15-780 - GRADUATE ARTIFICIAL INTELLIGENCE
Al AND EDUCATION II

Shayan Doroudi
April 26, 2017



SERIES OVERVIEW

Series on applications of Al to education.
Lecture  Application Al Topics
4/24/17 Learning Machine Learning + Search
4/26/17  Assessment Machine Learning + Mechanism Design
5/01/17 Instruction  Multi-Armed Bandits



TODAY

- Item Response Theory (IRT)
- Computerized Adaptive Testing (CAT)
- Calibrated Self-Assessment



ITEM RESPONSE THEORY (IRT)



LAST TIME: ADDITIVE FACTORS MODEL (AFM)

- AFM:
- log ( L ) =0; + >, Qik(Br + T)

T=pjj,t41

o . — 1
Pij,T+1 = Trexp(— (0,4 3 QB t )
* pjj,r: Probability that student i answers question j correctly
at opportunity T.

- 0;: Ability of student
- Bp: Difficulty of skill k
- . Learning rate of skill k



ITEM RESPONSE THEORY (IRT)

- One-Parameter IRT Model (1PL):
. log(wf’b”) =0 — b,
1

" Pij = Trep(—,-5))

* pjj: Probability that student i answers question j correctly.
- 6;: Ability of student
- bj: Difficulty of item j



ITEM RESPONSE THEORY (IRT)

- Two-Parameter IRT Model (2PL):
* log (qf%),/) = a;(6; — by)
* pj: Probability that student i answers question j correctly.
- 6;: Ability of student |
- bj: Difficulty of item j

- @;: Discrimination of item j



ITEM RESPONSE THEORY (IRT)
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Which of the following is true about the IRT model?

- Itis a linear regression model.

- Itis a logistic regression model.

- It follows a power law of practice for P = <1f’;u>.

- It follows an exponential law of practice for P = (1_'3';)_).
U



ADVANTAGES OF IRT TO CLASSICAL TESTING THEORY

What are some of the advantages of IRT to classical testing
theory (add up the score on each item)?
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ADVANTAGES OF IRT TO CLASSICAL TESTING THEORY

What are some of the advantages of IRT to classical testing
theory (add up the score on each item)?

- Can measure with much more precision.
- Can obtain a standard error of measurement.

- Can give different tests to different students without
compromising rankings.

- Computerized Adaptive Testing!



COMPUTERIZED ADAPTIVE TESTING (CAT)




COMPUTERIZED ADAPTIVE TESTING

Why might we want a test to be adaptive?
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COMPUTERIZED ADAPTIVE TESTING

Start with a set of calibrated test items.

1. Based on our estimate of a students ability 8 choose the
item that will give us the most information to get a more
precise measure of the student's ability.

2. Student answers question.
3. Update 4 using maximum likelihood estimation.
4. Repeat steps 1-3 until termination.

"



INFORMATION

+ Fisher Information: Z(6) = E [(2; log p(X; 6))?|6]
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INFORMATION

+ Fisher Information: Z(6) = E [(2; log p(X; 6))?|6]
- 1PL Information: Z;(6;) = p;(1 — pj)
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INFORMATION

+ Fisher Information: Z(6) = E [(2; log p(X; 6))?|6]
- 1PL Information: Z;(6;) = p;(1 — pj)
« 2PL Information: Z;(6;) = a?p;;(1 — pj;)
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ITEM SELECTION

Infermation

-3 =2 =1 '] +1 +1 +3

Weiss, D. J. (2004). Computerized adaptive testing for effective and efficient
measurement in counseling and education. Measurement and Evaluation in

Counseling and Development, 37(2), 70.
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CALIBRATED SELF-ASSESSMENT

LABUTOV, I., & STUDER, C. CALIBRATED SELF-ASSESSMENT.

EDUCATIONAL DATA MINING, 2016.




MOTIVATION

How do we grade free-form questions in large courses (e.g.,
MOOCs)?
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SELF-ASSESSMENT

Ask student how likely they are to have answered a question
correctly!
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MECHANISM DESIGN FOR SELF-ASSESSMENT

Want a strategy proof mechanism to elicit student correctness.



MECHANISM DESIGN FOR SELF-ASSESSMENT

Want a strategy proof mechanism to elicit student correctness.
Can use quadratic scoring rule:

o Cjj if item j correct
U _%c/?j if item j incorrect

where ¢;; is a score proposed by student i on item j.



MECHANISM DESIGN FOR SELF-ASSESSMENT

Student wants to maximize:
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MECHANISM DESIGN FOR SELF-ASSESSMENT

Student wants to maximize:

1

E [Sy] = cjpy — 5¢5(1 = py)
Pij

1=pj

Maximized when ¢; =



IRT FOR SELF-ASSESSMENT

* pji: Student i's estimated probability that they answer
question j correctly.

- @:: Student i's estimate of their own ability
: 5/-: Student i's estimate of the difficulty of item j



IRT FOR SELF-ASSESSMENT

* pji: Student i's estimated probability that they answer
question j correctly.

- @:: Student i's estimate of their own ability
: 5/-: Student i's estimate of the difficulty of item j
- Assume §; — b; ~ N'(6; — bj,0?)



ESTIMATING STUDENT ABILITY

log(c;) = l0g< Py ) — 6 —bj+e
— Pijj

e~ N(0,0%)

19



ESTIMATING STUDENT ABILITY

log(c;) = log <p’7> — 6 —bj+e

Can be estimated using linear regression!
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POLL (MECHANISM FAIRNESS)

Is the mechanism fair?

:
E [S;] = cjpj — 5¢5(1 = py)

- Yes, it is fair.

- No, it will give inflate scores of higher ability students and
deflate scores of lower ability students.

- No, it will deflate scores of higher ability students and
inflate scores of lower ability students.
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MECHANISM DESIGN FOR SELF-ASSESSMENT

What happens when we don't actually grade student answers?
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MECHANISM DESIGN FOR SELF-ASSESSMENT

If each item is graded with probability p:

1
E [S;j] = p(ciipij — §C1‘2j(1 —pij)) + (1= p)c;;
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MECHANISM DESIGN FOR SELF-ASSESSMENT

6 T T T T

Optimal self-score log(c;;)
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Labutoy, I., & Studer, C. Calibrated Self-Assessment. Educational Data Mining, 2016.
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SUMMARY

- IRT allows for more precise measuring of student abilities.
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SUMMARY

- IRT allows for more precise measuring of student abilities.

- Is used for computerized adaptive testing.
- Can combine mechanism design with IRT to elicit scores
from students.

2%
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