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1 Swap Regret and Correlated Equilibrium [25 points]

A modification function F; : S; — S; for each player ¢ is a function that maps each action in S; to an action
in S;, where S; is the strategy space of player 7. Given a modification function F; for player ¢, we define the
swap regret of player ¢ with respect to F; as follows:

regret;(s, Fi) = u;(Fi(s;), 5—;) — wi(si,5—;).

That is, regret;(s, F;) measures the regret player ¢ has for playing s; rather than F;(s;), in the strategy
profile s.

For simplicity, consider a two-player game where N = {1,2}. A distribution p over S; X Ss is an
e-correlated equilibrium if and only if the following conditions are met:

Y <max( > p(s1,s2)ur(sh,s2) — > p(Sl,SQ)U1(Sl,82)>> <e.
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Assume players 1 and 2 played 7" games and each player followed strategies with swap regret at most
R. That is, for each player and every possible modification function, the sum of regrets over T games was
at most R. Let ¢ be the empirical distribution of the joint actions played by the players. That is, if we let
(s, st) € Sy x Sy be the strategy profile at each ¢-th game, then for each strategy profile (s1, s2) € S X Sa,
a(s1,52) = HI{t € [T] : (s1,52) = (s}, sb)}].

Prove that the distribution ¢ over S; x Sq is an (R/T)-correlated equilibrium.

Hint: The definition of an e-correlated equilibrium can be rewritten using swap regret.

Solution: The definition of an e-correlated equilibrium can be rewritten using the swap regret. For a

distribution p over S7 x S, let Fl(p ) be a modification function that maps each s; € Sy to §; € S7 such that

Z p(s1,52)u1(51, s2) = max p(s1, s2)ui(sh, s2).
$2€52 )

Likewise, let Fg(p ) be a modification function that maps each sy € Ss to 59 € S5 such that

Z p(s1, 82)uz(s1, 52) = max p(s1,82)ua(s1,55).
s1€851

Then, p is an e-correlated equilibrium if and only if the following conditions are met:

DY ( Y. p(s1,82) x regreti((s1,s2), fp))) <e
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Now we prove that ¢ is a (R/T)-correlated equilibrium by showing that ¢ satisfies the two conditions
with e = R/T in the modified definition.

Z ( Z q(s1,s2) xregretl((sl,SQ),Fl(q))))
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ST OST W/D)Ht € T]: (s1,52) = (58, 55)}] x regrety((s1,52), F{7))

$1E€S51 89€S

Z Z Z (1/T) x regretl((sl,SQ),Fl(q)))

S1€851 82€52 te[T]:(s1,52)=(st,sh)
S 3 (1/T) x regret, ((st, sb), F9))
$1€851 82€52 t€[T]:(s1,52)=(st,sh)

T T
S (1T x regrety((st,sb), F{¥)) = (1/T) x 3 regreti((st, s8), F{”)) < R/T.

t=1 t=1

Likewise,

Z ( Z q(s1, 82) X regretg((sl,SQ),FQ(q)))) < R/T.

s2€S2  51€S51

Thus, the distribution ¢ is a (R/T')-correlated equilibrium.

2 Repeated Insertion Model and the Mallows Model [25 points]

Prove that the Mallows Model with parameter ¢ is equivalent to the Repeated Insertion Model (RIM) with
pij = ¢ 11:5)11 , where p;; is the probability of the it" element being inserted in the j** spot, for i > j.

Hints: As a first step, note that the RIM is equivalent to generating a vector v of m elements, where the
it" element is an integer in [1, 4] corresponding to the location at which the i** ranked alternative in the true
ranking is inserted in the current subranking. It may be useful to first consider the relationship between the
insertion vector and the Kendall tau distance between the resulting ranking and the true ranking. In addition,
you may use the fact that given a true ranking > over m alternatives and the space of all rankings over the
same alternatives I, (1+ ¢)(1+ ¢+ ¢?)--- (1 4+ ¢ +---+¢™ 1) =3 oy PArT (=",

Solution: First, note that the RIM is equivalent to generating a vector v of n elements, where the i*"
element is an integer in [1, i| corresponding to the location at which it is inserted in the current subranking.
It is clear that this vector uniquely defines a complete ordering over all alternatives. Furthermore, given a
reference ranking o, the vector v that corresponds to the correct final ranking is {1,2,...,n}.

Now, given a vector v that generates a final ranking p, the Kendall-Tau distance between ¢ and p is the
L1 norm between v and {1,2,...,n}. Thatis, dxr(0,p) = Y., (i — v;). This is because when you put
the ¥ item in spot j < i, this necessarily flips i — j comparisons between item 4 and other items that are
supposed to be ranked before it. The argument then proceeds by induction on the number of elements.

The probability of any ranking p € II can be decomposed as follows:
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(because of the above fact)
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(by the hint)

This is the same as the Mallows model, so by setting p;; = ¢'~7 lljj’i in RIM, we get the Mallows
¢-model.

3 Strategyproof Social Choice on a Tree [25 points]

Recall that we informally proved in class that given the single peaked preferences of a set of voters on a line,
selecting the median of the points is both strategyproof and Condorcet consistent. In this problem, you will
design a social choice function for a slightly more general setting that is both strategyproof and Condorcet
consistent.

A city wants to build a new library, and they want to elicit the residents’ preferences to determine where
to build it. The locations that the city is able to build the library can be represented by a set of vertices V'
which lie on a tree T = (V, E) (for example, the root of the tree might be located in downtown while the
leaves are on the fringes of the city).

* There are an odd number of residents (voters), indicated by the set N.
* Each voter ¢ € IV has a most preferred vertex v; € V.

* Let d(z,y) denote the length (in terms of number of edges) of the unique path between vertices = and
y in T'. Given two vertices u and w, if d(v;, u) < d(v;, w), then voter ¢ prefers u to w.

Write a social choice mechanism (i.e., a function) that takes as input the most preferred vertex of each
voter and outputs a single vertex v € V. Your proposed mechanism should be strategyproof and Condorcet
consistent. Formally prove that these properties are satisfied.

Solution: There are several valid mechanisms, which can be shown to be equivalent. For example one
mechanism would be to output the vertex

. /
v= arggpelr‘};vd(v“v )
Notice that this mechanism is a generalization of the median to the tree (seehttps://en.wikipedia.
org/wiki/Geometric_median).

Another (equivalent) mechanism is to arbitrarily root the tree, and output the vertex v that is furthest
from the root where the subtree rooted at v contains more than |N|/2 of the votes. Note that such a vertex
has to exist since the whole tree contains all |N| votes, so if no vertex below the root has a subtree that
contains more than |N|/2 votes, then we would simply output the root. Furthermore, note that such a node
is unique, because for there to be two or more vertices that are equidistant from the root and whose subtrees
contain more than |N|/2 votes each, then the subtree that contains all of those vertices must contain more
than | N| votes.

We will show that the latter mechanism is strategyproof and Condorcet consistent.

Strategyproof: Assume, by way of contradiction, that a voter ¢ could manipulate the election. This voter’s
preferred vertex v; must either be contained in the subtree rooted at v or outside of this subtree.


https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/Geometric_median

e If v; is in the subtree rooted at v, if voter ¢ still votes in this subtree, then notice that v; must be
contained in a subtree rooted at one of the children of v. In that case, voter ¢ would only benefit by
making the mechanism output a vertex in that subtree; however, in order to do so it must stay in that
subtree, which would mean the subtree would need to contain more than |N|/2 votes to begin with,
which cannot be the case by design of the mechanism. If voter ¢ changes their vote to be outside the
subtree rooted at v, it could only potentially cause the mechanism to change its ouptut to some vertex
w that is outside of the subtree. But d(v;, w) > d(v;,v), so v; has no incentive to change their vote.

* If v; is outside of the subtree rooted at v, then voting outside the subtree could not impact the outcome
of the mechanism, and voting inside the subtree could only cause the mechanism to change its output
to some vertex u that is inside the subtree. But d(v;, u) > d(v;, w), so v; has no incentive to change
their vote.

Thus we arrive at a contradiction, proving that the mechanism is strategyproof.

Condorcet Consistent: To prove that the mechanism is Condorcet consistent, we have to show that in
any two candidate election where v is one the candidates, v will get the majority of the votes. There are two
cases.

¢ If the other candidate is in the subtree rooted at v, then it must be contained in a subtree rooted at
one of the children of v. Any subtree rooted at one of the children of v will contain less than |[N|/2
preferred vertices of voters by design of the mechanism (and since —N— is odd), so since v would
get all the votes from preferred vertices outside of that subtree, v would win.

* If the other candidate is outside of the subtree rooted at v, then v would clearly win, because it would
get at least all of the votes from preferred vertices contained in its subtree, which is more than |[N|/2
by design of the mechanism.

4 Programming: Stackelberg Strategies [25 points]

In a 2-player normal form game, a Stackelberg strategy is where one of the players is a leader and the other is
a follower. In contrast to the default situation where both players pick their respective strategies at the same
time, a Stackelberg strategy is when the leader, which is identified as player 1, first commits to a (mixed)
strategy which the follower, player 2, knows. Then player 2 commits to his own strategy using his knowledge
of player 1’s strategy.

An optimal Stackelberg strategy would be a Stackelberg strategy where player 1’s expected utility is
maximized. The optimal Stackelberg strategy can be computed in polynomial time by solving multiple LPs.
See Slide 14 of Lecture 19 for a description of the algorithm.

Given a 2-player normal form game, you will implement the function stackelberg(ul, u2) in
stackelberg.py which will return the optimal Stackelberg strategy for the given game. You can use
cvxopt or cvxpy to solve the LPs. Your function should return numpy arrays, not datatypes from these
libraries. If there is a tie in the expected utility between two strategies of player one (i.e. the expected utility
is off by an absolute error of le-5), you should return the optimal strategy induced by the lowest indexed
pure strategy of player 2.



5 Submitting to Autolab

Create a tar file containing your writeup and the completed stackelberg.py modules for the program-
ming problems. Make sure that your tar has these files at the root and not in a subdirectory. Use the following
commands from a directory with your files to create a handin. tgz file for submission.

$ 1s

stackelberg.py writeup.pdf [...]

$ tar cvzf handin.tgz writeup.pdf stackelberg.py
a writeup.pdf

a stackelberg.py

$ 1s

handin.tgz stackelberg.py writeup.pdf [...]
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