15-780 — Graduate Artificial Intelligence:
Deep learning

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University
Spring 2017

Outline

Deep learning history

Machine learning with neural networks
Training neural networks
Backpropagation

Complex architectures and computation graphs

Midterm

Next Monday, 2/27 during class

4-5 short answer questions (~15-20 minutes each)

Questions will involve short proofs, derivations, or problem formulations
Will be completely closed-book

Practice midterm to be released today or tomorrow

Outline

Deep learning history

0.6

0.5

0.4

0.3F

0.2

0.1

0.0
1980

Recent history in machine learning

#neural network / #machine learning

Facebook launches Al research
center, Google buys DeepMind

“AlexNet” deep neural network
wins ImageNet 2012 contest

Popularization of backprop

for training neural networks _ _
1 Academic papers on unsupervised

pre-training for deep networks

N\

1985 1990 1995 2000 2005 2010 2015

AlexNet

BN
3}’ 2 3
NN R A 3]
- — - 2578 >o0a8 \dense
i3 13 13
2
_____ he ENER 3’ I o Y >
u 3’ R - 13 dense | |[dense
1000
192 192 e Max - Tm som
Vs - Max pooling 2048
pooling pooling

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with highly
engineered features based got 26.1% error)

ImageNet classification

mite container ship motor scooter leopard
mite container ship motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
. o — ' g

| . = % wk : :

grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirfrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

AlphaGo

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

®© 12 March 2016 Technology

ALPHAGO - 200 \ S —
NQ- & ’ b ¢ LEE SEDOL
e * gee |. 00:00:27

o:ﬂ:o

AlRnaGo

Why now?

Why is this all happening right now?

To answer this, let’s first define precisely what neural networks are in the
context of machine learning

Outline

Machine learning with neural networks

10

Neural networks for machine learning

Remember that machine learning algorithms all have three components
1. Hypothesis class — the set of functions we consider
2. Loss function — measurement of how good a hypothesis is
3. Optimization — how we find a hypothesis function with low loss

The term neural network refers to the first element here: is it describing
the class of hypothesis functions used within a machine learning
algorithm

Specifically, neural networks refer to hypotheses consisting of a particular
form of composed non-linear functions

Any loss function and optimization approach could be used, though
some are much more common than others

11

Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that
linear hypothesis class

ho(z) =601 x

where x denotes some set of typically non-linear features (e.g.,
polynomials)

The performance of these algorithms depends crucially on coming up
with good features

Key question: can we come up with an algorithm that will automatically
learn the features themselves from the raw data?

12

Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage hypothesis
class where one linear function creates the features and another
produces the final hypothesis

hg(x) = Wod(x) + by = Wy (Wix +by) + by

where
0 — {Wl 6 kan,bl E Rk‘sz E Rle,b2 E R}

By convention, we’re going to separate out the “constant feature” into the
b terms

13

Poll: composed linear hypotheses

Given z € R"™, supposeﬂl run two machine learning algorithms with the
hypothesis functions A, h : R" — R:

h(xz) = Wo(Wix +by) + by ;L(x) = Wix + by

W, € RFn p c RF W, ¢ R** b, € R Wy € R b, € R

Suppose we use the same data, minimize the same loss function, and are
(somehow) able to achieve the global optima of both problems (assumed to
be unique), which of the following will be true:

1.

ok~

h achieves lower training loss but higher validation loss than h
h achieves lower training loss and lower validation loss than h

h achieves lower training loss and lower validation loss than A
They will both perform identically
The performance depends on the data or choice of loss function

14

Neural networks

Neural networks are a simple extension of this idea, where we additionally
apply a non-linear function after each linear transformation
ho(z) = fo(Wafi(Wix +by) + by)

where f;, f5: R — R are a non-linear functions (applied elementwise)

Common choices of f;:

Hyperbolic tangent: f(z) = tanh(z) = St oo / |

-4 -3-2-10 1 2 3 4

0.8
0.6

Sigmoid: f(z) = 0(z) = 7= |

0.0
-4-3-2-10 1 2 3 4 40—

3.5}

Rectified linear unit (ReLU): f(z) = max{z,0}

1.0

0.5

0.0 L - L L L .
-4 -3-2-10 1 2 3 4

15

lllustrating neural networks

We draw neural networks using the same graphic as before (the non-
linear function are always in implied in the neural network setting)

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what
values they should take, left up to algorithm to decide

16

Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a
universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any
function), and the more important aspect is that they appear to work very
well in practice for many domains

The hypothesis hy(x) is not a convex function of parameters 6 =
{W_,b,}, so we have possibility of local optima

Architectural choices (how many layers, how they are connected, etc),
become important algorithmic design choices (i.e. hyperparameters)

17

Deep learning

“Deep learning” refers (almost always) to machine learning using neural
network models with multiple hidden layers

21 =

S

I

%

W17 bl

=

Z9

Z3

()

24

=

>

»

A

n
¥~

X

N

W27 b2

W3, b3

Hypothesis function for k-layer network
Ziv1 = [i(Wyz; +b;),

(note the z; here refers to a vector, not an entry into vector)

21256,

W47 b4

he(z) = 2,

18

Why use deep networks

Motivation from circuit theory: many functions can be represented
more efficiently using deep networks (e.g., parity function requires O(2™)
hidden units with single hidden layer, O(n) with O(logn) layers

« But not clear if deep learning really learns these types of network

Motivation from biology: brain appears to use multiple levels of
interconnected neurons

« But despite the name, the connection between neural networks
and biology is extremely weak

In practice: works much better for many domains
« Hard to argue with results

19

Why now?

High capacity models
(i.e., large VC
dimension)

060

Lots of
computing power

Lots of data

20

Training neural networks

Outline

21

Neural networks for machine learning

How do we solve the optimization problem

.. (3)) (%)
mlnlgmlze;E(hg(ZE), y')

Not a convex problem, so we don’t expect to find global optimum, but
we will instead be content with /ocal solutions

Just use gradient descent as normal (or rather, a version called stochastic
gradient descent)

22

Stochastic gradient descent

Key challenge for neural networks: often have very large number of
samples, computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the
sum over all examples, then adjusts the parameters in this direction

0 0—aVy> Uhg(zD yD)=0—a) Vel(hy(z?,y)
- -

1 1

Alternative approach, stochastic gradient descent (SGD): adjust
parameters based upon just one sample

0« 0 —aVpl(hy(x?),yD)

and then repeat these updates for all samples

23

Gradient descent vs. SGD

Gradient descent, repeat:
e Fori=1,...,m:
g\ V(,E(hg(x“)), y')
» Update parameters:

9%9—0&%9@
i=1

Stochastic gradient descent, repeat:
e Fori=1,...,m:
0 < 0—aVyl(hy(x),y?)

In practice, stochastic gradient descent uses a small collection of
samples, not just one, called a minibatch

24

Backpropagation

Outline

25

Computing gradients: backpropagation

So, how do we compute the gradient Vol (hy(2'¥)),4()?

Remember 6 here denotes a set of parameters, so this really means that
we compute gradient with respect to all parameters W,,6,, W5, b, ...

The backpropagation algorithm is an algorithm for computing all these
gradients simultaneously, using one “forward pass” and one “backward
pass” through the network

The equations look complex, but it is just an application of the
(multivariate) chain rule of calculus

20

Digression: the Jacobian

Because | know that when we talked about the gradient, everyone really
just wanted more matrix calculus...

For a multivariate, vector-valued function f:R™ — R™, the Jacobian is
an mxn matrix

O0fi(x) Ofi(z) Ofi(®)]

0x4 0z ox,,
Ofy(x) Ofy(x) Ofy(x)
of(x 2 2 2
J;Sv) c R™*"™ = 0z 0z, oz,

Ofp(@) Of(z) Ofnle)
| Oz, 0z, ox

n -

For f:R" — R, V, f(x) = (X&)

ox

27

Properties of Jacobian

We will use a few simple properties of the Jacobian to derive the
backpropagation algorithm for neural networks

1. Chainrule, for f:R™ — R™, g:R*¥ — R”
0f (9(z)) _ 0f(g(x)) 9g(x)

or Og(z) O
2. Jacobian of a linear transformation, for A € R™*"
O0Azx
— = A
Ox

3. For afunction f(x) applied elementwise to a vector

L) _ g7/ (2)

28

Backpropagation

Let’s consider the loss on a single example x, iy, and use the chain rule to
compute the Jacobian

O (hy(z),y) _ Ol(zy,y)

B azk 3[)1

_ Oz, y) Oz 0z, 0z3 02y
- azk 8Zk_1 aZk_Q 822 abl

where all the z, terms are really functions of b,, but we leave out this
dependence for notational simplicity

29

Backpropagation, continued

We can also use the chain rule to compute intermediate terms, e.g.,
0zip1 Of;(Wiz;+b;) 0f; (W2, +b;) W, 2z, + b,

1 1

= diag(f] (W;z; +b;))W;

and
0ziy1 Ofi(Wiz; +b;) Of,(W;z; +b;) OW;2z; + b,
ob, - ob, B OW.z. + b, ob,
= diag(f; (W;z; +b;))

If we carried out the same computation for each parameter, e.g. b,, we

would repeat a lot of work; the backpropagation algorithm just “caches”
certain intermediate products

30

Backpropagation, continued

Specific, let’s consider the following term,
o7 = 0l(z,,y) Oz, Oz, 0z,
¢ azk azk_l azk_Q aZ

1

Then we have the following recursive definition of g,

ol(z,.,y B
9= (T5EY) = V.t

9 = Wdeiag(f{(WiZi + bi))gz’—i—l =wi (9i+1 o fi(W;z; + bz))

Where o denotes elementwise vector multiplication

31

Backpropagation, continued

Finally, assuming we compute all the g;, ..., g; terms, then the gradients
with respect to each W, and b, term can be computed as

Vi l(hg(2),y) = giq 0 fi (W2, +b;)
Vi, l(he(x),y) = (9¢+1 o fi (Wiz; + bz))ZzT

Backpropagation algorithm
1. Forward pass: compute zq, ..., 25, (25, y)
2. Backward pass, compute g;, ..., g4
3. Return gradients V', £(hy(z),y), Viw £(hg(z),y) for all i

32

Poll: complexity of backpropagation

Consider the case where all z; terms are n dimensional: what is the

complexity of computing only a single g, term using backpropagation
gT _ 8€ azk &Zk_l azi+1

¢ 6Zk azk_l 8Zk_2 5’,2

1

(the complexity of multiplying two n xXn matrices is O(n3) and complexity
of multiplying a n-dimensional vector with an n.xn matrix is O(nQ))

1. O(n?)

2. O(n?)
8. O(n’(k—1i))
4 O(nQ(k—z))

33

Aside: gradients/Jacobians w.r.t. matrices

This final bit is only for those who are particularly curious, but there’s one
element that is not quite precise in the formulation above

For matrix-input function f: R™*"™ — R, V 1 f(X) € R™*"™ (a matrix)

But what about for f: R™*" — R”* what is 252 af() ? (we’ve run out of
indices)

We actually had one of these in our previous setting, that | just hid, avl;l

You can do this with tensor operations, but a slightly easier (maybe?)
approach is to use vectorization

34

Aside: vectorization

Define vec : R™*™ — R™™ to be the vectorization operator, the operator
that forms a vector from a matrix by stacking its columns together

Fact: for A, B, C' such that we can form the product ABC
vec(ABC) = (CT ® A)vec(B)

where ® is the Kronecker product, for A € R"™*" B € RP*4
AyB - A, B
AQ® B ¢ RM™P* = : - -

We'll call the inverse operator mat: R — R™*"

35

Vectorization for Jacobians

Let’s use vectorization to compute:
0/4 o 0z,

Ovec(W,) B 0z;,, Ovec(W),)
r Of;(W;z; +b;) OW, 2, + b,
— Yi+1
OW.z.+b Ovec(W,)
= g/ diag(f; (W;z; + b;)) (2] ® 1)

since by vectorization we know that
W.z, = vec(W,z;) = (2} ® I)vec(W,)

36

Vectorization for Jacobians, continued

Thus, we can compute the gradient of our loss with respect to W,

Vi {(hy(z),y) = mat or_*
w, t\g\ L), Y) = FvecV,

— mat ((Zz 038 I)diag(f,{(Wizi + bi))gi—l—l)
= (f'(W,z, +b;) o gi+1)zz'T

To be absolutely clear, you aren’t expected to follow all that, but it might
be a useful reference if you try to figure out how certain gradients come
up in backpropagation

37

Outline

Complex architectures and computation graphs

38

Modern deep learning architectures

2525 citations 1295 citations
9699 citations GoogleNet ResNet
AlexNet (Krizhevsky et al., 2012) (Szégedyetal,, 2015) (He etal., 2019)

3x3 conv, 256
1x1 cony, 1024
Conv Conv Ix1 conv, 256
33+15) [l 55+15) [l varis)
207 20ag \dense 3x3 conv, 256
Conv Conv MaxPool
1x1+1(5) [l 1x1+1(5) : [Ixlconv, 1024]
MaxPool 1x1 conv, 256
3x3+2(5)
3x3 conv, 256
25 Max . 1x1 conv, 1024
. 2048 —
Max Max pooling TxT conv, 256
pooling pooling
3x3 conv, 256
Conv [.
1x1+1(5) [l 1x1+1(5) 3 1x1 conv, 1024
1x1 conv, 256
3x3 conv, 256

DepthConcat

dense’ dense|

1000 DepthConcat

Conv Conv
1x1+1(5) [l 3x3+1(5) [l 5x5+1(5) [l 1x1+1(5)

DepthConcat

Conv Conv Conv

Conv
11+1(s) [l 3x3+1(5) [l 5x5+1(s) [l 1x1+1(5) Ix1 conv, 1024

3351 citations

1141(5) 3:3+1(5)
3x3 conv, 256
H . pthConca
VGG (Simonyan and Zisserman, 2012) R
) 1x1 conv, 256
fC S
3x3 conv, 256
Conv MaxPool
1x141(S) 3x3+1(S) 1x1 conv, 1024
1x1 conv, 256
3x3 conv, 256
Conv Conv Conv
Prediction 1x1+1(5) [ll 3x3+1(5) [l 5x5+1(5) 1x1 cony, 1024
r—
1x1 conv, 256
3x3 conv, 256
DepthConcat XL conv, 1094
—

1x1 conv, 256
3x3 conv, 256

Conv Conv Conv Cor
11+1(s) il 3x3+1(s) [l 5x5+1(s) [l 1x1+1(5)

DepthConcat

00 AveragePool
1x1+1(5) [ll 1x1+1(5) 5x5+3(V)

1x141(S) 5x5+1(S)

39

Computation graphs

To simplify backpropagation in complex networks, we can make use of a
data structure called a computation graph, a directed acyclic graph (DAG)
over variables (square nodes) and operators (circle nodes)

Common to omit intermediate variables that have no real significance in
computation (p;, g;)

W.

1

40

Forward and backward passes

In forward pass, simply compute each node in the graph after all it’s
parents have been computed

Eventually this terminates at some scalar value ¢ (our final function)

Backward pass computes Jacobians with respect to ¢ via the same
graph where edge direction is reversed

ot Olof(x,y)

or 0z Or \
< — >
>@—> z > - — /
ot Olof(x,y) -

= ol
oy 0z Oy 5, %:1

41

Backward pass

To compute the backward pass, the implementation of our function f
needs to be able to compute:

1. The forward evaluation of the function z = f(x, y) (obviously)

2. The product - 5% of (x Y) for both its inputs , ¥

ot 0lof(x,y)

or 0z Or \
>@: :

0z

42

Variables passed to multiple functions

If we pass a variable z to multiple functions, then we simply add all the
incoming Jacobians

u
// ol
ot 0lof(z) N ol 0g(z) | 4 o
0z Ou Oz o 0z \\
U
/4

ov

43

Deep learning frameworks

Every modern deep learning framework uses this method for computing
gradients: they (either explicitly or implicitly) preserve the computation
graph during the forward pass, and then use the reversed graph for the

backward pass
€
® Lasagnhe

L2 PYTBRCH

TensorFlow

Caffe Chamer @

44

Deep learning frameworks

The frameworks implement the forward and backward elements of many
common functions, so you can only specify the forward computation and
get the backward pass “for free” (coding wise)

NOTE: this is an illustration, not how you use Tensorflow in practice
import tensorflow as tf

tf.vVariable(tf.zeros([784,1]1))

tf.vVariable(tf.zeros([10,11]))

X

tf

tf.
tf.
tf.
tf.

tf.

Variable(tf.zeros([100,7841]))
Variable(tf.zeros([100,1]))
Variable(tf.zeros([10,1007]))
Variable(tf.zeros([10,11]))

nn.relu(tf.matmul (Wl,x) + bl)

.matmul (W2,z1) + b2

tf.nn.softmax cross entropy with logits(logits=z2, labels=y)

.gradients(l, [Wl,bl,W2,b2])

45

