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series overview

Series on applications of AI to education.
Lecture Application AI Topics
4/24/17 Learning Machine Learning + Search
4/26/17 Assessment Machine Learning + Mechanism Design
5/01/17 Instruction Multi-Armed Bandits
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prediction vs. intervention

Prediction Intervention
• Predicting performance in a
learning environment
• Predicting performance on a
test
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prediction vs. intervention

Prediction Intervention
• Predicting performance in a
learning environment

• Changing instruction based on
refined cognitive model

• Predicting performance on a
test

• Computerized Adaptive Testing

• Choosing the best instruction
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randomized weighted majority and bandits

• Recall the Randomized Weighted Majority Algorithm.

• After each decision, we know if each expert got it right or
wrong.

• Multi-Armed Bandits: Choose only one arm
(expert/action); only know if that arm was good or bad.
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multi-armed bandits

• Set of K actions A = {a1, . . . ,aK}.

• At each time step t, we choose one action at ∈ A.
• Observe reward for that action, coming from some
unknown distribution with mean µa.

• Want to minimize regret:

R(T) = Tmax
a∈A

µa − E

[ T∑
t=1

µat

]
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poll (multi-armed bandits)
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Suppose action 1 was taken 20 times, action 2 was taken 10
times, and action 3 was taken once. Which action should we
take next?

• Action 1
• Action 2
• Action 3
• Some distribution over the actions.
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exploration vs. exploitation

• Exploration: Trying different actions to discover what's
good.

• Exploitation: Doing (exploiting) what we believe to be best.
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explore-then-commit

• Explore-then-Commit: Take each action n times, then
commit to the action with the best sample average reward.
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upper confidence bound (ucb)
.



optimism in the face of uncertainty
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After taking action 3 two more times and seeing 0.1 both times:
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ucb1

UCB1 Algorithm:

1. Take each action once.
2. Take action

argmax
aj∈A

1
nj

nj∑
i=1

rj,i +
√

2 ln(n)
nj

• n is the total number of actions taken so far
• nj is the number of times we took aj
• rj,i is the reward from the ith time we took aj
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thompson sampling
.



thompson sampling

Thompson Sampling Algorithm: Choose actions according to
the probability that we think they are best.

• Take action aj with probability∫
I(E

[
r|aj, θ

]
= max

a∈A
E [r|a, θ])P(θ|D)dθ

• Can just sample θ according to P(θ|D), and take
maxa∈A E [r|a, θ]
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thompson sampling with beta prior

• Suppose each action aj gives rewards according to a
Bernoulli distribution with some unknown probability pj.

• Use Conjugate Prior (Beta Distribution):

P(pj|α, β) ∝ pα
j (1− pj)

β

• After we take aj, if we see reward rj,

P(pj|α, β, rj) ∝ P(pj|α, β)P(rj|pj) ∝ pαj (1− pj)
βprj

j (1− pj)
1−rj

P(pj|α, β, rj) ∝ pα+rj
j (1− pj)

β+1−rj

• After any action the posterior distribution will be as
follows:

P(pj|D) ∝ pα+sj
j (1− pj)

β+fj
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thompson sampling with beta prior

Thompson Sampling Algorithm with Bernoulli Actions and Beta
Prior:

• Sample p1, . . . ,pK with probability

P(pj|D) ∝ pα+sj
j (1− pj)

β+fj

• Choose argmaxaj∈A E
[
r|pj

]
= pj
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poll (thompson sampling)

How can we increase exploration using Thompson Sampling
with Beta Prior?

• Choose a large α

• Choose a large β

• Choose an equally large α and β

• Beats me

14



example: axis
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example: axis
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What's missing?
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contextual bandits
.



linucb

• Obtain some context xt,a
• Assume linear payoff function:

E [rt,a|xt,a] = xTt θa

• Solve for θa using linear regression, build confidence
intervals over the mean, and apply UCB.
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thompson sampling with context

Thompson Sampling Algorithm with Context:

• Get context x
• Take action aj with probability∫

I(E
[
r|x,aj, θ

]
= max

a∈A
E [r|x,a, θ])P(θ|D)dθ

• Can just sample θ according to P(θ|D), and take
maxa∈A E [r|x,a, θ]
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summary

• Multi-armed bandits can help decide what instructional
activities to give to students.

• Saw a frequentist (UCB) and Bayesian (Thompson
Sampling) algorithm for multi-armed bandits.

• Contextual bandits can help personalize decisions for
students and reinforcement learning can help make
adaptive decisions for students.
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