Recitation: Finite fields
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Groups

A Group (G,* 1) is a set G with operator * such that:

1.
2.
3.

4.

Closure. Foralla,b €e G,a*b € G
Associativity. For all a,b,c € G, a*(b*c) = (a*b)*c
ldentity. There exists | € G, such that for all

a € G, a*l=I*a=a

Inverse. For every a € G, there exist a unigue
element b € G, such that a*b=b*a=lI

An Abelian or Commutative Group is a Group with the

additional condition

S.

Commutativity. For all a,b € G, a*b=b*a
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Examples of groups

Q: Examples?
* Integers, Reals or Rationals with Addition
 The nonzero Reals or Rationals with Multiplication

 Invertible square real matrices with
Matrix Multiplication

« Permutations over n elements with composition
[0—>1, 152, 2>0] 0 [0—>1, 150, 2>2] = [0—-0, 152, 2—>1]

Often we will be concerned with finite groups, i.e.,
ones with a finite number of elements.
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Groups based on modular arithmetic

The group of positive integers modulo a prime p

Z,y=1{1,2,3,...,p-1} *, = multiplication modulo p

Denoted as: (Z,", *,
Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. ldentity. 1.
4. Inverse. Yes. (try to prove this yourself)

Example: Z.'={1,2,3,4,5,6}
11=1,21=4,31=5,61=6
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Fields

A Field is a set of elements F with two binary operators * and +
such that

1. (F, +)is an abelian group

2. (F\I,*isanabelian group
the “multiplicative group”

3. Distribution: a*(b+c) = a*b + a*c
4, Cancellation: a*l, =1,

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.
A field of finite order is a finite field.

15-750



Page 6

Finite Fields

Z,, (p prime) with + and * mod p, Is a finite field.

(Z,, +) I1s an abelian group (O Is identity)
(Z,\ 0, =) Is an abelian group (1 is identity)
Distribution: a*(b+c) = a*b + a*c
Cancellation: a*0=0

W e

We denote this by FF,, or GF(p)

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words
(i.e with 2k elements)?

15-750



Page 7

Polynomials over IF,,

[F,[x] = polynomials on x with coefficients in IF,,.
« Example of Fg[x]: f(X) = 3x* + 1x3 + 4x° + 3
« deg(f(x)) =4 (the degree of the polynomial)

Operations: (examples over F:[x])

*Addition: (x3 + 4x2 + 3) + (3x?+ 1) = (X3 + 2Xx° + 4)
*Multiplication: (x3 +3) * (3x*+ 1) =3x>+ x3+4x° + 3
[.,=0, IL=1

+ and * are associative and commutative
*Multiplication distributes and O cancels

Do these polynomials form a field?
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Division and Modulus

Long division on polynomials (Fs[x]): 1%+ 4

x> +1 )x3+4x2+0x+3

x> +0x% +1x+0
4%* + 4% +3
4% +0X + 4
4x + 4

(3 +4x% +3)/(x* +1) = (x + 4)
(3 + 4% +3)mod(x* +1) = (4x + 4)
(X +1)(X+4) + (4x + 4) = (x° + 4x° + 3)
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Polynomials modulo Polynomials

How about making a field of polynomials modulo another
polynomial?
This Is analogous to IF,, (I.e., integers modulo another integer).

Need a polynomial analogous to a prime number...

Definition: An irreducible polynomial is one that is not a
product of two other polynomials both of degree greater than O.

e.g. (x? + 2) for Fg[x]
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Galois Flelds

The polynomials  F,[x] mod p(x) where
1. p(x)e € F, [x], p(X) is irreducible and

2. deg(p(x)) =n
form a finite field.

Q: How many elements?
Such a field has p" elements.

These fields are called Galois Fields or GE(p") or [F,»
The special case n = 1 reduces to the fields F,,.

The special case p = 2 is especially useful for us.
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GF(2")

[F,n = set of polynomials in IF,[x] modulo
irreducible polynomial p(x) € F,[x] of degree n.

Elements are all polynomials in IF,[x] of degree < n — 1.

Has 2™ elements.
Natural correspondence with bits in {0,1}™.

Elements of F,s can be represented as a byte, one bit
for each term.

E.g., xX0+x*+x+1=01010011
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GF(2")

[F,n = set of polynomials in IF,[x] modulo
irreducible polynomial p(x) € F,[x] of degree n.

Elements are all polynomials in IF,[x] of degree < n — 1.

Has 2™ elements.
Natural correspondence with bits in {0,1}™.

Addition over [F, corresponds to xor.

 Just take the xor of the bit-strings (bytes or words
In practice). This is dirt cheap.
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Multiplication over GF(2")

If n Is small enough can use a table of all combinations.
The size will be 2" x 2" (e.g. 64K for Fs)
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an
overflow by 1 term is simply a test and an xor.

e.g. 0111 mod 1001 =0111
1011 mod 1001 = 1011 xor 1001 = 0010
A just look at this bit for 3

15-750



Page 14

Finding inverses over GF(2")

Again, if n is small just store in a table.
« Table size is just 2".

For larger n, use Euclid’ s algorithm.
« This is again easy to do with shift and xors.
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Euclid’s Algorithm

Euclid’s Algorithm:
gcd(a,b) = gcd(b,a mod b)
gcd(a,0) = a
“Extended” Euclid’s algorithm:
 Find x and y such that ax + by = gcd(a,b)

« Can be calculated as a side-effect of Euclid’s
algorithm.

* Note that x and y can be zero or negative.

This allows us to find a*tmod p, fora € Z,°

Q: Any idea how?
In particular return x in ax + py = 1.
Similarly can apply to over polynomials
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The structure of F,: and s

Source: Visual Group Theory, Nathan C. Carter.



Polynomials

Lemma
Let p € F[x] and let o € F. Then p(a) = 0 iff (x — «) divides p(x).



Polynomials

Lemma
Let p € F[x] and let o € F. Then p(a) = 0 iff (x — «) divides p(x).

Corollary _ _ _
If a polynomial is irreducible over IF, then it does not have a root in .

Notice that the converse is not true. E.g. x* + x> + 1= (x> + x + 1)
with field F,.

Theorem ‘
A polynomial p € F[x] of degree n has at most n roots in F.



Lagrange interpolation

1k

-1

Consider a set of k points:

(X07y0);' a(X}*yj), "7(Xf?ayf?)

with distinct x;.



Lagrange interpolation

1k

-1

Consider a set of k points:

(X0:¥0)s -+ (X, ¥)s - - (Xks Vi)
with distinct x;.
We want a degree kR — 1 polynomial p such that:

p(x;) =y;, forj e {0,...,k}



Lagrange interpolation

(Xo;yo)a' "a(Xj7yj);' "7(Xf?ayf?)

We can solve this as a system of linear equations:

1T X x5 - xE] [ao Yo

1T x X - X | %

1T % X3 - X &l = |»
2 R

T Xe X, oo Xg] LAk Ve

Another “simpler” solution is obtained by representing polynomials
in a different basis.



Lagrange interpolation

(X07y0)a coog (Xj7yj), coog (Xf?ayf?)
Consider the polynomial:

¢(x) = -
o<m<k ™
mj
(x=X0)  (X=Xi—1) X=X1) (X Xk)
(X —Xo) (X —Xi=1) (5 —Xjpa) (X — Xe)

% = X
Xm




Lagrange interpolation

(X07y0)a coog (Xj7yj), coog (Xf?ayf?)
Consider the polynomial:

X—X
60 =11 . —
o<m<k ™/ m
mj
_ (X=x0) o X=x) (X=Xa) (X Xe)
(5 —=X0) (G —=X-1) (G =X31) (X —xk)
Notice that:

G(x) =1 and £(x) = 0.



Lagrange interpolation

(X07y0)a coog (Xj7yj), coog (Xf?ayf?)
Consider the polynomial:

X—X
60 =11 . —
o<m<k ™/ m
mj
_ (X=x0) o X=x) (X=Xa) (X Xe)
(5 —=X0) (G —=X-1) (G =X31) (X —xk)
Notice that:

G(x) =1 and £(x) = 0.

Therefore the polynomial we want is:

k
L(x) = yit(x)
j=0



Lagrange interpolation

— hX) 12(x) f3(x) la(x) ===-= L(x)

oL

-4f ; . : 1
-5 0 5

Source: https://en.wikipedia.org/wiki/Lagrange_polynomial



https://en.wikipedia.org/wiki/Lagrange_polynomial

Linear algebra

- All the things you learnt in linear algebra also hold when
elements come from a finite field

- A vector space over F is a set V with: vector addition and scalar
multiplication, and closed under both operations.

- A subspace W C Vis a set of vectors closed under vector
addition and scalar multiplication

- A linear combination of U is:

Z Vi for o€l

vieu

- Uis linearly independent if no (non-trivial) linear combination is
zero



Linear algebra

- The span of U is the set generated by all linear combinations of
u

- A basis B of a subspace W is a linearly independent set of
vectors that spans W

- The dimension of a subspace W is the number of vectors in any
basis

- Let A € F™*" be a matrix.
- col(A) = {Ax | x e F"}
- rank(A) = dim(col(A))
- null(A) = {x | Ax=0}.
- nullity(A) = dim(null(A))
- rank(A) + nullity(A) = n
- Als invertible iff rank(A) = n



