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THE PAC MODEL

« PAC = probably
approximately correct

 Introduced by Valiant [1984)|

* Learner can do well on
training set but badly on new
samples

* Listablish guarantees on
accuracy of learner when
generalizing from examples
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THE PAC MODEL

Input space X

D distribution over X: unknown but fixed

Learner receives a set S of m instances
X1, -, X,,, Independently sampled according
to D

Function class F of functions f: X — {4, —}

Assume target function f; € F

s

I'raining examples Z = {(xi, fi (xl))}
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EXAMPLE: FACES

e X = ]kaf
e Fach x € X is a matrix of

colors, one per pixel

e fi(x) = + iff x is a picture
of a face

* Training examples: Each is
a picture labeled “face” or
“not face”
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EXAMPLE: RECTANGLE LEARNING

¢ X = R?
I = axes-aligned rectangles
* f(x) = +iff x is contained in f
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THE PAC MODEL

* The error of function f is

err(f) = Pr[fs(x) # f(x)]

* (Given accuracy parameter
e > 0, would like to find
function f with err(f) < e

* (Given confidence parameter
0 > 0, would like to achieve
Prierr(f) <e]=1-6
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THE PAC MODEL

* A learning algorithm L is a function from training
examples to F such that: for every €,8 > 0 there
exists m™(€,0) such that for every m = m™ and
every D, if m examples Z are drawn from D and
L(Z) = f then

Prlerr(f) <e]=1-96

* F is learnable if there is a learning algorithm for F

m*(g,0) is
independent of D!

15780 Spl’il’l g 2017: Lecture 10 Carnegie Mellon University 7




RECTANGLES AR

€
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L

X = R?
F = axes-aligned rectangles

Learning algorithm: given training set,
return tightest fit for positive examples

Theorem: axes-aligned rectangles are
learnable with sample complexity

*(6,6) = —In—
m”* (e, )_en6
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RECTANGLES ARE LEARNABLE
* Proof: o
o Target rectangle R
o Recall: our learning algorithm
returns the tightest-fitting R’ .
around the positive examples L o
o For region E, let R ®
w(E) =xglb[xEE] R
o err(R") =w(R\R') (why?) ® O
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RECTANGLES ARE LEARNABLE
/ T

* Proof (cont.): Ij * i

- Divide R \ R’ into four strips
T{,Ts, T3, T4 s

- err(R") < Y, w(T) . - -

o We will estimate L e
/ € O R, ]l @

Pr [W(Ti) > Z] T?j{ ;

® ®
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RECTANGLES ARE LEARNABLE
* Proof (cont.): o
o Focusing wlog on Tj, define a T, {
strip Ty such that w(Ty) = z """""""""""" Ty
o w(Ty) = Z T, cT| L O -
e
o Ty €T © xq, .0, X & Ty R’ .
o w(Ty) ZE@xl,...,xm ¢ T, R
o o

o Prlxq, .., x, &€ T{] = (1——)m
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RECTANGLES ARE LEARNABLE
* Proof (cont.): O
. _

o Prjw(R\R’)ze]s4(1—§) Tl{ ,
because at least one T; must have 1
W(Ti’) = 6/4‘ ® ]

m

o ©0 we want 4 (1 — E) < 6, and with L R’ ®
a bit of algebra we get the desired ®
bound = R

® ®
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VC DIMENSION

* We would like to obtain a more general
result

* Let S ={x,,...,x,,}
« Tp(S) = {(fC1), o fGim)): f € F)
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________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________

HF(S) — {(_' . _)' (_' +, _)1 (_; . +)' (+' T _):
(++,-),(—+ +),(+ —+),(+ + +)}
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VC DIMENSION

e X — real line

 F = intervals; points inside interval are
labeled by +, outside by —

* Poll 1: what is |I[1;(S)| for § =

O
O
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VC DIMENSION

O
O
O

* Poll 2: what is |I1z(S)| for S =

1

2.

@

QO 3 O Ul
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VC DIMENSION

» S is shattered by F if [T1;(S)| = 215

 The VC dimension of F is the cardinality
of the largest set that is shattered by F

How do we
prove upper and
lower bounds?
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EXAMPLE: RECTANGLES

* There is an example of four

——————————————————————————————

points that can be shattered O |
* For any choice of five points, O O
one is “internal” O E
e A rectangle cannot label outer _____________ .
points by 1 and inner point e o °
by 0 o :

e VC dimension is 4

- & fg 15780 Spl’il’lg 2017: Lecture 10 Carnegie Mellon University 18




VC DIMENSION

* Poll 3: X = real line, F = intervals, what
is VC-dim(F)?
L1 3. 3
® 2 +. None of the above

* Poll 4: X = real line, F = unions of
intervals, what is VC-dim(F)?
. 2 3. 4
2. 3 None of the above
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EXAMPLE: LINEAR SEPARATORS

« X =R4
* A linear separator is f(x) =sgn(a-x+b) _ e
e Theorem: The VC dimension of linear
separators is d + 1
* Proof (lower bound): o
- e =(0,..,01,0,...,0) is the i-th unit vector O
- S={0tufe:i=1,..,d}
o Given y%,...,y% € {—1,1}, set ®
a=(y..,.y),b=y%/2 = O ®
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SAMPLE COMPLEXITY

* If for any k there is a sample of size k that can
be shattered by F, we say that VC-dim(F)= oo

e Theorem: A function class F with VC-dim(F)=
oo is not PAC learnable

e Theorem: Let F with VC-dim(F)= d. Let L be

an algorithm that produces an f € F that is
consistent with the given samples S. Then L is a
learning algorithm for F with sample complexity

“(e,60) =0 1l 1+dl -
m’(€,0) = eog6 eoge
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Implications for
linear classifiers?
Overfitting?
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SUMMARY

* Definitions
o PAC model
- Error, accuracy, confidence
o Learning algorithm
o Ig(S), shattering
o VC(C-dimension
* Turing-award-winning ideas:

o Learnability can be formalized
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