
15780: GRADUATE AI (SPRING 2017)

Homework 1: Motion Planning and Optimization
(Solutions)

Release: February 8, 2017,
Due: February 21, 2017, 11:59pm
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1 Theta* [20 points]
In class, the Theta* algorthm was presented where the world was discretized into cells and the center of
each cell was a vertex in our search space. In this problem,‘’ we will consider the Theta* algorithm as it was
described in the original paper that presented it. Here the world is discretized into cells, but there is a vertex
at the corner of each cell, and there is an edge between every two vertices on an unblocked cell. If a cell
is blocked, there are still vertices on the corners and edges on the sides, but there are no edges that go into
the cell. An example of a four-by-four grid with one blocked cell is shown in Figure 1. For this problem,
assume that if a cell is blocked, the entire cell is actually blocked, so the optimal path in a graph cannot enter
a blocked cell. In any of the problems below, if you provide a counterexample you must formally describe
why it is a valid counterexample. Note that for this problem, the solution to some of these may be easily
found online if you go digging for material on Theta*; this is not allowed. If you have questions about the
Theta* algorithm, please ask on Piazza or come to office hours.

Figure 1: Example grid with one blocked cell.

1.1 Vertices that can(’t) handle optimal paths [5 points]
Clearly on the graph described above, the optimal path between two nodes cannot always be represented
(e.g., in Figure 1, the optimal path between the bottom left vertex and the the middle vertex on the top would
be the straight line between them, which cannot be represented by the edges on the graph). Therefore we
know that an algorithm that only considers edges on this graph cannot be optimal. But recall that Theta*
does not only consider direct edges in the graph when constructing it; however we know that the path it finds
will always consist of unblocked straight lines from one vertex to another.

So let us consider a new graph where every two vertices on our original graph that have an unblocked straight
line between them have an edge in this new graph. Can the optimal path always be represented by edges on
this new graph? What if we consider the same kind of graph but where the vertices are in the center of each
unblocked cell (as described in class) rather than on the corners of the cells—i.e. a graph that has all straight
line unblocked paths between these vertices as edges? Prove your answers.

Solution: The optimal path can be represented by such a graph where the vertices are on the corners of
cells. By the theorem in Lecture 3, Slide 20, we know that the optimal path is a polygonal path whose inner
vertices are the vertices of obstacles. Such a path can be constructed on this graph as we have edges between
the start vertex, the goal vertex, and all corners of blocked cells.

The optimal path cannot be represented when vertices are in the centers of cells, because the corners of
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blocked cells are not represented in this graph, and the optimal path may need to go through such vertices.
(See the graph in the solution of 1.2 for an example.)

1.2 Theta* Optimality [15 points]
Prove or disprove the following statement: In the setting described above, Theta* will always find the opti-
mal path.

Solution: Theta* will not always find the optimal path. There are many possible counterexamples. Below
we give one. (See the original Theta* paper1 for more.)

s

t

a

b

c

We claim that the solid line is the path generated by Theta* while the dashed line is the optimal path. First
of all notice that the optimal path must be the one shown since it must go through one of the vertices on the
blocked cell and it is easy to see that the path shown is the shortest such path. Now notice that if Theta*
never expands a, then it will not output the optimal path, which proves the claim. So assume Theta* expands
vertex a (where the parent of a will be s since there are no blocked cells before reaching a). After it expands
a, notice that b and c would have the same f values if we were to take the direct edges to them; however
we can take the direct path from s to b (while we cannot from s to c as it is blocked), resulting in a shorter
path. At that point we will add the edge from b to c as it has the same f value as when we added b, resulting
in a suboptimal path. (The path cost for the Theta* path is 6 whereas the optimal path has a cost of around
5.84.)

2 Convexity [25 points]

2.1 Sets [10 points] 2

Identify if the following sets are convex or not and provide a proof or counterexample for each.

(a) (3 points) The set {x ∈ Rn|α ≤ aTx ≤ β} for some α, β ∈ R.
Solution: This is convex. Consider x, y in this set. Then α ≤ aTx ≤ β and α ≤ aT y ≤ β.

1http://www.jair.org/media/2994/live-2994-5259-jair.pdf
2 These are exercises from Boyd & Vandenberghe’s book and are copied here for convenience.
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Multiplying and adding these gives

α ≤ taTx+ (1− t)aty ≤ β
α ≤ aT (tx+ (1− t)y) ≤ β

Thus tx+ (1− t)y is also in this set.

(b) (3 points) The set of points closer to a set than another, i.e., {x|dist(x, S) ≤ dist(x, T )} for some
distance function (that is a metric) and S, T ⊆ Rn.
Solution: This is not convex. Consider S = {−1, 1} and T = {0}.

(c) (4 points) The set {x > 0|
∏
xi ≥ 1}.

(Hint: If a, b ≥ 0 and 0 ≤ t ≤ 1, then atb1−t ≤ ta+ (1− t)b.
You must prove the hint if you use it. You may use the fact that log x is concave without proof.)
Solution: Let x, y be in the set. Then

∏
xi ≥ 1 and

∏
yi ≥ 1. Consider a convex combination of x

and y. Then ∏
(txi + (1− t)yi) ≥

∏
xtiy

(1−t)
i

=
(∏

xi

)t (∏
yi

)(1−t)
≥ 1.

2.2 Optimization Problems [15 points]
Which of the following mathematical programming problems are convex? Prove your statements. It might
be helpful to try sketching the objective functions or the sets we are optimizing over.

(a) (5 points) The optimization variables are x = (x1, x2) ∈ R2.

minimize 3x1 − 5x2
subject to x21 + x22 ≤ 1

Solution: This problem is convex. Let f denote the objective function. For any x = (x1, x2),y =
(y1, y2) ∈ R2 and θ ∈ [0, 1],

f(θx+ (1− θ)y) = f(θx1 + (1− θ)y1, θx2 + (1− θ)y2)
= 3(θx1 + (1− θ)y1)− 5(θx2 + (1− θ)y2)
= θ(3x1 − 5x2) + (1− θ)(3y1 − 5y2)

= θf(x) + (1− θ)f(y)

Hence, f is a convex function. (This shows the general principle that any linear function is convex.)
The set F = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1} is also convex. Note that F = {x ∈ R2 : ‖x‖2 ≤ 1},
where ‖ · ‖2 denotes the Euclidean norm. Hence, if x,y ∈ F , i.e., ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1, then for
any θ ∈ [0, 1]

‖θx+ (1− θ)y‖2 ≤ ‖θx‖2 + ‖(1− θ)y‖2 = θ‖x‖2 + (1− θ)‖y‖2 ≤ θ · 1 + (1− θ) · 1 = 1 .
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(b) (5 points) The optimization variables are x = (x1, x2) ∈ R2.

minimize 3x1 − 5x2
subject to x21 − x22 ≤ 1

Solution: This problem is not convex, as the feasible region F is not convex. As an example, note
that the points (

√
2,−1) and (

√
2, 1) are both in F , as

√
2
2− (−1)2 = 1 and

√
2
2−12 = 1. However,

(
√
2, 0) = 1

2 (
√
2,−1)+ 1

2 (
√
2, 1) is a point on the straight line connecting (

√
2,−1) and (

√
2, 1), but

√
2
2 − 02 = 2 > 1, so (

√
2, 0) /∈ F .

(c) (5 points) The optimization variables are x = (x1, . . . , xn) ∈ Rn. Also A is an m × n matrix and
b ∈ Rm.

minimize exp
(√∑n

i=1 x
2
i

)
subject to Ax ≤ b

Solution: This problem is convex. First of all, it was given in class that the feasible region F ′ =
{x ∈ Rn : Ax ≤ b} is convex. As for the objective function, we know from class that the function
g(x) = ex is convex. Also, recall that

√∑n
i=1 x

2
i = ‖x‖2. Therefore, for any x,y ∈ Rn and

θ ∈ [0, 1], if f denotes the objective function we have

f(θx+ (1− θ)y) = exp(‖θx+ (1− θ)y‖2)
≤ exp(‖θx‖2 + ‖(1− θ)y‖2)
= exp(θ‖x‖2 + (1− θ)‖y‖2)
≤ θ exp(‖x‖2) + (1− θ) exp(‖y‖2)
= θf(x) + (1− θ)f(y) .

So, the problem is convex.

3 Simplex [25 points]
For this problem, you will be implementing the simplex algorithm in Python. Your code should go in
simplex.py. You are not allowed to use cvxpy or any other convex optimization library for this problem.

3.1 Basic Simplex [15 points]
First you should implement the basic simplex algorithm as described in Lecture 5, Slide 31. You should
use the Numpy package for matrix manipulations. If you haven’t used Numpy before, some examples of
common operations are provided for you in numpy_examples.py.

The inputs to your simplex method will be in the form of numpy arrays and matrices:

1. I: an array consisting of a feasible basis index set

2. c: a cost vector

3. A, b: a matrix-vector pair, your solution x should satisfy Ax = b.
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Your output should be a tuple consisting of:

1. v: the value of the optimal solution.

2. x: the optimal solution.

We will grade your code based on whether it is able to obtain the optimal solution to a number of different
linear programs. You have been given a set of test cases in the directory test_cases as well as a module
called test.py, which you can use to test your code. Notice that because we’re doing numerical compu-
tations, computations that should actually yield 0 will often be approximately 0 (e.g., in [−10−15, 10−15]).
To avoid problems with this, whenever you want to check if a number is strictly negative, you should check
if it’s < −10−12 and whenever you want to check if a number is ≥ 0 you should check if it’s > −10−12.

3.2 Two-Phase Simplex [10 points]
In the problem above, you implemented the simplex algorithm assuming you have an initial feasible basis
to start with; this is how the algorithm was presented in class. In this problem, we will implement the Two-
Phase Simplex algorithm, which first finds a feasible basis (phase one), and then proceeds with the basic
simplex algorithm (phase two). To find a feasible basis, the algorithm will first solve another linear program
whose solution will yield a feasible basis to the original linear program, which we can then pass to the sim-
plex algorithm. We now describe how to find a feasible basis and why it works.

Recall that the constraints Ax = b represents a set of equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

. . .

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

For each equation where bi is negative, we multiply both sides of the equation by negative one. Thus the
right side of the equations can now be represented by b+ = |b|. To the left side of each equation, we also
add an artificial variable zi, so that we have the following:

sign(b1)(a1,1x1 + a1,2x2 + · · ·+ a1,nxn) + z1 = b+1

sign(b2)(a2,1x1 + a2,2x2 + · · ·+ a2,nxn) +z2 = b+2
. . .

sign(bm)(am,1x1 + am,2x2 + · · ·+ am,nxn) + zm= b+m

Let A+ be the matrix that results from negating the equations where bi is negative and adding the artificial
variables. We will now solve the following linear program:

min
x,z

m∑
i=1

zi
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subject to
A+x = b+, x ≥ 0, z ≥ 0

Notice that a feasible point for this linear program is to set xi = 0 for 1 ≤ i ≤ n and zi = b+i for 1 ≤ i ≤ m
(since all b+i ≥ 0). Thus the set of artificial variables can serve as a feasible basis for this new problem,
which we can use to solve it with the basic simplex algorithm. Furthermore, notice that the minimum of
the objective function can at best be 0, since it must be that all zi ≥ 0. If we find a solution such that∑m

i=1 zi = 0, then we have that zi = 0 for 1 ≤ i ≤ m, so

Ax = b

and xi ≥ 0 for 1 ≤ i ≤ n, meaning the remaining non-zero xi form a feasible basis for our original solution3.

Write a function that implements the two-phase simplex algorithm. The inputs and outputs of the function
should be the same as your simplex function, except that you will not be given I , the initial feasible basis
set, as an input. Your code should call your simplex algorithm twice (once in each phase).

4 Integer Programming [30 points]
Develop an integer programming algorithm, based upon branch and bound, to solve Sudoku puzzles. Specif-
ically, implement the function solve sudoku in sudoku.py as follows:

def solve sudoku(puzzle):
# ...
return (solved puzzle, constraints)

The input of the function is a Sudoku puzzle, represented as a 9× 9 “list of lists” of integers, e.g.,
puzzle = [[4, 8, 0, 3, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 7, 1],
[0, 2, 0, 0, 0, 0, 0, 0, 0],
[7, 0, 5, 0, 0, 0, 0, 6, 0],
[0, 0, 0, 2, 0, 0, 8, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 7, 6, 0, 0, 0],
[3, 0, 0, 0, 0, 0, 4, 0, 0],
[0, 0, 0, 0, 5, 0, 0, 0, 0]],

where zero entries indicate missing entries that should be assigned by your algorithm, and all other posi-
tive integers (between 1 and 9) indicate known assignments. The function solve sudoku should return a
tuple (solved puzzle, constraints), where solved puzzle is the input puzzle with all the missing entries
assigned to their correct values. For instance, for the above puzzle, solved puzzle should be

solved puzzle = [[4, 8, 7, 3, 1, 2, 6, 9, 5],
[5, 9, 3, 6, 8, 4, 2, 7, 1],

3There will possibly be a degenerate solution where more than m variables are zero, but you will not have to deal with any such
cases for this problem.
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[1, 2, 6, 5, 9, 7, 3, 8, 4],
[7, 3, 5, 8, 4, 9, 1, 6, 2],
[9, 1, 4, 2, 6, 5, 8, 3, 7],
[2, 6, 8, 7, 3, 1, 5, 4, 9],
[8, 5, 1, 4, 7, 6, 9, 2, 3],
[3, 7, 9, 1, 2, 8, 4, 5, 6],
[6, 4, 2, 9, 5, 3, 7, 1, 8]].

and the constraints value could be constraints = [(8, 5, 2, 1), (5, 3, 4, 1)].
This implies that if we add two constraints (x8,5)2 = 1 and (x5,3)4 = 1 to the linear program for Sudoku

(described in detail below) then the solution has only integer values and returns the solution above. Note that,
since these values are all indexed staring at 1, adding/subtracting 1 can be needed to convert to and from
Python indices. Also note that there can be more than one set of constraints that lead to the same integer
solution. Thus, we will check your solution by directly plugging the constraints your algorithm returns in,
not by comparing with our solution. Specifically, you need to do two things to solve this problem:

1. Write code to solve the linear programming relaxation of a Sudoku puzzle. Let xi,j ∈ [0, 1]9 be the
indicator of the (i, j)-th square in a Sudoku board, then solve the following optimization problem:

minimize
9∑
i,j

max
k

(xi,j)k

subject to xi,j ∈ [0, 1]9 i, j = 1...9 (i.e., all variables must be between zero and one)
9∑

k=1

(xi,j)k = 1, i, j = 1...9 (i.e., each grid must have only one assigned number)

9∑
j=1

xi,j = 1, i = 1...9 (i.e., each column must contain each number)

9∑
i=1

xi,j = 1, j = 1...9 (i.e., each row must contain each number)

3∑
m,l=1

xi+m,j+l = 1, i, j ∈ {0, 3, 6} (i.e., each 3 × 3 box must contain each number)

(xij)k = 1 if (i, j)-th square is k ≥ 1 (i.e., assignments of the entries fixed by the puzzle).

You should write code to solve this problem using cvxpy. You can find additional documentation
about cvxpy at its website http://cvxpy.org. You can also try to use the two-phase simplex
algorithm you implemented instead of using cvxpy; however, in that case you will have to deal with
the A matrix possibly not having full row rank (which requires some additional steps of removing
linearly dependent rows of the matrix), possibly deal with degenerate initial solutions, and encode
the max function above using linear equalities in standard form. To test this part of the assignment,
you can use the following puzzle, where the linear programming relaxation happens to give an integer
solution without any additional constraints:
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puzzle = [[8, 5, 0, 0, 0, 2, 4, 0, 0],
[7, 2, 0, 0, 0, 0, 0, 0, 9],
[0, 0, 4, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 7, 0, 0, 2],
[3, 0, 5, 0, 0, 0, 9, 0, 0],
[0, 4, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 8, 0, 0, 7, 0],
[0, 1, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 3, 6, 0, 4, 0]],

whose linear programming relaxation should give the following solution:

solved puzzle = [[8, 5, 9, 6, 1, 2, 4, 3, 7],
[7, 2, 3, 8, 5, 4, 1, 6, 9],
[1, 6, 4, 3, 7, 9, 5, 2, 8],
[9, 8, 6, 1, 4, 7, 3, 5, 2],
[3, 7, 5, 2, 6, 8, 9, 1, 4],
[2, 4, 1, 5, 9, 3, 7, 8, 6],
[4, 3, 2, 9, 8, 1, 6, 7, 5],
[6, 1, 7, 4, 2, 5, 8, 9, 3],
[5, 9, 8, 7, 3, 6, 2, 4, 1]].

Important: The results of simplex may not be exactly integers because of numerical approximation.
For this part of the assignment, you can simply round any value within 0.005 of 0 or 1 to the nearest
integer.

2. Next, write a branch and bound algorithm solving a Sudoku Puzzle even when its linear programming
relaxation is not tight. That is, implement the algorithm in the integer programming slides (implement
the “simpler” algorithm instead of the version generating feasible upper bounds). To select variables
(in this case, {(x(i,j))k : i, j, k = 1, ..., 9}) to split on, a simple rule is to pick the variable with the
“most undetermined” value closest to 0.5 and split on this variable. Then, solve the two subproblems
where we constrain the variable to be either 0 or 1.

5 Submitting to Autolab
Create a tar file containing your writeup for the first two problems and the completed simplex.py and
sudoku.py modules for the programming problems. Make sure that your tar has these files at the root and
not in a subdirectory. Use the following commands from a directory with your files to create a handin.tgz
file for submission.

$ ls
solution.py writeup.pdf
$ tar cvzf handin.tgz writeup.pdf simplex.py sudoku.py
a writeup.pdf
a simplex.py
a sudoku.py
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$ ls
handin.tgz solution.py writeup.pdf
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