
15-750 Page 1

15-750:Algorithms in the Real World

Data Compression: Lecture 2

15-750 Page 2

(Recap) Discrete or Blended

Discrete: each message is a fixed set of bits
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message: 1 2 3 4

010010111010

message: 1,2,3, and 4

15-750 Page 3

(Recap) Arithmetic Coding
Allows “blending” of bits in a message sequence.

More expensive than Huffman coding

Used in many compression algorithms: E.g., JPEG/MPEG

15-750 Page 4

Arithmetic Coding: message intervals
Assign each probability distribution to an interval range

from 0 (inclusive) to 1 (exclusive).
e.g.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-750 Page 5

Arithmetic Coding: Sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.22

0.27

0.3

15-750 Page 6

Uniquely defining an interval
Important property:The sequence intervals for distinct

message sequences of length n will never overlap

Therefore: specifying any number in the final interval uniquely
determines the sequence.

Decoding is similar to encoding, but on each step need to
determine what the message value is and then reduce
interval

15-750 Page 7

Arithmetic Coding: Decoding Example
Decoding the number .49, knowing the message is of length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49

Transformation Techniques
1. Run length coding

2. Move-to-front coding

3. Residual coding

4. Burrows-Wheeler transform

5. Linear transform coding

15-750 Page 8

Why transform?
Help skew the probabilities

In many algorithms message sequences are transformed into
integers with a skew towards small integers

We will take a detour to study codes for integers ...

15-750 Page 9

Integer codes
• There are several “fixed” codes for encoding natural numbers
• With non-decreasing codeword lengths

15-750 Page 10

15-750 Page 11

Integer codes: binary

“Minimal” binary representation: Drop leading zeros
Q: What is the problem with minimal binary representation?
Not a prefix code!

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

15-750 Page 12

Integer codes: Unary

n represented as n-1 ones and one 0
(0’s and 1’s can be interchanged)

Q: For what probability distribution unary codes are optimal
prefix codes?

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

15-750 Page 13

Integer codes: Gamma
n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

Many other fixed prefix codes:
Golomb, phased-binary, subexponential, ...

Back to transforming data for encoding…

Transformation Techniques
1. Run length coding

2. Move-to-front coding

3. Residual coding

4. Burrows-Wheeler transform

5. Linear transform coding

15-750 Page 14

15-750 Page 15

1. Run Length Coding
Code by specifying message value followed by the number of

repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be coded based on frequency
(i.e., probability coding).

Typically low counts such as 1 and 2 are more common =>
use small number of bits overhead for these.

Used as a sub-step in many compression algorithms.

15-750 Page 16

2. Move to Front Coding
• Transforms message sequence into sequence of integers
• Then probability code

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message

– output the position in the order
– move to the front of the order.
e.g.: c a

c => output: 3, new order: [c,a,b,d,e,…]
a => output: 2, new order: [a,c,b,d,e,…]

Probability code the output.

15-750 Page 17

2. Move to Front Coding
The hope is that there is a bias for small numbers.

Q: Why?
Temporal locality

Takes advantage of temporal locality

Used as a sub-step in many compression algorithms.

15-750 Page 18

3. Residual Coding
Typically used for message values that represent some sort of

amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea:
• Guess next value based on current context.
• Output difference between guess and actual value.
• Use probability code on the output.

E.g.: Consider compressing a stock value over time.

Residual coding is used in JPEG Lossless

15-750 Page 19

Use of residual coding in JPEG-LS

JPEG Lossless
Codes in Raster Order.
Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.

The residual between guessed and actual value is found and
then coded using a Golomb-like code.
(Golomb codes are similar to Gamma codes)

NW

W

N NE

*

15-750 Page 20

4. Burrows –Wheeler Transform
Breaks file into fixed-size blocks and encodes each block

separately.

For each block:

– Create full context for each character (wraps around)
– Reverse lexical sort each character by its full context.

This is called the “block sorting transform”.

15-750 Page 21

Burrows Wheeler: Example
To encode: d1e2c3o4d5e6
(Numbered the characters to distinguish them.)
Context “wraps” around. Last char is most significant.

Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 Ü
edeco4 d5

Sort
Context

Q: Why is the output more easier to compress?

15-750 Page 22

Burrows Wheeler: Example
Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 Ü
edeco4 d5

Sort
Context

Gets similar characters together
(because we are ordering by context)

Why not just sort?

Can we invert BW Transform?

15-750 Page 23

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

Can we invert BW Transform?

15-750 Page 24

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

How can we get the last column of the context column
from the output column?

Sort!

Any problem? Equal valued chars

Suppose we
are given the
context…
then?

15-750 Page 25

Burrows-Wheeler (Continued)

Theorem: After sorting, equal valued characters appear
in the same order in the output column as in the last
column of the sorted context.

Proof sketch:

The chars with equal value in the most-
significant-position (i.e., last column) of the
context will be ordered by the rest of the
context, i.e. the previous chars.

This is also the order of the output since it
is sorted by the previous characters.

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1
edeco 4 d5

15-750 Page 26

Burrows-Wheeler: Decoding

– What follows the underlined a ?
– What follows the underlined b?
– What is the whole string?

Context Output
a c
a b
a b
b a
b a
c aAnswer: b, a, abacab

Ü

15-750 Page 27

BZIP
Transform 1: (Burrows Wheeler)

– input : character string (block)
– output : reordered character string

Transform 2: (move to front)
– input : character string
– output : MTF numbering

Transform 3: (run length)
– input : MTF numbering
– output : sequence of run lengths

Probabilities: (on run lengths)
Dynamic based on counts for each block.
Coding: Originally arithmetic, but changed to Huffman

in bzip2 due to patent concerns

15-750 Page 28

5. Linear Transform Coding

Goal: Transform the data into a form that is easily
compressible (through lossless or lossy compression)

Select a set of linear basis functions that span the
space
– sin, cos, spherical harmonics, wavelets, …

€

φi

15-750 Page 29

Linear Transform Coding (continued)
Coefficients:

åå ==Q
j

ijj
j

iji axjx)(f

€

Θ i = ith resulting coefficient
x j = j th input value
aij = ij th transform coefficient = φi (j)

In matrix notation:

Where A is an n x n “transform” matrix, and each
row defines a basis function

Q=

=Q
-1Ax

Ax

15-750 Page 30

Example: Cosine Transform

)(0 jf)(1 jf

…

xj Qi

å=Q
j

iji jx)(f

)(2 jf

⇒

15-750 Page 31

Other Transforms

Polynomial:

1 x x2

Wavelet (Haar):

15-750 Page 32

How to Pick a Transform
Goals:

– Decorrelate the data
– Low coefficients for many terms
– Basis functions that can be ignored from the perception

point-of-view

15-750 Page 33

15-750:Algorithms in the Real World

Quantization (lossy)

15-750 Page 34

Scalar Quantization

Quantize regions of values into a single value
E.g. Drop least significant bit

Q: Why is this lossy?
Many-to-one mapping

Two types
– Uniform: Mapping is linear
– Non-uniform: Mapping is non-linear

(Can be used to reduce # of bits for a pixel)

15-750 Page 35

Scalar Quantization

input

output

uniform

input

output

non uniform

Q: Why use non-uniform?
Error metric might be non-uniform.
E.g. Human eye sensitivity to specific color regions

Can formalize the mapping problem as an optimization problem

15-750 Page 36

Generate Output

Vector Quantization

Generate Vector

Find
closest
code
vector

Codebook Index Index Codebook

OutIn

Encode Decode

Mapping a multi-dimensional space into a smaller set of messages

15-750 Page 37

Vector Quantization (VQ)
What do we use as vectors?

• Color (Red, Green, Blue)
• Can be used, for example to reduce 24bits/pixel to

8bits/pixel
• Used in some monitors to reduce data rate from the

CPU (colormaps)
• K consecutive samples in audio
• Block of K pixels in an image

How do we decide on a codebook
• Typically done with clustering

VQ most effective when the variables along the
dimensions of the space are correlated

15-750 Page 38

Vector Quantization: Example

Observations:

1. Highly correlated:
Concentration of representative
points

2. Higher density is more common
regions.

15-750 Page 39

Case Study: JPEG
A nice example since it uses many techniques:

– Transform coding (Cosine transform)
– Scalar quantization
– Difference coding
– Run-length coding
– Huffman or arithmetic coding

