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1 Heuristic Search (20 points)
Consider the following search problem. There is a set of operations O = {o1, . . . , on}, and a set of condi-
tions C = {C1, . . . , Cm}. Each operation oi ∈ O has a set of preconditions Pi ⊆ C, and a set of effects
Ei ⊆ C. A state is defined by a subset of conditions S ⊆ C. An operation oi ∈ O can be applied at state
S if and only if Pi ⊆ S, and it leads to the state S ∪ Ei. The goal state is C, i.e., the state that contains
all conditions. The initial state is the empty set (so initially only operations oi that have an empty Pi can be
applied).

We define the following heuristic function h for this search problem. Given a state S, h(S) computes
the optimal path to the goal state, in the modified problem where every operation oi is replaced with the
operation o′i, which has the same set of effects Ei, but an empty set of preconditions. Informally, any of
the “old” operations can be applied at any state. (The perceptive student may have noticed that computing
h(S) is equivalent to solving the Minimum Set Cover problem, that is, computing h(S) happens to be
computationally hard, so this is a pretty bad heuristic.)

Prove that A* graph search with the heuristic h is optimal (it always finds the shortest sequence of oper-
ations that leads to the goal state). You may rely on any theorem stated in class.

Solution: We know from class that A* graph search with a heuristic h is optimal if h is consistent. We
will now prove that h is consistent; i.e., that h(x) ≤ h(y) + c(x, y).

Let H(x, y) be the minimum number of moves necessary to get from x to y under the conditions of the
heuristic function. Note that H(x, t) = h(x). Because h is a relaxation of the search problem, we know that
H(x, y) ≤ c(x, y).

If we consider any x and y, we can see that h(x) is at most the number of moves under h to get from x
to y plus the number of moves under h to get from y to t; in other words,

h(x) ≤ H(x, y) + h(y).

However, we also know that H(x, y) ≤ c(x, y), which means

h(x) ≤ c(x, y) + h(y),

as desired.
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2 Learning Theory (25 points)
Q1. (10 pt) For a finite function class F, show that VC-dim(F ) ≤ log2(|F |).

Solution: To shatter a set d points, F needs at least 2d classes. Therefore, that is, |F | ≥ 2d.

Q2. (5 pt) Give an example of an input space Xand a function class F such that VC-dim(F ) = log2(|F |).

Solution: X = {1}, F contains two functions, one that labels 1 positive, and one that labels 1 nega-
tive.

Q3. (10 pt) Give an example of an input spaceX and two function classesF1 andF2 such that VC-dim(Fi) =
0 for i = 1, 2, but VC-dim(F1 ∪ F2) = 1.

Solution: X = {1}, F1 contains only the function that labels 1 positive, and F2 contains only the
function that labels 1 negative.
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3 Optimization and ML (30 points)
Q1. (10 pt) Consider the regression problem of minimizing the sum of absolute losses using a linear hy-

pothesis function, that is

minimize
θ∈Rn

m∑
i=1

`(hθ(x
(i)), y(i)) (1)

where ` : R × R → R+ is given by `(ŷ, y) = |ŷ − y| and hθ(x) = θTx. Show that this is a convex
optimization problem in θ.

Solution: The feasible region of this optimization problem is Rn, which is convex. By the definition
of convexity, we can show that |θTx − y| is convex. Specifically, note that given some θ1, θ2 ∈ Rn
and α ∈ [0, 1]

|(αθ1+(1−α)θ2)Tx−y| = |αθT1 x−αy+(1−α)θT2 x−(1−α)y| ≤ α|θT1 x−y|+(1−α)|θT2 x−y| (2)

Since a sum of convex functions is convex, we therefore know that the objective is convex. The feasible
region and objective of this problem are convex, so the optimization problem is convex.

Q2. (10 pt) Prove that we can find the solution of the absolute loss linear regression problem by solving
the following linear program

minimize
θ∈Rn,z∈Rm

m∑
i=1

zi

subject to − zi ≤ θTx(i) − y(i) ≤ zi

(3)

Solution: First note that the constraint −zi ≤ θTx(i) − y(i) ≤ zi is equivalent to the constraint that
|θTx(i) − y(i)| ≤ zi, so the sum of the zi terms are an upper bound on the sum of absolute losses.
Second, note that if we had |θTx(i) − y(i)| < zi (strictly less than) at any solution point, we could
simply instead choose zi = |θTx(i) − y(i)| and obtain a solution that still satisfies the constraints
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while having strictly lower objective value. Thus, at the optimal solution we know that we must have
zi = |θTx(i) − y(i)|, meaning the optimization problem has minimized the sum of absolute losses,
which is precisely the problem stated above.
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Q3. (10 pt) Consider the regression problem of minimizing the 0/1 loss using a linear hypothesis function,
that is

minimize
θ∈Rn

m∑
i=1

`(hθ(x
(i)), y(i)) (4)

where ` : R× R→ {0, 1} is given by `(ŷ, y) = 1{ŷ · y ≤ 0} and hθ(x) = θTx.

Prove that we can find the linear classifier that minimizes 0/1 loss using the following binary integer
programming problem, for a large enough value of M .

minimize
θ∈Rn,z∈{0,1}m

m∑
i=1

zi

subject to y(i)θTx(i) ≥ 1− ziM
(5)

Solution: First note that if we have perfect classification, then y(i)θTx(i) > 0 (strictly greater than)
by definition of the 0/1 loss. Therefore, we could scale θ to also satisfy y(i)θTx(i) ≥ 1. If zi = 0, then
this inequality has to be satisfied, i.e., we need to classify the example correctly. But if zi = 1, then
we need not correctly classify the example, because we choose M large enough so that the inequality
is satisfied no matter the value of y(i)θTx(i). Because we are minimizing the sum of the zi terms in
the objective, this is exactly equivalent to minimizing the number of classification mistakes, i.e., the
0/1 loss.
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4 Linear Programming (25 points)

4.1 Standard Form (10 points)
Recall that a linear program is in the standard form if it is expressed as follows:

minimize cTx
subject to Ax = b

x ≥ 0

with optimization variable x ∈ Rn, and problem data c ∈ Rn, A ∈ Rm×n, b ∈ Rm.
Convert the following problem to the standard form:

maximize x1 + 2x2

subject to x1 + 3x2 ≤ 12

− 2x1 − x2 ≥ −8

1 ≤ x1
0 ≤ x2 ≤ 4.

Specifically, what is c, A, and b in the converted problem?

Solution: The converted problem is as follows:

minimize − x1 − 2x2

subject to x1 + 3x2 + x3 = 12

2x1 + x2 + x4 = 8

− x1 + x5 = −1

x2 + x6 = 4

x1, x2, x3, x4, x5, x6 ≥ 0

Thus,

c =
[
−1 −2 0 0 0 0

]
, A =


1 3 1 0 0 0
2 1 0 1 0 0
−1 0 0 0 1 0
0 1 0 0 0 1

 , and b =
[
12 8 −1 4

]
.
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4.2 Simplex Algorithm (15 points)
The following is part of the simplex algorithm for solving a linear program in the standard form:

Repeat:

1. Given index set J such that xJ = A−1J b ≥ 0.

2. Find j /∈ J for which c̄j = cj − cTJA
−1
J Aj < 0.

3. Compute step direction dJ = −A−1J Aj and determine index to remove

i? =?

4. Update index set: J ← J − {i?} ∪ {j}.

Choose one correct answer for each of the following statements:

Q1. (5 pt) In the second step of the algorithm, no j /∈ J satisfies cj − cTJA
−1
J Aj < 0.

This means [ 1 a solution is found, 2 the problem is infeasible, 3 the problem is unbounded].

Solution: 1 a solution is found.

Q2. (5 pt) In the third step of the algorithm, i? should be set to[
1 arg min
i∈J :di<0

xi/di, 2 arg max
i∈J :di<0

xi/di, 3 arg min
i∈J :di≥0

xi/di, 4 arg max
i∈J :di≥0

xi/di

]
.

Solution: 2 arg max
i∈J :di<0

xi/di.

Q3. (5 pt) In the third step of the algorithm, every i ∈ J satisfies di ≥ 0.

This means [ 1 a solution is found, 2 the problem is infeasible, 3 the problem is unbounded].

Solution: 3 the problem is unbounded.
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Scrap Paper
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