
15780: GRADUATE AI (SPRING 2017)

Homework 0: A* Search
(Solutions)

Release: January 18, 2017,
Due: January 27, 2017, 11:59pm

1 Programming Component [50 points]
We will use scientific Python for the implementation portions in this course. If you have not used Python be-
fore, we recommend downloading the Anaconda distribution (https://www.continuum.io/downloads)
and looking through introductory resources like Google’s Python Class (https://developers.google.
com/edu/python/) and the Python Beginner’s Guide (https://wiki.python.org/moin/BeginnersGuide).
If you have not used scientific Python before, we recommend following introductions to NumPy (http:
//www.numpy.org/) and matplotlib (http://matplotlib.org/).

All Python code submissions in this course use Python 3.
For this problem, you will implement the A∗ graph search algorithm to discover the series of moves that

transform a moving tile puzzle from an initial state into a desired goal state. For example, for a 3x3 puzzle,
given the following initial state:

1 2 3
4 6
7 5 8

and the following goal:

1 2 3
4 5 6
7 8

your program should return something like [“down”, “right”], i.e., to solve this puzzle the blank has to
be first moved down and then moved to the right.

We have provided a search.py Python module for you to get started with. When you are done, you
will submit your completed module to Autolab for automatic grading. Do not rename the file or change
the function names because our grader will import the module and functions by name. You are welcome to
introduce new auxiliary functions and call them from the main functions we provide.

1

https://www.continuum.io/downloads
https://developers.google.com/edu/python/
https://developers.google.com/edu/python/
https://wiki.python.org/moin/BeginnersGuide
http://www.numpy.org/
http://www.numpy.org/
http://matplotlib.org/


You should be able to execute the search.py we have provided without any modifications as a starting
point. search.py contains a main function that shows expected outputs of every function we will grade.

1.1 Implementing Heuristics
The board state in Python will be a flattened tuple of the two-dimensional grid in row-major order where the
blank tile is represented as 0. The example above is represented as (1, 2, 3, 4, 0, 6, 7, 5, 8). You can internally
change the state to a format that’s easier to work with if you prefer.

You should first implement the following two heuristics in the stubbed heuristic_misplaced and
heuristic_manhattan functions we have provided.

1. The number of misplaced tiles. In the example above, there are two misplaced tiles, 5 and 8. The
blank space is not tile and should not be included in your misplaced tile count.

2. The sum of the Manhattan distances from the misplaced tiles to their correct positions. In the
example above, the distance from the misplaced tiles 5 and 6 to their correct positions are both 1, so
the summed Manhattan distances is 2.

1.2 Implementing A∗

Next you will implement theA∗ graph search algorithm in the stubbed astar function we have provided to
find the shortest path using the heuristics above. Your function should return a string representing the moves
needed to reach the goal and a list of states in the order they were visited. Use the characters ‘r’, ‘l’, ‘u’, and
‘d’ for ‘right’, ‘left’, ‘up’, ‘nd ’down’ directions, respectively. In the example above, your function should
return the string ‘dr’. If the grid is not valid, return None for the optimal path and the order of states visited.

You should try your program on a number of puzzles with different initial states. Because the goal state
cannot be achieved from all possible states generated by randomly placing the tiles on the board, you should
write a function that shuffles a puzzle from the goal state to an initial state by repeatedly moving the blank
to a position randomly chosen from the possible moves. The depth of the solution for your shuffled puzzle
will be no greater than the number of times the blank is moved.

Because states can repeat, you may also want to maintain a separate list of all explored states, and only
add nodes to the list if they have not already been explored.

A∗ is non-deterministic when selecting what node to explore next when they all have the same f value. To
make A∗ deterministic for grading, we require that you break ties by selecting the lexicographically first
node based on the flattened state. For example, the flattened state (1, 2, 3, 4, 0, 6, 7, 5, 8)
comes lexicographically before (1, 2, 3, 4, 0, 6, 7, 8, 5).

We recommend that you use the heapdict package as a priority queue to find elements with minimum
cost. The heapdict package is included by default in Anaconda distributions and the project page is
available at https://github.com/DanielStutzbach/heapdict. To break ties, your should use
a tuple with (f value, state, ¡other information you want to store¿) as the value in your heapdict.

2

https://github.com/DanielStutzbach/heapdict


2 Written Component [50 points]

Heuristics for n-puzzle
In class (lecture 2), we examined the 8-puzzle game and two heuristics. In this question, we generalize the
puzzle and consider a different heuristic.

The 8-puzzle game is a single-player board game which consists of a 3 × 3 board with 8 tiles and 1 blank
slot. A tile can move horizontally or vertically to its adjacent blank slot (if it neighbors it). The objective of
the game is to start from a given arrangement of tiles and move tiles to achieve a given goal arrangement.
Now, consider the n-puzzle game which consists of an n × n board with n2 − 1 tiles and 1 blank slot. The
rules for n-puzzle are exactly the same as those for 8-puzzle. The following questions are about the n-puzzle
game.

Here, we discuss some heuristics to be used with A* graph search. Recall that heuristic h1(·) returns the
number of tiles that are in the wrong position and h2(·) returns the sum of Manhattan distances of tiles from
their goal positions. We introduce a third heuristic, h3(·), that is the minimum number of moves necessary
to get to the goal state if each action could move any tile to the blank slot. This is another relaxed problem
heuristic.

1. (15 points) Prove that h3 is consistent.

Solution. Let x and y represent any two states of the problem. Define H(x, y) to be the minimum
number of moves necessary to go from x to y where each action could move any tile to the blanks
slot. Note that this is the same as value of h3(x) when y is the goal state.

Sliding a tile is the same as switching a tile with its adjacent blank space (if it neighbors the blank
space). Since H allows any tile to be switched with the blank slot regardless of where it is located, H
is a relaxation of the n-puzzle game. So, H(x, y) ≤ c(x, y).

Now consider any x and y. One way to go from x to t using the moves defined by H (and h3) is to
first use H(x, y) moves to go from x to y, and then use h3(y) moves to go from y to t. Using the
inequality from the previous paragraph, we have

h3(x) ≤ h3(y) +H(x, y) ≤ h3(y) + c(x, y)

So, h3 is consistent.

2. (5 points) Prove or disprove: h3 dominates h1.

Solution. Yes. h3 can only place a tile on a blank slot without changing the order of the other tiles.
So, for any misplaced tile, h3 takes at least one move. In fact, if the blank slot is in its correct position,
then h3 makes two moves to take a tile to its correct location. Since, h1 is the number of misplaced
tiles, h3 is at least as large as h1, so it dominates h1.

3. (5 points) Prove or disprove: h3 dominates h2.

Solution. No. Consider a goal state where the blank space is in the bottom right corner and the tiles
increase from left to right and top to bottom. Now consider a start state where the blank space and
tile 1 are switched. h3 can move tile 1 to its location in 1 move, whereas h2 computes the Manhattan
distance between the current location of tile 1 and its desired location, which is 4. So h3 does not
dominate h1.

3



4. (5 points) Prove or disprove: the heuristic h = max(h2, h3) is consistent.

Solution. We shall show that any heuristic defined as the maximum of two other consistent heuristics
is consistent. We know by definition that

h1(s) ≤ c(s, s′) + h1(s
′)

h2(s) ≤ c(s, s′) + h2(s
′)

and would like to show that the heuristic function

h(s) = max(h1(s), h2(s))

is also consistent. WLOG, we can assume that h1(s) ≥ h2(s) by symmetry. Then, we have two cases.
Case 1: h1(s′) ≥ h2(s′). Then we have

c(s, s′) + h(s′) = c(s, s′) + h1(s
′)

≥ h1(s) = h(s)

→ h(s) ≤ c(s, s′) + h(s′).

Case 2: h1(s′) < h2(s
′). Then we have

c(s, s′) + h(s′) = c(s, s′) + h2(s
′)

> c(s, s′) + h1(s
′)

≥ h1(s)
= h(s)

→ h(s) ≤ c(s, s′) + h(s′).

Therefore, this is a consistent heuristic function.

5. (20 points) An important feature of any heuristic is that it can be computed efficiently. Give a polynomial-
time algorithm in the number of tiles to compute h3 for a given state. Prove its correctness and running
time.

Solution. If the blank space is in its final position, then switch any misplaced tile with the blank space.
If the blank space is not in its final position, switch it with the tile whose final position is currently
occupied by the blank space.

Runtime: This algorithm switches each misplaced tile at most twice, once into the blank space and
once into its final position. So, if there are k misplaced tiles, the algorithm takes O(k) steps. Since
the number of misplaced tiles is at most the total number of tiles, the algorithm is polynomial (in fact,
linear) in the number of tiles, assuming we have data structures where finding the index of nodes and
finding misplaced tiles can be done in constant time. If we are using more naı̀ve data structures, the
algorithm could take quadratic time in the number of tiles.

Correctness: Let G be a graph with one vertex for each tile and an additional vertex, ∗, for the blank
space. For any two vertices v and v′, there is an edge going from v to v′ iff v’s final position is now

4



occupied by vertex v′. For any state of the board, this graph is made of loops and non-trivial cycles
(length > 1).

Define the following potential function.

φ(G) =
(

length of the cycle that
includes the blank space− 1

)
+

∑
Non-trivial cycles
without the blank

(size of cycle + 1)

If a given tile is switched with the blank space, then we must be in one of the following five situations:

(a) If ∗ is in its place and is switched with a misplaced tile x, then cycle (z, x, y, . . . , z) of length
n and (∗, ∗) merge to cycle (z, ∗, x, y, . . . , z). Before merging the potential was n + 1, after
merging it is (n+ 1)− 1 = n, so the potential function decreases by 1.

(b) If ∗ is out of place and it is switched with its predecessor (the tile that has to be moved to the
blank space’s position), cycle (x, ∗, y, . . . , x) of length n splits to cycles (x, x) and (y, . . . , x, y).
Before the split, the potential was n−1, after the split it is (n−1)−1, so the potential decreases
by 1.

(c) If ∗ is in its place and is switched with another tile, x, that is also in its final position, then cycle
(x, ∗, x) is formed from loops (x, x) and (∗, ∗) and the potential function increases by 1.

(d) If ∗ is out of place and is switched with a vertex b from a different cycle, then two cycles
(x, ∗, y, . . . , x) of length n1, and (a, b, c, . . . , a) of length n2 merge to form a new cycle of
length n1+n2, (a, ∗, y, . . . , x, b, c, . . . , a). The potential function goes from (n1−1)+(n2+1)
to (n1 + n2)− 1. So, the potential decreases by 1.

(e) If ∗ is out of place and it is switched with vertex b that is the same cycle as ∗ but it is not its
predecessor, cycle (x, ∗, y, . . . , a, b, c, . . . , x) of length n splits to two cycles (x, b, c, . . . , x) and
(∗, y, . . . , a, ∗) with lengths n1+n2 = n. The potential goes from n to (n1+1)+(n2−1) = n,
so it stays the same.

A graph that is represented by the goal state has potential value of 0. Our algorithm only takes actions
that result in situations (a) or (b), both of which decrease the potential by 1, which is the maximum
decrease possible at every round. So, our algorithm finds the minimum number of moves possible.
Therefore, its computes h3(·), correctly. Note that the value of the potential function is the value of
h3.

3 Submitting to Autolab
Create a tar file containing your writeup for the first problem and the completed search.py module for
the second problem. Make sure that your tar has these files at the root and not in a subdirectory. Use the
following commands from a directory with your files to create a handin.tgz file for submission.

$ ls
search.py writeup.pdf
$ tar cvzf handin.tgz writeup.pdf search.py
a writeup.pdf

5



a search.py
$ ls
handin.tgz search.py writeup.pdf

6


	Programming Component [50 points]
	Implementing Heuristics
	Implementing A*

	Written Component [50 points]
	Submitting to Autolab

