

Graduate AI

Lecture 3:

Search II

Teachers:

Zico Kolter

Ariel Procaccia (this time)

A* IS OPTIMALLY EFFICIENT

- We say that node x is surely expanded by A^* (tree search) if $f(x) < f(t^*)$, where t^* is the optimal goal
- Theorem [Dechter and Pearl 1985]: Any algorithm that is optimal given a consistent heuristic will expand, whenever the heuristic is consistent, all nodes surely expanded by A*

- Let I be an instance with graph
 G and consistent heuristic h
- Assume node x is surely expanded by A^*
- Denote $f(x) < f(t^*) = C^*$
- Let B be an optimal algorithm that does not expand x

- Create G' by adding a new goal t, and an edge (x, t) with cost h(x)
- h' is the same as h, and h'(t) = 0
- Lemma: h' is consistent
 - Clearly true on pairs that do not include t
 - For pairs (y,t), $h'(y) = h(y) \le c(y,x) + h(x)$ = c(y,t) = c(y,t) + h'(t)

• On the new instance I' defined by G'and h', A^* will find the goal t with cost

$$g(t) + h'(t) = g(x) + h(x) < C^*$$

- Because B does not expand x, I'looks identical to I, and B will find a solution of cost C^*
- This is a contradiction to the assumption that B is optimal whenever the heuristic is consistent

A* IS OPTIMALLY EFFICIENT

- In fact, the theorem is false when the heuristic is only admissible
- In the example on the right, algorithm B will find the optimal solution while expanding fewer nodes than A*

Alg B: Conduct exhaustive search except for expanding a; then expand a only if it has the potential to sprout cheaper solution

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

APPLICATION: MOTION PLANNING

MOTION PLANNING

- Navigating between two points while avoiding obstacles
- A first approach: define a discrete grid
- Mark cells that intersect obstacles as blocked
- Find path through centers of remaining cells

CELL DECOMPOSITION

- Distinguish between
 - Cells that are contained in obstacles
 - Cells that intersect obstacles
- If no path found, subdivide the mixed cells

IS IT COMPLETE NOW?

- An algorithm is resolution complete when:
 - If a path exists, it finds it in finite time
 - If a path does not exist, it returns in finite time
- Assume obstacles are closed sets, so free space is an open set
- Poll 1: Cell decomposition satisfies:
 - a but not b
 - b but not a
 - Both a and b
 - Neither a nor b

CELL DECOMPOSITION

- Shortest paths through cell centers
- Shortest path

SOLUTION 1: A* SMOOTHING

- Allows connection to further states than neighbors on the grid
- Key observation:
 - If $x_1, ..., x_n$ is valid path
 - And x_k is visible from x_i
 - Then $x_1, ..., x_i, x_k, ..., x_n$ is a valid path

SMOOTHING WORKS!

- A shortest path through cell centers
- Shortest path

SMOOTHING DOESN'T WORK!

- A shortest path through cell centers
- Shortest path

SOLUTION 2: THETA*

- Allow parents that are non-neighbors in the grid to be used during search
- Standard A*
 - $\circ g(y) = g(x) + c(x,y)$
 - Insert y with estimate f(y) = g(x) + c(x, y) + h(y)
- Theta*
 - If parent(x) is visible from y, insert y with estimate $f(y) = g(\operatorname{parent}(x)) + c(\operatorname{parent}(x), y) + h(y)$

THETA* WORKS!

Theta* path, I think ©

Shortest path

THETA* WORKS!

[Nash, AIGameDev 2010]

THE OPTIMAL PATH

- Polygonal path: sequence of connected straight lines
- Inner vertex of polygonal path: vertex that is not beginning or end
- Theorem: assuming (closed) polygonal obstacles, shortest path is a polygonal path whose inner vertices are vertices of obstacles

- Suppose for contradiction that shortest path is not polygonal
- Obstacles are polygonal \Rightarrow \exists point p in interior of free space such that "path through p is curved"
- \exists disc of free space around p
- Path through disc can be shortened by connecting points of entry and exit

- Path is polygonal!
- Vertex cannot lie in interior of free space, otherwise we can do the same trick
- Vertex cannot lie on a the interior of an edge, otherwise we can do the same trick

How would we define a graph on which A* would be optimal?

VISIBILITY GRAPH

Vertices = vertices of polygons and s, tEdges = all (x, y) such that y is visible from x

VISIBILITY GRAPH

- Poll 2: Let n be the total number of vertices of all polygons. How many edges will the optimal path in the visibility graph traverse in the worst case?
 - 1. $\Theta(\sqrt{n})$
 - $(2.) \quad \Theta(n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^3)$

SUMMARY

- Terminology and algorithms:
 - Cell decomposition
 - Resolution completeness
 - Theta*
- Theorems:
 - A* is optimally efficient
 - Geometry of shortest path with polygonal obstacles
- Big ideas:
 - A* can be modified to work well in continuous spaces

