
3
The Hardness of Computational Problems

While we have seen many techniques to solve computational prob-
lems, there are yet other problems for which we have failed to give
efficient algorithms, despite much effort. Interestingly, we have also
failed to show that these problems cannot be solved efficiently. Given
our state of limbo, how can we argue that these problems are diffi-
cult? Our discussions will lead us to a central question in Computer
Science (and Mathematics and Logic) that formalizes the question:
What is the power of creativity? Can creativity be mechanized?

3.1 Three Problems

Here are three different problems that we may want to solve, but we
don’t know efficient (poly-time) algorithms for:

1. Traveling Salesperson Problem. Given a collection of n
cities and travel distances between them, is there a tour that vis-
its all the cities and has length at most K? (Formally, given a finite
metric space (V, d), does there exist an ordering of the vertices
v1, v2, . . . , vn such that ∑n

i=1 d(vi, vi+1) ≤ K, where we imagine
vn+1 = v1.)

2. Partition. Given a collection of numbers, can it be partitioned
into two sets, each of which sum to the same value? Formally,
given numbers a1, a2, . . . , an, can we partition {1, . . . , n} into two
sets L and R such that ∑i∈L ai = ∑i∈R ai?

3. 3-Coloring. Can we color the vertices of a graph with three
colors so that no two vertices connected by an edge have the same
color. Formally, given a graph G = (V , E), does there exist a map
f : V → {R, B, G} such that for every edge {u, v} ∈ E we have
f (u) ̸= f (v)?



18

3.2 . . . and Two Routes

If we want to show that a problem is difficult, we would normally do
the following:

We would take a formal model of computation (say Turing machines) and then
prove that the problem cannot be solved in this model of computation. If you are not familiar with Turing ma-

chines, just think of a regular computer,
but with infinite memory.Sadly, we know this kind of result only for restricted models of

computation: say we can show that if we are only counting the
number of comparisons, then sorting n numbers requires at least
log n!, i.e., Ω(n log n) comparisions. Or if we were computing using
bounded depth circuits. Or such restricted models. We also know
this for artificially constructed problems (or we know there must ex-
ist such problems but we don’t know explicit problems). Or we know
some (problem, model) pairs where such a result is not interesting.

Which puts us in a bind: we feel these problems are difficult, but
we cannot prove this fact. So what we show instead is not the impos-
sibility but the improbability of efficient algorithms for these problems.

We show a large class of problems such that (a) people have tried to give
algorithms for these and failed, and (b) all these problems are equivalent to
each other: if we have a fast algorithm for one, then we have a fast algorithm
for them all. Equivalently, if we can prove one of them does not have a fast
algorithm, none of them do.

The next few sections will introduce the concepts we need to de-
fine/formalize this concept.

3.3 Decision and Search Problems

A decision problem Q is a problem where the only possibly answers
are Yes and No. Our three problems above are all decision problems.
Every instance I of a decision problem Q can be classified as either
a Yes-instance, or a No-instance, depending on whether the correcr
answer on I is Yes or No. For instance, the first graph above is

a Yes-instance for the 3-Coloring

problem, where as the second is a
No-instance.

While discussing decision problems, let us introduce another fun-
damental problem, albeit one that requires some notation. Given a set
of Boolean variables x1, x2, . . . , xn, each taking on a value of either T
(true) or F (false), a literal is either a variable or its negation. A clause
of arity k is the disjunction (i.e., OR) of k literals, e.g.,

(x1 ∨ ¬x7 ∨ x11)

is an arity-3 clause. A formula φ is in k-CNF (conjunctive normal form)
if it is the conjunction of arity-k clauses. E.g., here is a 3-CNF formula.
Finally, a formula φ is satisfiable if there is an assignment of T/F to



the hardness of computational problems 19

the variables such that φ evaluates to true. Armed with this terminol-
ogy, we can define a fourth decision problem, which will be one of
the central problems in our story.

4. 3-Satisfiability. Given a 3-CNF formula φ, is it satisfiable?

Decision problems should be contrasted with search problems,
which finds the object in question: e.g., to find the tour of length
at most K, or the partition with equal sums, or the 3-coloring of the
graph vertices. If you can solve a search problem, you can also solve
the decision problem, but the converse is not always clear. Talk about theorems here?

Exercise 3.1. Show how to solve the search version of 3-Satisfiability

using at most n calls to a black-box algorithm for its decision version.

3.4 The Class P of Poly-time Decision Problems

3.5 The Class NP

3.6 NP-completeness

A problem is NP-complete if, loosely speaking, it is a “hardest prob-
lem in NP”. Formally, the definition is:

Definition 3.2. A problem Q is NP-complete if

1. Q ∈ NP, and

2. If Q ∈ P then every problem in NP belongs to P.

Given a problem Q, the first part of the definition is easy enough
to verify, but the second part poses some challenges: how can one
show such a property? The key to this is a brilliant theorem of Steven
Cook and Leonid Levin: Some words about the Cook-Levin

theorem.

Theorem 3.3. The 3-Satisfiability problem is NP-complete.

Theorem 3.3 makes the problem of showing NP-completeness
much easier—we only need to verify the following simpler-to-argue
condition instead of condition (2):

2’. If Q ∈ P then 3-Satisfiability ∈ P.

In fact, we could consider an even simpler-to-argue condition
instead of condition (2’):

2”. There exists some NP-complete problem Q ′ such that Q ∈ P =⇒
Q ′ ∈ P.



20

Indeed, since Q ′ ∈ P implies every problem in N P belongs to
P (by the N P-completeness of Q ′), we get back condition-2 from
2′′ . And condition-(2”) makes our life progressively easier: as more
problems get proven to be NP-complete, it becomes easier to prove
the NP-completeness of yet others—there are more candidates to use
for Q ′ .

In 1972, a landmark paper of Richard Karp showed that 29 deci-
sion problems, including the three above, satisfied both properties (1)
and (2”), and hence were NP-complete. Since these problems were
now all “hardest problems in NP” as well, this started an avalanche
that continues to this day: tens of thousands of problems have since
been shown to be NP-complete, to be the “hardest problems in NP”.

3.7 A User’s Guide to NP-completeness

1. First show that the problem Q belongs to NP. This means that if
we can solve any NP-complete problem (say SAT), we can solve Q.

2. Then take some NP-complete problem Q′, and show that if you
can solve Q you can solve Q′ as well.


