15780: GRADUATE AI (SPRING 2017)

Homework 3: Probabilistic Modeling and Game Theory
(Solutions)

Release: March 29, 2017,
Due: April 12, 2017

1 Maximum Likelihood Estimation [30 points]

1.1 MLE for Uniform Distribution with Two Parameters [10 points]

Given a collection of observed (independent) data points X = {x(l), ...x("”)} from a uniform distribution
U(a, B), where

{Bia, ifa<z<p

0, otherwise,

derive the maximum likelihood estimators of « and 3, which maximize the probability of observing X.
Solution: If any of the data points is not in [a, 8] (i.e., 3z € X s.t. ¢ [a, 5]), then the probability of

observing X is 0. If all the data points are within [«, 3], then the probability of observing X is (ﬁ) .
To maximize this probability, we want to minimize § — « while keeping all the data points in [, §] (i.e.,
Vz € X,z € |o, B]). That is, we want to find the minimum interval including all the data points. The interval
[min(X), max(X)] is such an interval. This is because, if & > min(X) or § < max(X), then there exists
x € X such that x ¢ [a, (]. Thus, the maximum likelihood estimators of « and § are & = min(X) and

B = max(X).

1.2 MLE for Uniform Distribution with One Parameter [10 points]

Given a collection of observed (independent) data points X = {x(l), ...x(m)} from a uniform distribution
U(—2a, «), derive the maximum likelihood estimators of «, which maximizes the probability of observing
X.

Solution: If any of the data points is not in [—2«, ¢ (i.e., Iz € X s.t. & ¢ [—2«, «]), then the probability
of observing X is 0. If all the data points are within [—2c,], then the probability of observing X is (5=)"".
To maximize this probability, we want to find the minimum « such that all the data points are in [—2a;, a].

All the data points are in [—2a,] if and only if o > %H(X) (& —2a < min(X)) and @ > max(X).

Thus, the maximum likelihood estimators of « is & = max(max(X), M)

2

1.3 MLE for Uniform Distribution with Prior [10 points]

Given a collection of observed (independent) data points X = {x(l), ...:L'(m)} from a uniform distribution
U(0, e*) where « follows a prior distribution

derive the estimator of « that maximizes the posteriori probability p(«|X). (Hint: use p(«|X) x p(X|a)p(«)).
Solution: If any of the data points is not in [0, e?] (i.e., 3z € X s.t. z ¢ [0, e®]), then p(X|a) = 0, and
from the hint, p(«|X) = 0. If all the data points are within [0, e*], then

1 " 7042 70627777/0(
plalX) o p(Xlalpla) o (7) e et m
Since exp(z) is a monotonically increasing function, we want to find o maximizing f(a) = —a? — ma,
while keeping all the data points in [0, e®]. Note that f(«) is a quadratic function maximized at « = —m/2.

If max(X) < e”™/2, then a = —m,/2 maximizes f(«) while satisfying Vo € X, x € [0, e®]. If max(X) >
e~™/2, then a = log(max(X)) maximizes f(«) while satisfying YV € X, x € [0, e®]. Hence,

. —m/2, if max(X) < e~™/2
log(max(X)), otherwise,

is the estimator of o maximizing p(«|X).

2 Equilibria [30 points]

2.1 Iterated Elimination of Strictly Dominated Strategies [15 points]

One method of simplifying the search for Nash equilibria is through the iterated elimination of strictly
dominated strategies. We say that a player’s pure strategy s, is strictly dominated by another pure s; if
Vs_; € S_;, wi(sh,s—i) < w;i(s;, s—;). In other words, if there exist two pure strategies, s; and sz, for
player ¢ such that no matter the (possibly mixed) strategies of the other players it is always in player i’s
interest to play s; over so, then s; dominates s;.

The iterated elimination of strictly dominated strategies proceeds by eliminating one strictly dominated
strategy per round. It then iteratively continues until there are no more dominated strategies to eliminate. For
example, iterated elimination of strictly dominated strategies on the following game proceeds as follows.

‘ North ‘ East ‘ South ‘ West ‘
Top 2,3 1-1 | 40 3,-3
Middle | 7,2 -2,0 | 5,2 6,7
Bottom | 8,2 0,1 6,-1 4,0

* Column eliminates East, as playing North is strictly better.

* Row eliminates Top, as playing either Middle or Bottom is strictly better now that Column has elimi-
nated East.

* Column eliminates South, as playing West is strictly better now.

* No more strategies can be eliminated; this leaves Row: [Middle, Bottom] and Column: [North, West]
as the surviving strategies.

Prove that if iterated elimination of dominated strategies eliminates all but one of the strategies of each
player, then there is a unique Nash equilibrium in the game. You may find Nash’s Theorem useful here.

Solution: First, we prove that iterative elimination of strictly dominated strategies never removes an
action that is in the support of any Nash equilibrium.

AFSOC that an action s in a Nash equilibrium s* is removed, and, furthermore, that it is the first action
in any Nash equilibrium that is removed. This means that there exists some s; such that u;(s;, s ;) >
wi(sy,s.;), Vs, € S_; at this time. However, we know that because s is the first action in any Nash
equilibrium to be removed, the rest of the actions in the support of s* are still in S_; at this time, which
means that u;(s;, s* ;) > u;(s}, s*;), which contradicts our assumption that s* is a Nash equilibrium.

Now, by the hint and Nash’s theorem, we are done: because there must exist at least one Nash equilib-
rium, and because IESDS never removes an action that is in the support of any Nash equilibrium, then this
must the unique Nash equilibrium in the game.

2.2 Correlated Equilibria [15 points]

Let p1,...,p, be probability distributions representing n correlated equilibria in the same 2-player game.
Prove that any convex combination of pq, ..., p, is also a correlated equilibrium.

Solution: Let’s consider the utilities of the first player. The argument is symmetric for the second player.
Letp = >, a;p; be a convex combination of p1, ..., py. Since p; is a correlated equilibrium (CE), for all
sy €8,

> pils1,s2)ua(s1,52) = Y pilst, s2)u(sh, s2)

82€A SQGA
= E azpz 51752 Ul 31752 E azpz 31732 51,32)
SQGA SQGA
By summing the previous inequality over all distributions p1, .. ., p,, we obtain
E p(s1,s2)u1(s1,s2) = E (g a;pi(81782>u1(31,82)
s2€A s2€A
:§ E a;pi(s1, s2)u1(s1, s2)
i=1 s,€A
n
!
ZE E a;pi(s1, s2)u1(sy, s2)
i=1 s,€A
n
!
= E E a;pi(s1,82) | ui(sy, s2)
sa€A =1
!
= E p(s1,s2)ui(sy, 52)
so€A

This shows that p is a CE, as desired.

3 Metropolis-Hastings Implementation [10 points]
This portion is not graded on autolab.

We will implement the Metropolis-Hastings algorithms to generate samples from the unnormalized dis-
tribution , .
plx)=e"" + 1.3¢~(*=2)

with a Gaussian sampling function with the centered at the previous point with some standard deviation o.

1. (5 points) Run your implementation for every combination of 2y € {—2,2} and o € {0.1,1.0,10}.
Include plots (1. samples over time and 2. a histogram) for all of these in your writeup.

2. (3 points) How and why does o impact the samples? For all three values, you should state what
happens and why it happens.

3. (2 points) What is the impact of z on the samples?

3.1 Getting started

Download the handout source code and edit the mh . py source file. This file contains a main method that
will run your implementation and generate sampling plots and histograms. In this file, finish the Metropolis-
Hastings implementation in the mh function from the description on page 22 of Slides 16 (Probabilistic
Modeling III: MCMC).

.
Solution:
mh.x0:-2.sigma:0.1.pn mh.x0:-2.sigma:1.0.pn
5 g
I o 10~
o o
@ @ 0.8-
N N
m T 0.6 -
£ £
S S 04-
c = 3
=4 =
=] S o2
i 0.0~
oF o-
5 20- 5 20-
£ £
S5 40~ S 40-
= =
@ @
5 60- 5 60-
£ £
[y [y
w80 - w80 -
100 - i i i i i i 100 -
o- o-
@ @
a 500 - a 500 -
£ £
3 3
< 1000 - < 1000 -
@ a
g £
© 1500 - @ 1500 -
wv ()
2000 - | ! ! 2000 -
05 0askF
0.4l 030 -
£ g 025~
o - m
g o3 S o20-
[=] o
Bo2- & 015 -
T T
0.10 -
01~
0.05 -
0.0 t ‘ 0.00

mh.x0:2.sigma:0.1.pn

ok

~ o @ o = o~ o (=] o o o o o [=] o o o [} = m ~ — o
A A4 S S8 & & oS N F @ @ g 2 g g 2 S & © © & o
— — ~
0.4 pazijewiouun welboisiH
qold pazi| Jagunp ajdwes 1aquiny ajduwes
c
Ep
=] | 1
o
=
-} L
£
=)
2 il J
~
&
o
=
[=u [N -
E
N oO LYW T N O 0O o o oo o o © @ o o o 2 9w o un o n o n o
A 4 B8 8 S & o ~ F © @ 9 e 2 9o 9o m m N N A & o 9
= (] =]] g © © o o & & S ©
qoid pazijeuuouun Jaquiny a)dwes weihbolsiH

Jaqunp ajdwes

12 -

Unnormalized Prob

0.0~

Sample Number

00+,

Sample Number

2000 -

0.4+

03~

Histogram

0.1+~

0.0

4 Gibbs Sampling [30 points]

10~
0.8 -
0.6 -
0.4 -

0.2 -

20 -

40 -

60 -

80 -

500 -

1000 -

1500 -

0.2 -

mh.x0:2.sigma:1.0.p,

12 -

Unnormalized Prob

0.0 -

Sample Number

100 -

Sample Number

2000 -

Histogram
s o o
N w -

=4
=

=4
=}

10 -
0.8 -
0.6 -
0.4 -

0.2 -

20 -

40 -

60 -

80 -

500 -

1000 -

1500 -

mh.x0:2.sigma:10.0.

-2

For this problem you will implement the Gibbs sampling algorithm to sample values for the variables in a
Bayesian network given a set of evidence variables. In particular, you will implement the following function,

in the included file gibbs.py:

def gibbs (vars, cpts,

This function takes as input:

evidence,

n_steps=1000) :

* adictionary mapping each variable in the Bayes net to the set of values it can take on,

« a list of conditional probability tables (CPTs) for each variable, which are instances of the CPT class

(more details on this shortly),

* adictionary mapping each variable we observe (evidence variable) to the observed value, and

* (optionally) the number of steps we want to run Gibbs sampling for—at each step, we sample a new
value for a single variable that is not in the evidence set.

The function should return a dictionary mapping every variable to its sampled (including the evidence vari-
ables).

The basis for the Bayes net representation we will use is the CPT class included in the gibbs . py file. You
won’t have to edit this class at all, or even necessarily understand all the code in this class, but you will
need to understand how to use the class. This class describes a conditional probability table for a particular
variable in the Bayes net. Each CPT object contains 1) a Python dictionary that maps each variable in the
CPT to a list of its possible values, and 2) a dictionary mapping each possible instantiation of the variables
to the conditional probability of the variable of interest given the remaining variables (i.e., given all of its
parents). Let’s look at a simple example: if we initialize CPT by the following:

c = CPT({"x1":[0,1], "x2":["TRUE","FALSE"], "x3":["RED","BLUE", "GREEN"]})

this will create a factor of three variables, “x1”, “x2”, and “x3,” where the first variable can take on values
0 or 1, the second can be “TRUE” or “FALSE”, and the third can take on values “RED”, “GREEN”, or
“BLUE” (note that in this problem, unlike the lecture notes, variables can take on more than two values, but
this really introduces no added complexity). Note that there is no requirement that the list of possible values
for each factor be numbers: indeed, for the real-world Bayes net example, these will typically be lists of
strings, but this should not change your code at all. If you want to access this list of variables at any point,
use the class member c.variables.

To get the probability of a variable v given all its parents and children, you can “call” the CPT object by
passing in the variables as keyword arguments. For example, you can write

c(v=0, parl=l, parz2=1)

Note that you must provide arguments for all the variables in the CPT for v; otherwise you will get an error.
However, you may pass in additional variables; the function simply ignores them. For example,

#same as c(v=0, parl=l, par2=1)
c(v=0, parl=1l, par2=1, unrelated_v=1)

This is particularly useful, because you can do something like the following

all_vars = {"v1":0, "v2":0, "v3":1, "v4":0, "v5":1, "v6":0, "v7":1, "v8":

c(*xall_vars)

Thus, even if only a small subset of the variables are in a particular CPT, the syntax above allows us to easily
find the probability of a particular vertex given its parents and children simply by passing in the instantiation
of all variables into its CPT.

We will test your code on the ALARM Bayes ne This network has been provided to you in the file
alarm.xmlbif and code for parsing it has been provided in gibbs . py. We will test your code on sev-
eral test cases where we examine if your code correctly samples a particular variable given a set of parent

1. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System: A Case Study with Two
Probabilistic Inference Techniques for Belief Networks. In Proceedings of the 2nd European Conference on Artificial Intelligence in
Medicine, pages 247-256. Springer-Verlag, 1989.

1}

variables. To see if it correctly samples a variable, we will run your function several times with the same
inputs and compare the number of times you sample each value for that variable to the expected conditional
distribution of the variable given the evidence variables (as generated by our solution Gibbs sampling code).
Three example test cases have been provided in gibbs . py. Your code should run efficiently; each test case
should run in under two minutes. Note: If you find that you only fail one or two test cases on Autolab, try
uploading and running your code again, just in case it failed the tests by chance (but is actually correct).

Hint: You may want to start by thinking about how to easily express the probability of a particular variable
taking on a value given the value of all other variables in terms of the conditional probabilities of the form
in the CPT class. This could help you avoid writing complicated code and make your code more efficient.

S Submitting to Autolab

Create a tar file containing your writeup and the completed gibbs . py modules for the programming prob-
lems. Make sure that your tar has these files at the root and not in a subdirectory. Use the following commands
from a directory with your files to create a handin. tgz file for submission.

S 1s

gibbs.py writeup.pdf [...]

$ tar cvzf handin.tgz writeup.pdf gibbs.py
a writeup.pdf

a gibbs.py

S 1s

handin.tgz gibbs.py writeup.pdf [...]

	Maximum Likelihood Estimation [30 points]
	MLE for Uniform Distribution with Two Parameters [10 points]
	MLE for Uniform Distribution with One Parameter [10 points]
	MLE for Uniform Distribution with Prior [10 points]

	Equilibria [30 points]
	Iterated Elimination of Strictly Dominated Strategies [15 points]
	Correlated Equilibria [15 points]

	Metropolis-Hastings Implementation [10 points]
	Getting started

	Gibbs Sampling [30 points]
	Submitting to Autolab

