally k + 2s symbols 
agreed and at most s are in error 
(i.e., “guess” the n-s uncorrupted locations) 

– Can we go wrong? 
Are there k+s symbols that agree on the wrong  
degree (k-1) polynomial P’(x)? No.
• Any subset of k symbols will define P’(x)
• Since at most s out of the k+s symbols are in error, 

P’(x) = p(x)
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Decoding: Correcting Errors
Correcting s errors: (d ≥ 2s+1)

Naïve algo: 
– Find k+s symbols that agree on a degree (k-1) poly P(x).

• There must exist one: since originally k + 2s symbols 
agreed and at most s are in error 
(i.e., “guess” the n-s uncorrupted locations) 

This suggests a brute-force approach, very inefficient. 
“guess” = “enumerate”, so time is (n choose s) ~ n^s.

More efficient algorithms exist:
“The Berlekamp Welch Algorithm” (results in solving a 

system of n linear equations)



Codes based on graphs
• Optimized for fast (de)coding
• Based on graphical constructions
• Constructions based on properties of expander graphs
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(a, b) Expander Graphs (non-bipartite)

Properties
– Expansion: every small subset (k ≤ an) has many 

(≥ bk) neighbors 
– Low degree – not technically part of the definition, 

but typically assumed

k ≤ an ≥ bk

G
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(a, b) Expander Graphs (bipartite)

Properties
– Expansion: every small subset (k ≤ an) on left has 

many (≥ bk) neighbors on right
– Low degree – not technically part of the definition, 

but typically assumed

k nodes
(k ≤ an) at least bk nodes
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d-regular graphs
An undirected graph is d-regular if every vertex has d 

neighbors.

A bipartite graph is d-left-regular if every vertex on the left 
has d neighbors on the right.

We consider only d-left-regular constructions. 
(And call it d-regular with abuse of notation.)
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (b)

Randomized constructions
– A random d-regular graph is an expander with a high probability
– Time consuming and cannot be stored compactly

Explicit constructions
– Cayley graphs, Ramanujan graphs etc
– Typical technique – start with a small expander, apply operations 

to increase its size
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Theorem: For every constant 0 < c < 1, can construct bipartite 
graphs with 

n nodes on left, 
cn on right,
d-regular (left), 

that are  (,, 3d/4) expanders, for constants , and d that are 
functions of c alone.

“Any set containing at most alpha fraction of the left has (3d/4) 
times as many neighbors on the right”

Expander Graphs: Constructions



TORNADO CODES
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Luby Mitzenmacher Shokrollahi Spielman 2001



15-750 Page67

Tornado codes

Goal: low (linear-time) complexity encoding and decoding

We will focus on erasure recovery
– Each bit either reaches intact, or is lost.
– We know the positions of the lost bits.
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The random erasure model

Random erasure model:
• Each bit is erased with some probability p (say ½ here)
• Known: a random linear code with rate < 1-p works 

(why?)

For simplicity.

Can be extended to worst-case error, and bit corruption
with extra effort.

[e.g., Spielman1996]



15-750 Page73

Message 
bits Parity 

bits

c6 = m3 Å m7

m3

m7
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Tornado codes

• Have d-left-regular bipartite graphs with k nodes on the 
left and pk on the right.

m1

m2

m3

mk

c1

cpk

degree = d

k = # of message bits

• Let’s again assume 3d/4-expansion.
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Tornado codes: Encoding

Why is it linear time?
(Hint: Look at the number of edges)

Computes the sum modulo 2 
of its neighbors

m1

m2

m3

mk

c1

cpk

Number of edges = kd
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Tornado codes: Decoding
First, assume that all the parity bits are intact
Find a parity bit such that only one of its neighbors is 

erased (an unshared neighbor)
Fix the erased bit, and repeat.

m1

m2

m1+m2+c1 = m3

mk

c1

cpk

“Unshared neighbor”
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Tornado codes: Decoding
Intuition:
Want to always find such a parity bit with “Unshared neighbor” property.

Consider the set of corrupted message bit and their neighbors.
(Suppose this set is small.)
=> at least one message bit has an unshared neighbor.

m1
m2

mk

c1

cpk

Has an 
unshared 
neighbor
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Tornado codes: Decoding
Can we always find unshared neighbors?

Expander graphs give us this property if expansion > d/2
(similar argument to one above)

Also, [Luby et al] show that if we construct the graph from a 
specific kind of degree distribution, then we can always find 
unshared neighbors.
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What if parity bits are lost?

Cascading
– Use another bipartite graph to construct another level of 

parity bits for the parity bits
– Final level is encoded using RS or some other code

k k/2
k/4

stop when k/2t
“small enough”

total bits n £ k(1 + ½ + ¼ + …)
= 2k

rate = k/n = ½. 

(assuming p =1/2)
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Tornado codes enc/dec complexity

Encoding time?
– for the first t stages : |E| = d x |V| = O(k)
– for the last stage: poly(last size) = O(k) by design.

Decoding time?
– start from the last stage and move left
– Last stage is O(k) by design
– Rest proportional to |E| = O(k)

So get very fast (linear-time) coding and decoding.
100s-10,000 times faster than RS


