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Midterm

Next Monday, 2/27 during class

4-5 short answer questions (~15-20 minutes each)

Questions will involve short proofs, derivations, or problem formulations

Will be completely closed-book

Practice midterm to be released today or tomorrow
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Recent history in machine learning
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Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

“AlexNet” deep neural network 
wins ImageNet 2012 contest

Facebook launches AI research
center, Google buys DeepMind



AlexNet

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012 
competition with a Top-5 error rate of 15.3% (next best system with highly 
engineered features based got 26.1% error) 
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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ImageNet classification
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8



AlphaGo
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Why now?

Why is this all happening right now?

To answer this, let’s first define precisely what neural networks are in the 
context of machine learning
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Neural networks for machine learning

Remember that machine learning algorithms all have three components
1. Hypothesis class – the set of functions we consider
2. Loss function – measurement of how good a hypothesis is
3. Optimization – how we find a hypothesis function with low loss

The term neural network refers to the first element here: is it describing 
the class of hypothesis functions used within a machine learning 
algorithm

Specifically, neural networks refer to hypotheses consisting of a particular 
form of composed non-linear functions

Any loss function and optimization approach could be used, though 
some are much more common than others
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Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that 
linear hypothesis class

ℎ" 𝑥 = 𝜃% 𝑥
where 𝑥 denotes some set of typically non-linear features (e.g., 
polynomials)

The performance of these algorithms depends crucially on coming up 
with good features 

Key question: can we come up with an algorithm that will automatically 
learn the features themselves from the raw data?
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Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage hypothesis 
class where one linear function creates the features and another 
produces the final hypothesis

ℎ" 𝑥 = 𝑊2𝜙 𝑥 + 𝑏2 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

where
𝜃 = 𝑊1 ∈ ℝ-×/, 𝑏1 ∈ ℝ-, 𝑊2 ∈ ℝ1×-, 𝑏2 ∈ ℝ

By convention, we’re going to separate out the “constant feature” into the 
𝑏 terms 
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Poll: composed linear hypotheses

Given 𝑥 ∈ ℝ/, suppose I run two machine learning algorithms with the 
hypothesis functions ℎ, ℎ̃ ∶ ℝ/ → ℝ:

Suppose we use the same data, minimize the same loss function, and are 
(somehow) able to achieve the global optima of both problems (assumed to 
be unique), which of the following will be true:

1. ℎ achieves lower training loss but higher validation loss than ℎ̃
2. ℎ achieves lower training loss and lower validation loss than ℎ̃
3. ℎ̃ achieves lower training loss and lower validation loss than ℎ
4. They will both perform identically
5. The performance depends on the data or choice of loss function
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ℎ 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2
𝑊1 ∈ ℝ-×/, 𝑏1 ∈ ℝ-,𝑊2 ∈ ℝ1×-, 𝑏2 ∈ ℝ

ℎ̃ 𝑥 = 𝑊3𝑥 + 𝑏3
𝑊3 ∈ ℝ1×/, 𝑏2 ∈ ℝ



Neural networks

Neural networks are a simple extension of this idea, where we additionally 
apply a non-linear function after each linear transformation

ℎ" 𝑥 = 𝑓2 𝑊2𝑓1 𝑊1𝑥 + 𝑏1 + 𝑏2

where 𝑓1, 𝑓2: ℝ → ℝ are a non-linear functions (applied elementwise)

Common choices of 𝑓5:
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Hyperbolic tangent: 𝑓 𝑥 = tanh 𝑥 = 628−1
628+1

Sigmoid: 𝑓 𝑥 = 𝜎 𝑥 = 1
1+6−8

Rectified linear unit (ReLU): 𝑓 𝑥 = max 𝑥, 0



Illustrating neural networks

We draw neural networks using the same graphic as before (the non-
linear function are always in implied in the neural network setting)

Middle layer 𝑧 is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what 
values they should take, left up to algorithm to decide

16

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2



Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a 
universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any 
function), and the more important aspect is that they appear to work very 
well in practice for many domains

The hypothesis ℎ" 𝑥 is not a convex function of parameters 𝜃 =
{𝑊5, 𝑏5}, so we have possibility of local optima

Architectural choices (how many layers, how they are connected, etc), 
become important algorithmic design choices (i.e. hyperparameters)
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Deep learning

“Deep learning” refers (almost always) to machine learning using neural 
network models with multiple hidden layers

Hypothesis function for 𝑘-layer network
𝑧5+1 = 𝑓5 𝑊5𝑧5 + 𝑏5 , 𝑧1 = 𝑥, ℎ" 𝑥 = 𝑧-

(note the 𝑧5 here refers to a vector, not an entry into vector)
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Why use deep networks

Motivation from circuit theory: many functions can be represented 
more efficiently using deep networks (e.g., parity function requires 𝑂(2/)
hidden units with single hidden layer, 𝑂 𝑛 with 𝑂(log 𝑛) layers

• But not clear if deep learning really learns these types of network

Motivation from biology: brain appears to use multiple levels of 
interconnected neurons

• But despite the name, the connection between neural networks 
and biology is extremely weak

In practice: works much better for many domains
• Hard to argue with results
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Why now?
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High capacity models 
(i.e., large VC 
dimension)

Lots of dataLots of 
computing power
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Neural networks for machine learning

How do we solve the optimization problem

minimize
"

∑ ℓ ℎ" 𝑥 5 , 𝑦 5
B

5=1

Not a convex problem, so we don’t expect to find global optimum, but 
we will instead be content with local solutions

Just use gradient descent as normal (or rather, a version called stochastic 
gradient descent)
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Stochastic gradient descent

Key challenge for neural networks: often have very large number of 
samples, computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the 
sum over all examples, then adjusts the parameters in this direction

𝜃 ← 𝜃 − 𝛼𝛻" ∑ ℓ(ℎ" 𝑥 5 , 𝑦 5 = 𝜃 − 𝛼 ∑ 𝛻"ℓ(ℎ" 𝑥 5 , 𝑦 5  
B

5=1

B

5=1

Alternative approach, stochastic gradient descent (SGD): adjust 
parameters based upon just one sample

𝜃 ← 𝜃 − 𝛼𝛻"ℓ ℎ" 𝑥 5 , 𝑦 5

and then repeat these updates for all samples
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Gradient descent vs. SGD

Gradient descent, repeat:
• For 𝑖 = 1,… , 𝑚:

𝑔 5 ← 𝛻"ℓ ℎ" 𝑥 5 , 𝑦 5

• Update parameters:

𝜃 ← 𝜃 − 𝛼 ∑ 𝑔 5
B

5=1

Stochastic gradient descent, repeat:
• For 𝑖 = 1,… , 𝑚:

𝜃 ← 𝜃 − 𝛼𝛻"ℓ ℎ" 𝑥 5 , 𝑦 5

In practice, stochastic gradient descent uses a small collection of 
samples, not just one, called a minibatch
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Computing gradients: backpropagation

So, how do we compute the gradient 𝛻"ℓ ℎ" 𝑥 5 , 𝑦 5 ?

Remember 𝜃 here denotes a set of parameters, so this really means that 
we compute gradient with respect to all parameters 𝑊1, 𝑏1, 𝑊2, 𝑏2,…

The backpropagation algorithm is an algorithm for computing all these 
gradients simultaneously, using one “forward pass” and one “backward 
pass” through the network

The equations look complex, but it is just an application of the 
(multivariate) chain rule of calculus
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Digression: the Jacobian

Because I know that when we talked about the gradient, everyone really 
just wanted more matrix calculus…

For a multivariate, vector-valued function 𝑓 : ℝ/ → ℝB, the Jacobian is
an 𝑚×𝑛 matrix

𝜕𝑓 𝑥
𝜕𝑥 ∈ ℝB×/ =

𝜕𝑓1 𝑥
𝜕𝑥1

𝜕𝑓1 𝑥
𝜕𝑥2

𝜕𝑓2 𝑥
𝜕𝑥1

𝜕𝑓2 𝑥
𝜕𝑥2

⋯ 𝜕𝑓1 𝑥
𝜕𝑥/

⋯ 𝜕𝑓2 𝑥
𝜕𝑥/

⋮ ⋮
𝜕𝑓B 𝑥

𝜕𝑥1

𝜕𝑓B 𝑥
𝜕𝑥2

⋱ ⋮

⋯ 𝜕𝑓B 𝑥
𝜕𝑥/

For 𝑓 : ℝ/ → ℝ, 𝛻M𝑓 𝑥 = NO M
NM

%
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Properties of Jacobian

We will use a few simple properties of the Jacobian to derive the 
backpropagation algorithm for neural networks

1. Chain rule, for 𝑓 :ℝ/ → ℝB, 𝑔:ℝ- → ℝ/

𝜕𝑓 𝑔(𝑥 )
𝜕𝑥 = 𝜕𝑓 𝑔(𝑥 )

𝜕𝑔(𝑥)
𝜕𝑔(𝑥)

𝜕𝑥

2. Jacobian of a linear transformation, for 𝐴 ∈ ℝB×/

𝜕𝐴𝑥
𝜕𝑥 = 𝐴

3. For a function 𝑓 𝑥 applied elementwise to a vector
𝜕𝑓(𝑥)

𝜕𝑥 = diag(𝑓′ 𝑥 )
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Backpropagation

Let’s consider the loss on a single example 𝑥, 𝑦, and use the chain rule to 
compute the Jacobian

𝜕ℓ ℎ" 𝑥 , 𝑦
𝜕𝑏1

= 𝜕ℓ 𝑧-, 𝑦
𝜕𝑏1

                = 𝜕ℓ 𝑧-, 𝑦
𝜕𝑧-

𝜕𝑧-
𝜕𝑏1

                = 𝜕ℓ 𝑧-, 𝑦
𝜕𝑧-

𝜕𝑧-
𝜕𝑧-−1

𝜕𝑧-−1
𝜕𝑧-−2

…𝜕𝑧3
𝜕𝑧2

𝜕𝑧2
𝜕𝑏1

where all the 𝑧5 terms are really functions of 𝑏1, but we leave out this 
dependence for notational simplicity
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Backpropagation, continued

We can also use the chain rule to compute intermediate terms, e.g.,
𝜕𝑧5+1
𝜕𝑧5

= 𝜕𝑓5(𝑊5𝑧5 + 𝑏5)
𝜕𝑧5

= 𝜕𝑓5(𝑊5𝑧5 + 𝑏5)
𝜕𝑊5𝑧5 + 𝑏5

𝜕𝑊5𝑧5 + 𝑏5
𝜕𝑧5

        =  diag 𝑓5
′ 𝑊5𝑧5 + 𝑏5 𝑊5

and
𝜕𝑧5+1
𝜕𝑏5

= 𝜕𝑓5(𝑊5𝑧5 + 𝑏5)
𝜕𝑏5

= 𝜕𝑓5(𝑊5𝑧5 + 𝑏5)
𝜕𝑊5𝑧5 + 𝑏5

𝜕𝑊5𝑧5 + 𝑏5
𝜕𝑏5

        =  diag 𝑓5
′ 𝑊5𝑧5 + 𝑏5

If we carried out the same computation for each parameter, e.g. 𝑏5, we 
would repeat a lot of work; the backpropagation algorithm just “caches” 
certain intermediate products 
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Backpropagation, continued

Specific, let’s consider the following term, 

𝑔5
% = 𝜕ℓ 𝑧-, 𝑦

𝜕𝑧-

𝜕𝑧-
𝜕𝑧-−1

𝜕𝑧-−1
𝜕𝑧-−2

…𝜕𝑧5+1
𝜕𝑧5

Then we have the following recursive definition of 𝑔5

𝑔- = 𝜕ℓ 𝑧-, 𝑦
𝜕𝑧-

T
= 𝛻ST

ℓ 𝑧-, 𝑦

𝑔5 = 𝑊5
% diag 𝑓5

′ 𝑊5𝑧5 + 𝑏5 𝑔5+1 = 𝑊5
% 𝑔5+1 ∘ 𝑓5

′ 𝑊5𝑧5 + 𝑏5

Where ∘ denotes elementwise vector multiplication
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Backpropagation, continued

Finally, assuming we compute all the 𝑔-,… , 𝑔1 terms, then the gradients 
with respect to each 𝑊5 and 𝑏5 term can be computed as

𝛻VW
ℓ ℎ" 𝑥 , 𝑦 = 𝑔5+1 ∘ 𝑓5

′ 𝑊5𝑧5 + 𝑏5

𝛻XW
ℓ ℎ" 𝑥 , 𝑦 = 𝑔5+1 ∘ 𝑓5

′ 𝑊5𝑧5 + 𝑏5 𝑧5
%

Backpropagation algorithm
1. Forward pass: compute 𝑧1,… , 𝑧-, ℓ 𝑧-, 𝑦
2. Backward pass, compute 𝑔-,… , 𝑔1
3. Return gradients 𝛻VW

ℓ ℎ" 𝑥 , 𝑦 , 𝛻XW
ℓ ℎ" 𝑥 , 𝑦 for all 𝑖
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Poll: complexity of backpropagation

Consider the case where all 𝑧5 terms are 𝑛 dimensional: what is the 
complexity of computing only a single 𝑔5 term using backpropagation

𝑔5
% = 𝜕ℓ

𝜕𝑧-

𝜕𝑧-
𝜕𝑧-−1

𝜕𝑧-−1
𝜕𝑧-−2

…𝜕𝑧5+1
𝜕𝑧5

(the complexity of multiplying two 𝑛×𝑛 matrices is 𝑂 𝑛3 and complexity 
of multiplying a 𝑛-dimensional vector with an 𝑛×𝑛 matrix is 𝑂 𝑛2 )

1. 𝑂(𝑛3)
2. 𝑂(𝑛2)
3. 𝑂 𝑛3 𝑘 − 𝑖

4. 𝑂 𝑛2 𝑘 − 𝑖
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Aside: gradients/Jacobians w.r.t. matrices

This final bit is only for those who are particularly curious, but there’s one 
element that is not quite precise in the formulation above

For matrix-input function 𝑓 : ℝB×/ → ℝ, 𝛻Y𝑓 𝑋 ∈ ℝB×/ (a matrix)

But what about for 𝑓 : ℝB×/ → ℝ-, what is NO Y
NY ? (we’ve run out of 

indices)

We actually had one of these in our previous setting, that I just hid, NSW+1
NXW

You can do this with tensor operations, but a slightly easier (maybe?) 
approach is to use vectorization
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Aside: vectorization

Define vec ∶ ℝB×/ → ℝB/ to be the vectorization operator, the operator 
that forms a vector from a matrix by stacking its columns together

Fact: for 𝐴, 𝐵, 𝐶 such that we can form the product 𝐴𝐵𝐶
vec 𝐴𝐵𝐶 = 𝐶% ⊗ 𝐴 vec(𝐵)

where ⊗ is the Kronecker product, for 𝐴 ∈ ℝB×/, 𝐵 ∈ ℝ_×`

𝐴 ⊗ 𝐵 ∈ ℝB_×/` =
𝐴11𝐵 ⋯ 𝐴1/𝐵

⋮ ⋱ ⋱
𝐴B1𝐵 ⋯ 𝐴B/𝐵

We’ll call the inverse operator mat: ℝB/ → ℝB×/
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Vectorization for Jacobians

Let’s use vectorization to compute:
𝜕ℓ

𝜕vec(𝑊5)
= 𝜕ℓ

𝜕𝑧5+1

𝜕𝑧5+1
𝜕vec(𝑊5)

             = 𝑔5+1
% 𝜕𝑓5 𝑊5𝑧5 + 𝑏5

𝜕𝑊5𝑧5 + 𝑏
𝜕𝑊5𝑧5 + 𝑏5
𝜕vec 𝑊5

             = 𝑔5+1
% diag(𝑓5

′ 𝑊5𝑧5 + 𝑏5 )(𝑧5
% ⊗ 𝐼)

since by vectorization we know that
𝑊5𝑧5 = vec(𝑊5𝑧5) = 𝑧5

% ⊗ 𝐼 vec(𝑊5)
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Vectorization for Jacobians, continued

Thus, we can compute the gradient of our loss with respect to 𝑊5

𝛻XW
ℓ ℎ" 𝑥 , 𝑦 = mat 𝜕ℓ

𝜕vec𝑊5

%

                     = mat 𝑧5 ⊗ 𝐼 diag 𝑓5
′ 𝑊5𝑧5 + 𝑏5 𝑔5+1

                     = 𝑓′ 𝑊5𝑧5 + 𝑏5 ∘ 𝑔5+1 𝑧5
%

To be absolutely clear, you aren’t expected to follow all that, but it might 
be a useful reference if you try to figure out how certain gradients come 
up in backpropagation
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Modern deep learning architectures
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Figure 3: GoogLeNet network with all the bells and whistles
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Computation graphs

To simplify backpropagation in complex networks, we can make use of a 
data structure called a computation graph, a directed acyclic graph (DAG) 
over variables (square nodes) and operators (circle nodes)

Common to omit intermediate variables that have no real significance in 
computation (𝑝5, 𝑞5)
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Forward and backward passes

In forward pass, simply compute each node in the graph after all it’s 
parents have been computed

Eventually this terminates at some scalar value ℓ (our final function)

Backward pass computes Jacobians with respect to ℓ via the same 
graph where edge direction is reversed
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Backward pass

To compute the backward pass, the implementation of our function 𝑓
needs to be able to compute:

1. The forward evaluation of the function 𝑧 = 𝑓(𝑥, 𝑦) (obviously)

2. The product Nℓ
NS

NO M,f
NM for both its inputs 𝑥, 𝑦

42

𝑥

𝑦

𝑓 𝑧

𝜕ℓ
𝜕𝑧

𝜕ℓ
𝜕𝑥 = 𝜕ℓ

𝜕𝑧
𝜕𝑓 𝑥, 𝑦

𝜕𝑥  



Variables passed to multiple functions

If we pass a variable 𝑧 to multiple functions, then we simply add all the 
incoming Jacobians
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Deep learning frameworks

Every modern deep learning framework uses this method for computing 
gradients: they (either explicitly or implicitly) preserve the computation 
graph during the forward pass, and then use the reversed graph for the 
backward pass
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Deep learning frameworks

The frameworks implement the forward and backward elements of many 
common functions, so you can only specify the forward computation and 
get the backward pass “for free” (coding wise) 
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# NOTE: this is an illustration, not how you use Tensorflow in practice
import tensorflow as tf
x = tf.Variable(tf.zeros([784,1]))
y = tf.Variable(tf.zeros([10,1]))

W1 = tf.Variable(tf.zeros([100,784]))
b1 = tf.Variable(tf.zeros([100,1]))
W2 = tf.Variable(tf.zeros([10,100]))
b2 = tf.Variable(tf.zeros([10,1]))

z1 = tf.nn.relu(tf.matmul(W1,x) + b1)
z2 = tf.matmul(W2,z1) + b2
l = tf.nn.softmax_cross_entropy_with_logits(logits=z2, labels=y)

tf.gradients(l, [W1,b1,W2,b2])


