

Graduate AI

Lecture 7:

IP Applications

Teachers:

Zico Kolter

Ariel Procaccia (this time)

Integer Programming

- An integer programming (IP) problem:
 - $\circ \quad a_{ij} \in \mathbb{R} \text{ for } i \in [k] = \{1, \dots, k\}, j \in [\ell]$
 - $b_i \in \mathbb{R} \text{ for } i \in [k]$
 - \circ Variables x_j for $j \in [\ell]$
- The (feasibility) problem is:

find
$$x_1 \dots, x_{\ell}$$

s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \mathbb{Z}$

How can we express
≥ constraints?
Equality constraints?
Restricted domains?

EXAMPLE: SUDOKU

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

EXAMPLE: SUDOKU

- For each $i, j, k \in [9]$, binary variable x_k^{ij} s.t. $x_k^{ij} = 1$ iff we put k in entry (i, j)
- For t = 1, ..., 27, S_t is a row, column, or 3×3 square

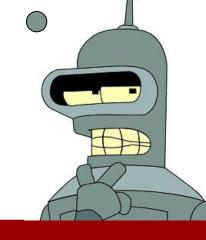
```
find x_1^{11}, ..., x_9^{99}

s.t. \forall t \in [27], \forall k \in [9], \sum_{(i,j) \in S_t} x_k^{ij} = 1

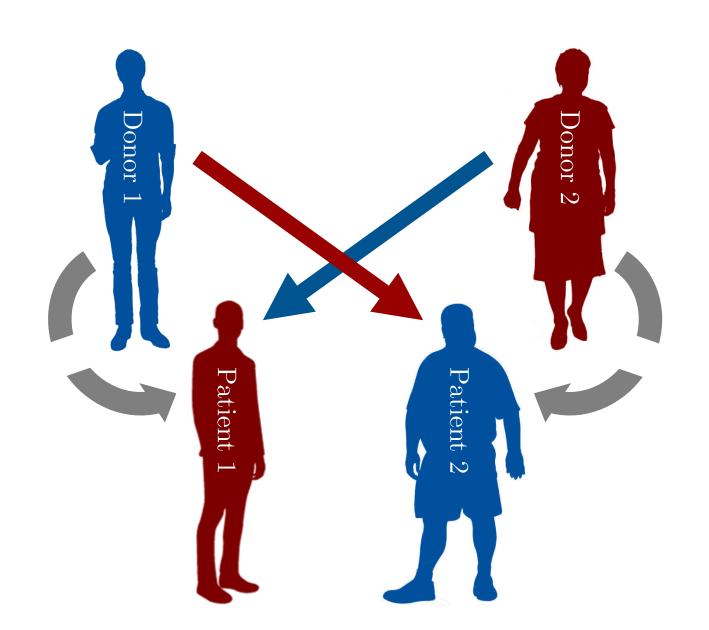
\forall i, j \in [9], \sum_{k \in [9]} x_k^{ij} = 1

\forall i, j, k \in [9], x_k^{ij} \in \{0,1\}
```

If you have a hard time expressing something as an IP, try using binary variables

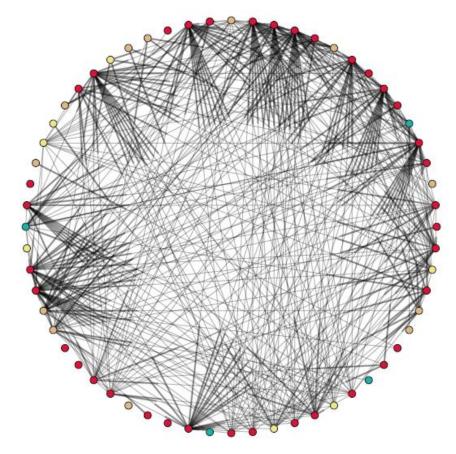


EXAMPLE: KIDNEY EXCHANGE



EXAMPLE: KIDNEY EXCHANGE

- CYCLE-COVER: Given a directed graph G and $L \in \mathbb{N}$, find a collection of disjoint cycles of length $\leq L$ in G that maximizes the number of covered vertices
- The problem is:
 - Easy for L = 2 (why?)
 - $_{\circ}$ Easy for unbounded L



UNOS pool, Dec 2010 [Courtesy John Dickerson]

EXAMPLE: KIDNEY EXCHANGE

- Variables: For each cycle c of length $\ell_c \leq L$, variable $x_c \in \{0,1\}$, $x_c = 1$ iff cycle c is included in the cover
- CYCLE-COVER as an IP:

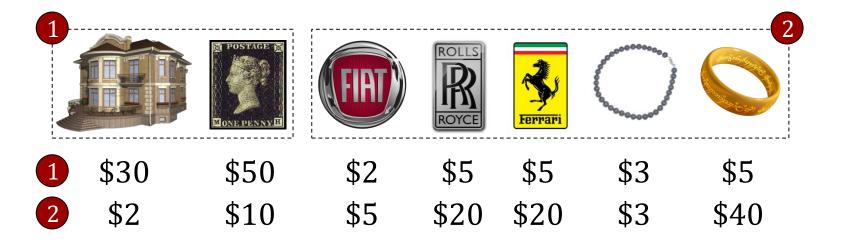
```
\max \sum_{c} x_{c} \ell_{c}
s.t. \forall v \in V, \sum_{c:v \in c} x_{c} \leq 1
\forall c, x_{c} \in \{0,1\}
```


APPLICATION: UNOS

UNITED NETWORK FOR ORGAN SHARING

EXAMPLE: ENVY-FREENESS

- Players $N = \{1, \dots, n\}$ and items $M = \{1, \dots, m\}$
- Player i has value v_{ij} for item j
- Partition items to bundles $A_1, ..., A_n$
- A_1, \dots, A_n is envy-free iff $\forall i, i', \sum_{j \in A_i} v_{ij} \ge \sum_{j \in A_i'} v_{ij}$



EXAMPLE: ENVY-FREENESS

- Variables: $x_{ij} \in \{0,1\}, x_{ij} = 1 \text{ iff } j \in A_i$
- ENVY-FREE as an IP:

```
find x_{11}, \dots, x_{nm}
s.t. \forall i \in N, \forall i' \in N, \sum_{j \in M} v_{ij} x_{ij} \ge \sum_{j \in M} v_{ij} x_{i'j}
         \forall j \in M, \ \sum_{i \in N} x_{ij} = 1
         \forall i \in N, j \in M, x_{ij} \in \{0,1\}
```

• Problem: An EF allocation may not exist

PHASE TRANSITION

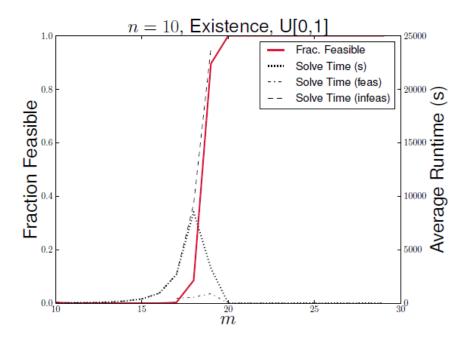
- Imagine the v_{ii} are drawn independently and uniformly at random from [0,1]
- Poll 1: If m = n/2, what is the probability that an envy-free allocation exists?

 - 2. 2/n
 - *3.* 1/2

PHASE TRANSITION

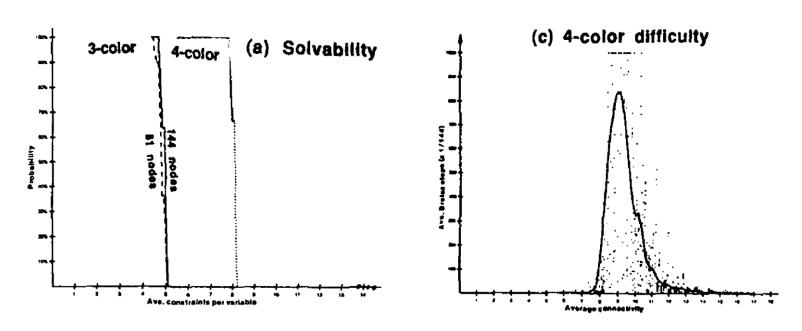
- Imagine the v_{ii} are drawn independently and uniformly at random from [0,1]
- Poll 2: If $m \gg n$, what is the probability that an envy-free allocation exists?
 - 1. Close to 0
 - $_{2.}$ Close to 1/3
 - 3. Close to 1/2
 - Close to 1

SHARP TRANSITION



[Dickerson et al., AAAI 2014]

SHARP TRANSITION

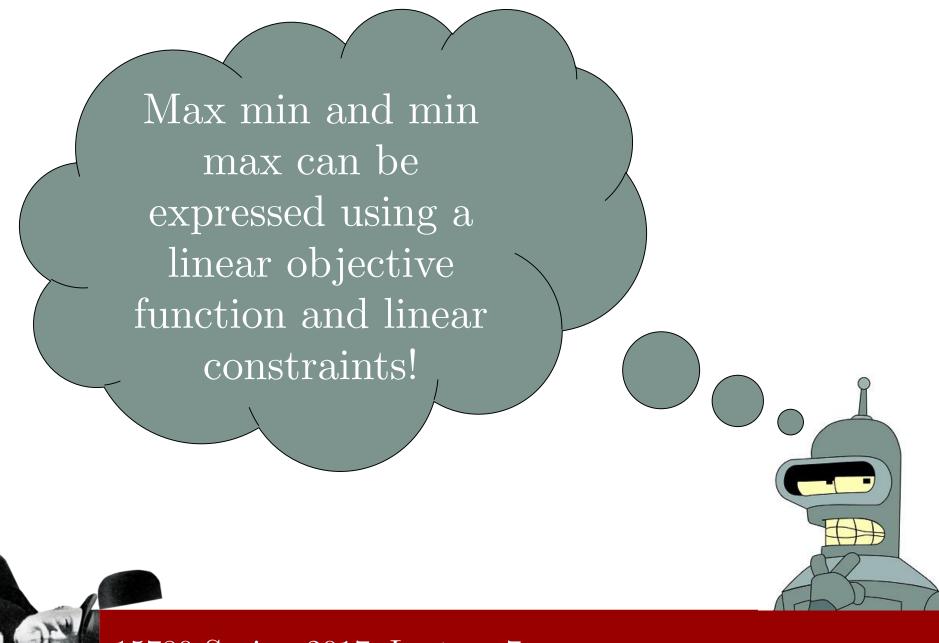


[Cheeseman et al., IJCAI 1993]

EXAMPLE: MMS GUARANTEE

- Maximin share (MMS) guarantee [Budish] 2011] of player $i: \max_{X_1,...,X_n} \min_k v_i(X_k)$
- MMS guarantee of player *i* as IP:

```
max D
s.t. \forall k \in N, \ \sum_{j \in M} v_{ij} y_{jk} \ge D
        \forall j \in M, \ \sum_{k=1}^{n} y_{jk} = 1
        \forall j \in M, k \in N, y_{jk} \in \{0,1\}
```



EXAMPLE: MMS GUARANTEE

- Suppose we computed MMS(i) for each i
- Now finding an MMS allocation, where $v_i(A_i) \geq MMS(i)$ for all $i \in N$, is just another IP:

```
find x_{11}, \dots, x_{nm}
s.t. \forall i \in N, \sum_{j \in M} v_{ij} x_{ij} \ge MMS(i)
        \forall j \in M, \ \sum_{i \in N} x_{ij} = 1
         \forall i \in N, j \in M, x_{ij} \in \{0,1\}
```

APPLICATION: SPLIDDIT

IVIDE: RENT FARE CREDIT GOODS TAS

ABOUT FEEDBACK

PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using methods that provide indisputable fairness guarantees and build on decades o research in economics, mathematics, and computer science

Share Rent

Split Fare

Assign Credit

Divide Goods

Distribute Tasks

Suggest an App

OTHER IPS: COMING SOON

Dodgson's voting rule

Stackelberg security games

SUMMARY

- IP tricks:
 - Binary variables
 - Max min and min max
- Big ideas:
 - IP representation leads to "efficient" solutions
 - \circ Phase transition \Leftrightarrow complexity

