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15-750:Algorithms in the Real World

Data Compression
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Compression in the Real World

Ubiquitous usage. Examples:
– Data storage: file systems, large-scale storage 

systems (e.g. cloud storage)
– Communication
– Media: Video, audio, images
– Data structures: Graphs, indexes
– Newer: Neural network compression
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Encoding/Decoding

“Message” refers to the data to be compressed

Encoder DecoderInput
Message

Output
Message

Compressed
Message

The encoder and decoder need to understand 
common compressed format.
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Lossless vs. Lossy
Lossless: Input message = Output message

Lossy: Input message » Output message

Quality of Compression:

For Lossless? 
Runtime vs. Compression vs. Generality

For Lossy?
Loss metric (in addition to above)
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How much can we compress?
Q: Can we (lossless) compress any kind of messages?

No!

For lossless compression, assuming all input messages are 
valid, if one string is compressed, some other must expand.  

Q: So what we do need in order to be able to compress?
Can compress only if some messages are more likely than 

other.
That is, there needs to be bias in the probability distribution.
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Model vs. Coder

To compress we need a bias on the probability of 
messages.  The model determines this bias 

Model Coder
Probs. BitsMessages

Encoder

Example models:
– Simple: Character counts, repeated strings
– Complex: Models of a human face



INFORMATION THEORY BASICS
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Information Theory
• Quantifies and investigates “information”
• Fundamental limits on representation and transmission of 

information
– What’s the minimum number of bits needed to represent

data?
– What’s the minimum number of bits needed to 

communicate data?
– What’s the minimum number of bits needed to secure 

data?
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Information Theory
Claude E. Shannon

– Landmark 1948 paper: mathematical framework
– Proposed and solved key questions
– Gave birth to information theory
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Information Theory
In the context of compression:

An interface between modeling and coding

Entropy
– A measure of information content

Suppose a message can take n values from S = {s1,…,sn}
with a probability distribution p(s).

One of the n values will be chosen.

“How much choice” is involved? OR
“How much information is needed to convey the value chosen?



Entropy
Q: Should it depend on the values {s1,…,sn}?
(e.g., American names vs. European names)
No.

Q: Should it depend on p(s)?
Yes.

If P(s1)=1 and rest are all 0?
No choice. Entropy = 0

More the bias lower the entropy
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Entropy
Shannon (1948 paper) lists key properties that an entropy 

function should satisfy and shows that “log” is the only 
function.

Intuition for the log function:

• When p(s) is low, entropy should be high
• Suppose two independent messages are being picked then 

entropy should add up
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Entropy

For a set of messages S with probability p(s), s ÎS, the 
self information of s is:

Measured in bits if the log is base 2.

Entropy is the weighted average of self information.
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Entropy Example
Binary random variable (i.e., taking two values)
with probability p and 1-p

Denoted as H2(p):

<board>

Highest entropy when equiprobable
(true for n >2 as well)
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Entropy Example

p S( ) {. ,. ,. ,. ,. }= 25 25 25 125 125
25.28log125.24log25.3)( =´+´=SH
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Conditional Entropy 

Conditional entropy: Information content based on a context

The conditional probability p(s|c) is the probability of s in a 
context c.  

The conditional entropy is the weighted average of the 
conditional self information
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Types of “sources”
• Sources generate the messages (to be compressed)

• Sources can be modelled in multiple ways

• Independent and identically distributed (i.i.d) source
– Prob. of each msg is independent of the previous msg

• Markov source
– message sequence follows a Markov model (specifically 

Discrete Time Markov Chain, aka DTMC)
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Example of a Markov Chain

w b

p(b|w)

p(w|b)

p(w|w) p(b|b)
.9

.1

.2

.8
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Shannon’s experiment
Asked people to predict the next character given the whole 

previous text.  He used these as conditional probabilities to 
estimate the entropy of the English Language.

The number of guesses required for right answer:

From the experiment he predicted 
H(English) = .6 - 1.3

#  of guesses 1 2 3 4 5 > 5 
Probability .79 .08 .03 .02 .02 .05 

 

 



PROBABILITY CODING
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Assumptions and Definitions
Communication (or a file) is broken up into pieces called 

messages.

Each message come from a message set S = {s1,…,sn}
with a probability distribution p(s).

Code C(s): A mapping from a message set to codewords, 
each of which is a string of bits

Message sequence: a sequence of messages
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Variable length codes and 
Unique Decodability

A variable length code assigns a bit string (codeword) of 
variable length to every message value

e.g. a = 1, b = 01, c = 101, d = 011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length code in 
which bit strings can always be uniquely decomposed into 
its codewords. 
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Prefix Codes
A prefix code is a variable length code in which no codeword 

is a prefix of another word.
e.g., a = 0, b = 110, c = 111, d = 10

All prefix codes are uniquely decodable
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Prefix Codes: as a tree
Prefix codes can be viewed as a binary tree with 0s or 1s on 

the edges and message values at the leaves:

a = 0, b = 110, c = 111, d = 10
b c

a
d

0
1

0 1

1
0
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Average Length
For a code C with associated probabilities p(c) the average 

length is defined as

l(c)  = length of the codeword c (a positive integer)

We say that a prefix  code C is optimal if for all  prefix codes 
C’,  la(C) £ la(C’)

l C p c l ca
c C

( ) ( ) ( )=
Î
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Relationship to Entropy
Theorem (lower bound): For any probability distribution p(S) 

with associated uniquely decodable code C,

Theorem (upper bound): For any probability distribution p(S) 
with associated optimal prefix code C,

H S l Ca( ) ( )£

l C H Sa ( ) ( )£ +1
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Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely decodable code C,

Conversely, for any set of lengths L such that

there is a prefix code C such that 
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Proof of the Upper Bound (Part 1)
Assign each message a length:
We then have

So by the Kraft-McMillan inequality there is a prefix code with 
lengths l(s).
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Proof of the Upper Bound (Part 2)
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Now we can calculate the average length given l(s)
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Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities 
{p1, …, pn}, then pi > pj implies ! "! ≤ !("")

Proof: (by contradiction)
Assume ! "! > !(""). Consider switching codes ci and cj.  

If la is the average length of the original code, the length of the 
new code is

This is a contradiction since la is not optimal

l l p l c l c p l c l c
l p p l c l c
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Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms

Properties:
– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode 
– la = H  if probabilities are powers of 2
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Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a single vertex 

corresponding to a message s and with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1 and p2

– Join into single tree by adding root with weight p1 + p2
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Example
p(a) = .1,  p(b) = .2,  p(c ) = .2,  p(d) = .5

a(.1) b(.2) d(.5)c(.2)
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Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow path to the 

root.  Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for 
each bit received.  When at leaf can output message and 
return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1
a=000,  b=001,  c=01, d=1
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Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an optimal *prefix* 

code.
Proof outline:
Induction on the number of messages n.
Consider a message set S with n+1 messages
1. Can make it so that least probable messages of S are 

neighbors in the Huffman tree 
2. Replace the two messages with one message with 

probability p(m1) + p(m2) making S’
3. Show that if S’ is optimal, then S is optimal
4. S’ is optimal by induction
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Problem with Huffman Coding
Consider a message with probability .999.  The self information 

of this message is 

If we were to send a 1000 such message we might hope to use 
1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per message, 
so we would require 1000 bits.

Need to “blend” bits among message symbols!

00144.)999log(. =-
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Discrete or Blended

Discrete: each message is a fixed set of bits 
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message:     1       2      3      4

010010111010

message:     1,2,3, and 4
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Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Can bound total bits required based on sum of  
self information ('!):

More expensive than Huffman coding

Used in many compression algorithms: E.g., JPEG/MPEG
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