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Linear Programming

2.1 Introduction

We will see some examples of linear programs soon.

2.2 Notation and Definitions

2.2.1 Useful Concepts

A half-space is a subset of Rn specified by a linear constraint as fol-
lows: {x | a⊺x ≤ b} for some a ∈ Rn and b ∈ R. The intersection
of a finite number of half-spaces is a polyhedron. A polyhedron K may
be bounded (i.e., there exists some M ∈ R≥0 so that K is contained in
the box {x ∈ Rn | −M ≤ xi ≤ M ∀i}) or unbounded. A bounded
polyhedron is called a polytope.

Given a polyhedron K, a point x ∈ K is a called a vertex or extreme-
point or corner if there is some hyperplane H := {y ∈ Rn | a⊺y = b}
such that H ∩ K = {x}; that is, the point x is the unique point in the
intersection of body and the hyperplane.

A set K is called convex if for any pair of points x, y ∈ K, all the
points in the set L := {αx + (1− α)y | α ∈ [0, 1]} also lie in K. It can
be shown that the intersection of convex sets is convex. And that a
half-space is convex. So a polyhedron is a convex set.

The polyhedron defined by the constraints of a linear program are
called its feasible region. (It may be empty, in case the LP is infeasible.)
The goal of linear programming is therefore to optimize a linear
function over a polyhedron.

2.2.2 Notation for Linear Programs

Let us fix an LP that looks like the following: For two vectors c, x ∈ Rn, we will use
c⊺x to denote the inner product

∑
i

cixi .

Other notation for the same concept
include c · x and ⟨c, x⟩.
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max c⊺x (2.1)

Ax ≤ b

x ≥ 0.

Let us assume that x ∈ Rn and the constraint matrix A ∈ Rm×n, so
that there are m constraints (apart from the non-negativity ones).

1. We say that the LP is infeasible if there are no x ∈ Rn that satisfy all
the constraints. E.g., the LP:

max x1

x1 ≥ 2

x1 ≤ 1.

2. We say that the LP is unbounded if there is no finite bound on the
objective function. (For a maximization LP, we means that for
every N ∈ R, there is some x ∈ Rn such that c⊺x ≥ N.) E.g., the
LP:

max x1

x1 ≥ 2.

3. If the LP is not infeasible, and it is not unbounded, it means that
the LP has feasible solutions x (ones that satisfy all the constraints),
and that the optimal objective value is bounded. In this case we say
that a solution x∗ is optimal for the (maximization) LP if for all x
that is feasible for the constraints, we have

c⊺x ≤ c⊺x∗.

2.2.3 The Main Algorithmic Result for LPs

Theorem 2.1 (LPs solvable in poly-time). There are algorithms that
given an LP, can correctly output whether it is infeasible or unbounded,
or else output an optimal solution x∗, in time polynomial in the length of the
input. Say all the numbers in the LP are

integers of magnitude at most 2B, then
if A has m constraints we need O(mnB)
bits to write down the entire LP (2.1).

Recall that even though the LP may only have integer values in the
objective and constraints, the optimal solution may have fractional
coordinates. E.g., by inspection you can check that Contrast this with the fact that for

maximum flows—which are a special
kind of LP—if the input contains all
integer capacities, then there always
exists an optimal max-flow that takes
on integer values.

max x1

x1 + x2 ≤ 1

x1 − x2 ≤ 0

has optimal value 1/2 (and this is the only optimal solution). In fact, if we want to solve linear
programs but restrict ourselves to
integer solutions, then the problem
becomes NP-hard.
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Remark 2.2. Since the algorithm has to write down an optimal solu-
tion, Theorem 2.1 implies that the number of bits required to write
down an optimal solution is also at most poly(mnB). This is not
difficult to show: if you are intersted, check out the Matousek and
Gärtner book.

2.3 Duality

We now discuss one of the central concepts of convex optimizatino:
that of duality. Let us consider a linear program (which we call the
primal):

max c⊺x (2.2)

Ax ≤ b (2.3)

x ≥ 0. (2.4)

We claim the following dual LP is an upper bound on the value of the
primal LP: See the 15-451 notes for now we derived

this LP from first principles. Once you
know how we came up with this LP,
you don’t have to derive it from first
principles each time, but just use this
syntactic approach to get duals.

min b⊺y (2.5)

A⊺y ≥ c (2.6)

y ≥ 0.

Notice that we have a minimization problem in the dual instead of
maximization in the primal: the roles of the objective function and
right-hand side have been swapped, the constraint matrix has been
transposed. (But the non-negativity constraints remain the same.) Note that if the primal has n variables

and m constraints, then the dual has m
variables and n constraints.Lemma 2.3 (Weak Duality Lemma). For any solution x ∈ Rn for the

primal and any solution y ∈ Rm for the dual, we have The assumption that both primal and
dual programs have solutions means
that both are feasible.c⊺x ≤ b⊺y.

Proof. Since we know that A⊺y ≥ c because of the dual constraints (2.6),
and that x ≥ 0, we get

c⊺x ≤ (A⊺y)⊺x = y⊺Ax.

But the primal constraints (2.3) tell us that Ax ≤ b, and also y ≥ 0, so

y⊺Ax ≤ y⊺b = b⊺y.

The proof of weak duality was easy: a more sophisticated claim is
the following:

Theorem 2.4 (Strong Duality Theorem). Suppose the primal and dual
are both feasible. Then both primal and dual programs are bounded, and
moreover they have the same optimal values

max
x

c⊺x = min
y

b⊺y.
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While weak duality arises in most convex optimization, strong
duality is rarer for non-linear problems. But for linear optimization,
strong duality is always true.

2.3.1 Why Study Duality?

Let us give some reasons to study this concept:

1. Duality gives us alternate ways to write the same problem. Sup-
pose we want to solve a problem and we formulate it as the op-
timal value of an LP. Then we know that the dual of this LP also
gives the same value, and hence gives another way of modeling
the same problem.

As an example, consider the problem of computing a shortest s-t
path: one way was to write it as a minimum cost way to send one
unit of flow from s to t in a network:

min ∑
e

cexe

∑
e:e entering v

xe = ∑
e:e leaving v

xe ∀v ̸∈ {s, t}

∑
e:e leaving s

xe = 1

xe ≥ 0 ∀e.

If we take its dual (and massage it a bit) we get the following LP:

max dt

ds = 0

dv ≤ du + cuv ∀e = (u, v) ∈ E.

Sometimes it’s easier to solve the primal problem, sometimes it’s
easier to solve the dual. (It all depends on the particular setting, so
once you know LP duality, if you are worried about solving an LP,
you can consider whether solving the dual is easier.) You may see a problem using this idea

in the HWs.
2. Duality allows you to easily certify that some solution x∗ is an

optimal solution to a (feasible and bounded) LP. Indeed, you can
give a solution y∗ to the dual with the same objective function
value. (Such a y∗ exists by Theorem 2.4.)

By weak duality Lemma 2.3 we know that for every x feasible for
the primal, we have

c⊺x ≤ b⊺y∗.

But that latter quantity equals c⊺x∗, so we get that

c⊺x ≤ c⊺x∗
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which shows that x∗ is optimal.

We saw this in action when we discussed maxflow/mincut, since
we could show that a flow was a maximum-value flow just by
giving a matching minimum cut value.

3. Duality also arises in the workings of some algorithms to solve
LPs (e.g., interior point algorithms), even though you don’t need to
deal with these algorithms directly.

4. And finally, linear programming duality leads naturally into con-
vex duality, which we may discuss later.

2.4 Algorithms to Solve Linear Programs

There are many different algorithms that can be used to solve linear
programs. The main ones are the Simplex, the Ellipsoid, and Interior
Point algorithms.

2.4.1 The Simplex Algorithm

Since the


