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Groups

A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b  G, a * b  G

2. Associativity. For all a,b,c  G, a*(b*c) = (a*b)*c

3. Identity. There exists I  G, such that for all 

a  G, a*I=I*a=a

4. Inverse. For every a  G, there exist a unique 

element b  G, such that a*b=b*a=I

An Abelian or Commutative Group is a Group with the 

additional condition

5. Commutativity. For all a,b  G, a*b=b*a
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Examples of groups

Q: Examples?

• Integers, Reals or Rationals with Addition

• The nonzero Reals or Rationals with Multiplication

• Invertible square real matrices with 

Matrix Multiplication 

• Permutations over n elements with composition
[0→1, 1→2, 2→0] o [0→1, 1→0, 2→2] = [0→0, 1→2, 2→1]

Often we will be concerned with finite groups, i.e., 

ones with a finite number of elements.
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Groups based on modular arithmetic

The group of positive integers modulo a prime p

Zp
*  {1, 2, 3, …, p-1}          *p  multiplication modulo p

Denoted as: (Zp
*, *p)

Required properties

1. Closure.  Yes.

2. Associativity.  Yes.

3. Identity.  1.

4. Inverse.  Yes. (try to prove this yourself) 

Example: Z7
*= {1,2,3,4,5,6}

1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6
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Fields

A Field is a set of elements F with two binary operators * and + 

such that

1. (F, +) is an abelian group

2. (F \ I+, *) is an abelian group

the “multiplicative group”

3. Distribution:  a*(b+c) = a*b + a*c

4. Cancellation: a*I+ = I+

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.

A field of finite order is a finite field.
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Finite Fields

ℤ𝑝 (p prime) with + and * mod p, is a finite field.

1. (ℤ𝑝, +) is an abelian group (0 is identity)

2. (ℤ𝑝 \ 0, ∗) is an abelian group (1 is identity)

3. Distribution:  a*(b+c) = a*b + a*c

4. Cancellation: a*0 = 0 

We denote this by 𝔽𝑝 or GF(p)

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words 

(i.e with 2k elements)?
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Polynomials over 𝔽𝑝

𝔽𝑝[𝑥] = polynomials on x with coefficients in 𝔽𝑝.

• Example of 𝔽5[𝑥]:  f(x) = 3x4 + 1x3 + 4x2 + 3

• deg(f(x)) = 4   (the degree of the polynomial)

Operations: (examples over 𝔽5[𝑥])

•Addition: (x3 + 4x2 + 3) + (3x2 + 1) = (x3 + 2x2 + 4) 

•Multiplication: (x3 + 3) * (3x2 + 1)  = 3x5 + x3 + 4x2 + 3

•I+ = 0,  I* = 1

•+ and * are associative and commutative

•Multiplication distributes and 0 cancels

Do these polynomials form a field?
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Division and Modulus

Long division on polynomials (𝔽5[𝑥]):
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Polynomials modulo Polynomials

How about making a field of polynomials modulo another 

polynomial?   

This is analogous to 𝔽𝑝 (i.e., integers modulo another integer).

Need a polynomial analogous to a prime number…

Definition: An irreducible polynomial is one that is not a 

product of two other polynomials both of degree greater than 0.

e.g. (x2 + 2) for 𝔽5[𝑥]
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Galois Fields

The polynomials     𝔽𝑝 𝑥 mod 𝑝(𝑥) where 

1. 𝑝 𝑥  ∈ 𝔽𝑝 𝑥 , p(x) is irreducible and 

2. deg(p(x)) = n

form a finite field.   

Q: How many elements?

Such a field has 𝑝𝑛 elements.

These fields are called Galois Fields or GF(pn) or 𝔽𝑝𝑛

The special case n = 1 reduces to the fields 𝔽𝑝.

The special case p = 2 is especially useful for us.
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GF(2n)

𝔽2𝑛 = set of polynomials in 𝔽2[𝑥] modulo 

irreducible polynomial p 𝑥 ∈ 𝔽2 𝑥 of degree 𝑛.

Elements are all polynomials in 𝔽2[𝑥] of degree ≤ 𝑛 − 1.

Has 2𝑛 elements. 

Natural correspondence with bits in 0,1 𝑛.

Elements of 𝔽28 can be represented as a byte, one bit 

for each term. 

E.g., x6 + x4 + x + 1 = 01010011
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GF(2n)

𝔽2𝑛 = set of polynomials in 𝔽2[𝑥] modulo 

irreducible polynomial p 𝑥 ∈ 𝔽2 𝑥 of degree 𝑛.

Elements are all polynomials in 𝔽2[𝑥] of degree ≤ 𝑛 − 1.

Has 2𝑛 elements. 

Natural correspondence with bits in 0,1 𝑛.

Addition over 𝔽2 corresponds to xor.

• Just take the xor of the bit-strings (bytes or words 

in practice).   This is dirt cheap.
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Multiplication over GF(2n)

If n is small enough can use a table of all combinations.

The size will be 2n x 2n (e.g. 64K for 𝔽28)

Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an 

overflow by 1 term is simply a test and an xor.

e.g.      0111 mod 1001 = 0111 

1011 mod 1001 = 1011 xor 1001 = 0010 

^ just look at this bit for 𝔽23
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Finding inverses over GF(2n) 

Again, if n is small just store in a table.

• Table size is just 2n.

For larger n, use Euclid’s algorithm.  

• This is again easy to do with shift and xors.
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Euclid’s Algorithm

Euclid’s Algorithm:

gcd(a,b) = gcd(b,a mod b)

gcd(a,0) = a

“Extended” Euclid’s algorithm:

• Find x and y such that ax + by = gcd(a,b)

• Can be calculated as a side-effect of Euclid’s 

algorithm.

• Note that x and y can be zero or negative.

This allows us to find a-1 mod p, for a  Zp
*

Q: Any idea how?

In particular return x in ax + py = 1.

Similarly can apply to over polynomials



The structure of F22 and F23

Source: Visual Group Theory, Nathan C. Carter.
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Polynomials

Lemma
Let p ∈ F[x] and let α ∈ F. Then p(α) = 0 iff (x− α) divides p(x).

Corollary
If a polynomial is irreducible over F, then it does not have a root in F.

Notice that the converse is not true. E.g. x4 + x2 + 1 = (x2 + x+ 1)2
with field F2.

Theorem
A polynomial p ∈ F[x] of degree n has at most n roots in F.
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Lagrange interpolation
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Consider a set of k points:

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

with distinct xj.

We want a degree k− 1 polynomial p such that:

p(xj) = yj, for j ∈ {0, . . . , k}
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Lagrange interpolation

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

We can solve this as a system of linear equations:
1 x0 x20 · · · xk0
1 x1 x21 · · · xk1
1 x2 x22 · · · xk2
...

...
... . . . ...

1 xk x2k · · · xkk




a0
a1
a2
...
ak

 =


y0
y1
y2
...
yk


Another “simpler” solution is obtained by representing polynomials
in a different basis.
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Lagrange interpolation

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

Consider the polynomial:

ℓj(x) =
∏

0≤m≤k
m ̸=j

x− xm
xj − xm

=
(x− x0)
(xj − x0)

· · ·
(x− xj−1)
(xj − xj−1)

(x− xj+1)
(xj − xj+1)

· · · (x− xk)
(xj − xk)

Notice that:
ℓj(xj) = 1 and ℓj(xi ̸=j) = 0.

Therefore the polynomial we want is:

L(x) =
k∑
j=0

yjℓj(x)

5



Lagrange interpolation

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

Consider the polynomial:

ℓj(x) =
∏

0≤m≤k
m ̸=j

x− xm
xj − xm

=
(x− x0)
(xj − x0)

· · ·
(x− xj−1)
(xj − xj−1)

(x− xj+1)
(xj − xj+1)

· · · (x− xk)
(xj − xk)

Notice that:
ℓj(xj) = 1 and ℓj(xi ̸=j) = 0.

Therefore the polynomial we want is:

L(x) =
k∑
j=0

yjℓj(x)

5



Lagrange interpolation

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

Consider the polynomial:

ℓj(x) =
∏

0≤m≤k
m ̸=j

x− xm
xj − xm

=
(x− x0)
(xj − x0)

· · ·
(x− xj−1)
(xj − xj−1)

(x− xj+1)
(xj − xj+1)

· · · (x− xk)
(xj − xk)

Notice that:
ℓj(xj) = 1 and ℓj(xi ̸=j) = 0.

Therefore the polynomial we want is:

L(x) =
k∑
j=0

yjℓj(x)

5



Lagrange interpolation

Source: https://en.wikipedia.org/wiki/Lagrange_polynomial
6

https://en.wikipedia.org/wiki/Lagrange_polynomial


Linear algebra

• All the things you learnt in linear algebra also hold when
elements come from a finite field

• A vector space over F is a set V with: vector addition and scalar
multiplication, and closed under both operations.

• A subspace W ⊆ V is a set of vectors closed under vector
addition and scalar multiplication

• A linear combination of U is:∑
vi∈U

αivi for αi ∈ F

• U is linearly independent if no (non-trivial) linear combination is
zero
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Linear algebra

• The span of U is the set generated by all linear combinations of
U

• A basis B of a subspace W is a linearly independent set of
vectors that spans W

• The dimension of a subspace W is the number of vectors in any
basis

• Let A ∈ Fm×n be a matrix.
• col(A) = {Ax | x ∈ Fn}
• rank(A) = dim(col(A))
• null(A) = {x | Ax = 0}.
• nullity(A) = dim(null(A))
• rank(A) + nullity(A) = n
• A is invertible iff rank(A) = n
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