
15-750 Page 1

15-750:Algorithms in the Real World

Data Compression

15-750 Page 2

Compression in the Real World

Ubiquitous usage. Examples:
– Data storage: file systems, large-scale storage

systems (e.g. cloud storage)
– Communication
– Media: Video, audio, images
– Data structures: Graphs, indexes
– Newer: Neural network compression

15-750 Page 3

Encoding/Decoding

“Message” refers to the data to be compressed

Encoder DecoderInput
Message

Output
Message

Compressed
Message

The encoder and decoder need to understand
common compressed format.

15-750 Page 4

Lossless vs. Lossy
Lossless: Input message = Output message

Lossy: Input message » Output message

Quality of Compression:

For Lossless?
Runtime vs. Compression vs. Generality

For Lossy?
Loss metric (in addition to above)

15-750 Page 5

How much can we compress?
Q: Can we (lossless) compress any kind of messages?

No!

For lossless compression, assuming all input messages are
valid, if one string is compressed, some other must expand.

Q: So what we do need in order to be able to compress?
Can compress only if some messages are more likely than

other.
That is, there needs to be bias in the probability distribution.

15-750 Page 6

Model vs. Coder

To compress we need a bias on the probability of
messages. The model determines this bias

Model Coder
Probs. BitsMessages

Encoder

Example models:
– Simple: Character counts, repeated strings
– Complex: Models of a human face

INFORMATION THEORY BASICS

15-750 Page 7

Information Theory
• Quantifies and investigates “information”
• Fundamental limits on representation and transmission of

information
– What’s the minimum number of bits needed to represent

data?
– What’s the minimum number of bits needed to

communicate data?
– What’s the minimum number of bits needed to secure

data?

15-750 Page 8

Information Theory
Claude E. Shannon

– Landmark 1948 paper: mathematical framework
– Proposed and solved key questions
– Gave birth to information theory

15-750 Page 10

Information Theory
In the context of compression:

An interface between modeling and coding

Entropy
– A measure of information content

Suppose a message can take n values from S = {s1,…,sn}
with a probability distribution p(s).

One of the n values will be chosen.

“How much choice” is involved? OR
“How much information is needed to convey the value chosen?

Entropy
Q: Should it depend on the values {s1,…,sn}?
(e.g., American names vs. European names)
No.

Q: Should it depend on p(s)?
Yes.

If P(s1)=1 and rest are all 0?
No choice. Entropy = 0

More the bias lower the entropy

15-750 Page 11

Entropy
Shannon (1948 paper) lists key properties that an entropy

function should satisfy and shows that “log” is the only
function.

Intuition for the log function:

• When p(s) is low, entropy should be high
• Suppose two independent messages are being picked then

entropy should add up

15-750 Page 12

15-750 Page 13

Entropy

For a set of messages S with probability p(s), s ÎS, the
self information of s is:

Measured in bits if the log is base 2.

Entropy is the weighted average of self information.

H S p s
p ss S

() () log
()

=
Î
å 1

i s
p s

p s() log
()

log ()= = -
1

Entropy Example
Binary random variable (i.e., taking two values)
with probability p and 1-p

Denoted as H2(p):

<board>

Highest entropy when equiprobable
(true for n >2 as well)

15-750 Page 14

15-750 Page 15

Entropy Example

p S() {. ,. ,. ,. ,. }= 25 25 25 125 125
25.28log125.24log25.3)(=´+´=SH

p S() {. ,. ,. ,. ,. }= 5 125 125 125 125

p S() {. ,. ,. ,. ,. }= 75 0625 0625 0625 0625

28log125.42log5.)(=´+=SH

3.116log0625.4)34log(75.)(=´+=SH

15-750 Page 16

Conditional Entropy

Conditional entropy: Information content based on a context

The conditional probability p(s|c) is the probability of s in a
context c.

The conditional entropy is the weighted average of the
conditional self information

å å
Î Î

÷÷
ø

ö
çç
è

æ
=

Cc Ss csp
cspcpCSH

)|(
1log)|()()|(

Types of “sources”
• Sources generate the messages (to be compressed)

• Sources can be modelled in multiple ways

• Independent and identically distributed (i.i.d) source
– Prob. of each msg is independent of the previous msg

• Markov source
– message sequence follows a Markov model (specifically

Discrete Time Markov Chain, aka DTMC)

15-750 Page 17

15-750 Page 18

Example of a Markov Chain

w b

p(b|w)

p(w|b)

p(w|w) p(b|b)
.9

.1

.2

.8

15-750 Page 19

Shannon’s experiment
Asked people to predict the next character given the whole

previous text. He used these as conditional probabilities to
estimate the entropy of the English Language.

The number of guesses required for right answer:

From the experiment he predicted
H(English) = .6 - 1.3

of guesses 1 2 3 4 5 > 5
Probability .79 .08 .03 .02 .02 .05

PROBABILITY CODING

15-750 Page 20

15-750 Page 21

Assumptions and Definitions
Communication (or a file) is broken up into pieces called

messages.

Each message come from a message set S = {s1,…,sn}
with a probability distribution p(s).

Code C(s): A mapping from a message set to codewords,
each of which is a string of bits

Message sequence: a sequence of messages

15-750 Page 22

Variable length codes and
Unique Decodability

A variable length code assigns a bit string (codeword) of
variable length to every message value

e.g. a = 1, b = 01, c = 101, d = 011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length code in
which bit strings can always be uniquely decomposed into
its codewords.

15-750 Page 23

Prefix Codes
A prefix code is a variable length code in which no codeword

is a prefix of another word.
e.g., a = 0, b = 110, c = 111, d = 10

All prefix codes are uniquely decodable

15-750 Page 24

Prefix Codes: as a tree
Prefix codes can be viewed as a binary tree with 0s or 1s on

the edges and message values at the leaves:

a = 0, b = 110, c = 111, d = 10
b c

a
d

0
1

0 1

1
0

15-750 Page 25

Average Length
For a code C with associated probabilities p(c) the average

length is defined as

l(c) = length of the codeword c (a positive integer)

We say that a prefix code C is optimal if for all prefix codes
C’, la(C) £ la(C’)

l C p c l ca
c C

() () ()=
Î
å

15-750 Page 26

Relationship to Entropy
Theorem (lower bound): For any probability distribution p(S)

with associated uniquely decodable code C,

Theorem (upper bound): For any probability distribution p(S)
with associated optimal prefix code C,

H S l Ca() ()£

l C H Sa () ()£ +1

15-750 Page 27

Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely decodable code C,

Conversely, for any set of lengths L such that

there is a prefix code C such that

12)(£å
Î

-

Cc

cl

12 £å
Î

-

Ll

l

|)|,...,1()(Lilcl ii ==

15-750 Page 28

Proof of the Upper Bound (Part 1)
Assign each message a length:
We then have

So by the Kraft-McMillan inequality there is a prefix code with
lengths l(s).

()é ù)(1log)(spsl =

()é ù

()

2 2

2

1

1

1

-

Î

-

Î
-

Î

Î

å å
å
å

=

£

=

=

l s

s S

p s

s S
p s

s S

s S
p s

() log / ()

log / ()

()

15-750 Page 29

Proof of the Upper Bound (Part 2)

()é ù

l S p s l s

p s p s

p s p s

p s p s

H S

a
s S

s S

s S

s S

() () ()

() log / ()

() (log(/ ()))

() log(/ ())

()

=

= ×

£ × +

= +

= +

Î

Î

Î

Î

å
å
å
å

1

1 1

1 1

1

Now we can calculate the average length given l(s)

15-750 Page 30

Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities
{p1, …, pn}, then pi > pj implies ! "! ≤ !("")

Proof: (by contradiction)
Assume ! "! > !(""). Consider switching codes ci and cj.

If la is the average length of the original code, the length of the
new code is

This is a contradiction since la is not optimal

l l p l c l c p l c l c
l p p l c l c
l

a a j i j i j i

a j i i j

a

' (() ()) (() ())
()(() ())

= + - + -
= + - -
<

15-750 Page 31

Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms

Properties:
– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode
– la = H if probabilities are powers of 2

15-750 Page 32

Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a single vertex

corresponding to a message s and with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1 and p2

– Join into single tree by adding root with weight p1 + p2

15-750 Page 33

Example
p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5)c(.2)

15-750 Page 34

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow path to the

root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for
each bit received. When at leaf can output message and
return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1
a=000, b=001, c=01, d=1

15-750 Page 35

Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an optimal *prefix*

code.
Proof outline:
Induction on the number of messages n.
Consider a message set S with n+1 messages
1. Can make it so that least probable messages of S are

neighbors in the Huffman tree
2. Replace the two messages with one message with

probability p(m1) + p(m2) making S’
3. Show that if S’ is optimal, then S is optimal
4. S’ is optimal by induction

15-750 Page 36

Problem with Huffman Coding
Consider a message with probability .999. The self information

of this message is

If we were to send a 1000 such message we might hope to use
1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per message,
so we would require 1000 bits.

Need to “blend” bits among message symbols!

00144.)999log(. =-

15-750 Page 37

Discrete or Blended

Discrete: each message is a fixed set of bits
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message: 1 2 3 4

010010111010

message: 1,2,3, and 4

15-750 Page 38

Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Can bound total bits required based on sum of
self information ('!):

More expensive than Huffman coding

Used in many compression algorithms: E.g., JPEG/MPEG

å
=

+<
n

i
isl

1
2

