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INTEGER PROGRAMMING
* An integer programming (IP) problem:
o a;; ERfori€lk] =1{1,..,k},j €[]
. b; ER for i € [k]
o Variables x; for j € [{]

* The (feasibility) problem is:

find xq ..., x,
s.t. Vi € [k], §=1 aijX; < b;
V_] (S [f], XjE Z.
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How can we express
> constraints?
Equality constraints?
Restricted domains?
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EXAMPLE: SUDOKU

8 4 6 7
4
1 6
D 9 3 7
7
4 2 1 3
3 9
3 9 2 D
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EXAMPLE: SUDOKU

* For each i,j,k € [9], binary variable x,ij S.t.
x,l{] = 1 iff we put k in entry (i,j)

e Fort=1,..,27, 5; is a row, column, or 3 X 3
square

find xi%,...,x9° -
st. Yt €[27],Vk € [9], X jyes, X = 1

VL,_] = [9]’2166[9] Xllc] =1
Vi,j, k € [9], x/ € {0,1}
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If you have a hard
time expressing
something as an 1P,
try using binary
variables
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EXAMPLE: KIDNEY EXCHANGE

O})



 CYCLE-COVER: Given a
directed graph G and
L € N, find a collection
of disjoint cycles of
length < L in G that
maximizes the number
of covered vertices

 The problem is:
o Easy for L = 2 (why?)
o  Easy for unbounded L

o NP-hard for a constant
L>3



EXAMPLE: KIDNEY EXCHANG!

* Variables: For each cycle ¢ of length
Y. < L, variable x, € {0,1}, x, = 1 iff cycle
¢ is included in the cover

e CYCLE-COVER as an IP:

-

max ), X.f,
st. YVEV, DevpecXe <1
Ve, x. € {0,1}
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APPLICATION: UNOS

LNOS i

UNITED NETWORK FOR ORGAN SHARING
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EXAMPLE: ENVY-FREENESS

 Players N ={1,...,n} and items M = {1, ..., m}

Player i has value v;; for item j

* Partition items to bundles 44, ..., 4,

* Ay, ..., Ay is envy-free iff Vi, i, ¥ e, Vij = Xiea, Vij
l

$5 $20 $20 $3  $40
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EXAMPLE: ENVY-FRE]

(-

NESS

* Variables: Xij € {0,1}, Xij = 1 lff] € Ai
« ENVY-FREE as an IP:

find x11, ..., Xum

st. Vi€ N,Vi'"EN, XjemVijXij = Xjem VijXi'j
VjEM, Zieinj =1
VieN,j € M,x;; € {0,1}

* Problem: An EF allocation may not exist
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PHASE TRANSITION

* Imagine the v;; are drawn independently
and uniformly at random from [0,1]

* Poll 1: If m = n/2, what is the probability
that an envy-free allocation exists?

2 2/n
3 1/2
2 1
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PHASE TRANSITION

* Imagine the v;; are drawn independently
and uniformly at random from [0,1]

* Poll 2: If m >» n, what is the probability
that an envy-free allocation exists?

1. Close to 0
2. Close to 1/3
3. Close to 1/2
(1) Close to 1
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SHARP TRANSITION

n = 10, Existence, U[0,1]
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|Dickerson et al., AAAT 2014]
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SHARP TRANSITION

-l ——— c) 4-color difficult
3-colot | g.co1o, < (8) Solvability - (c) 4-c _—— y
"l - ="l
!"]’ l't g-d
Fode . 3
i 18 i-
] - !.«
a
:n.1 5.-4

Carnegie Mellon University 16




EXAMPL:

0 MMS GUARANT!

=

-

* Maximin share (MMS) guarantee |Budish
2011] of player i: max minv;(X})

Xl,...,Xn k

* MMS guarantee of player i as IP:

max D

s.t. VkEN, ZjEM ViiVjk =D

Vi€M, Yik=1Yjk =1
Vj € M,k €N, Yjkx €1{0,1}
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Max min and min
max can be
expressed using a
linear objective
function and linear

constraints!
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EXAMPLE: MMS GUARANT:

* Suppose we computed MMS(i) for each i

* Now finding an MMS allocation, where
v;(A;) = MMS(Q) for all i € N, is just
another IP:

find x11, ..., Xym

st. Vi€N, XiemVijXij = MMS(i)
ViEM, dienxij =1
Vi€eN,j € M,x;; € {0,1}
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APPLICATION: SPLIDDIT

g spl idd it DIVIDE RENT FARE CREDIT GOODS  TASKS ABOUT  FEEDBACK

PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using
methods that provide indisputable fairness guarantees and build on decades of
research in economics, mathematics, and computer science.

D

Share Rent Split Fare Assign Credit

.

Divide Goods Distribute Tasks Suggest an App




OTHER IPS: COMING SOON

Dodgson’s Stackelberg
voting rule security games
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SUMMARY
e IP tricks:

o DBinary variables

o Max min and min max

* Big ideas:
- IP representation leads to “efficient”
solutions

o Phase transition & complexity
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