
15-780 – Graduate Artificial Intelligence:
Integer programming

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2017

1

Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

2

Logistics

HW1 aiming to be out tomorrow night, will be due two weeks from
posting date

Midterm is moving to 2/27 instead of 3/1

3

Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

4

Recall linear program

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

5

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2

Recall linear program

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

6

x1 (tables)

x2 (chairs)

Recall linear program

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6 units of metal and 9 units of wood. How many tables
and chairs should the factory make to maximize profit?

7

x1 (tables)

x2 (chairs)

Recall linear program

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6 units of metal and 9 units of wood. How many tables
and chairs should the factory make to maximize profit?

8

x1 (tables)

x2 (chairs)

Challenges of integer programming

The above example was “easy” in that the rounded solution to the LP
happened to also be a solution to the integer program

In general, integer solution can be arbitrarily far from the LP solution

Can be hard to even find a feasible solution that is integer valued, e.g.,
imagine the task of finding an integer solution to some arbitrary set of
linear equations 𝐴𝑥 = 𝑏

9

x1

x2

Many applications (see next lecture)

Path planning with obstacles

Many problems in game theory

Constraint satisfaction problems

(Exact) most likely assignment in graphical models

Scheduling and unit commitment

Kidney exchange

10

Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

11

Integer linear programming

An optimization problem like linear programming, except that variables are
required to take on integer values (e.g., in inequality form)

 minimize
$

 𝑐& 𝑥
subject to 𝐺𝑥 ≤ ℎ
 𝑥 ∈ ℤ, (integers)

Not a convex problem, because of integer constraint (set of all integers is not
a convex set)

Can also consider mixed integer linear programming, with both integer and
non-integer variables

 minimize
$

 𝑐& 𝑥
subject to 𝐺𝑥 ≤ ℎ
 𝑥- ∈ ℤ, 𝑖 ∈ ℐ ⊆ 1,… ,𝑛

12

Other variations

For simplicity, in this lecture we will focus on binary integer programming,
where 𝑥 variables are in {0,1}

 minimize
$

𝑐& 𝑥
subject to 𝐺𝑥 ≤ ℎ
 𝑥 ∈ 0,1 ,

This is just for ease of presentation, we will discuss how to adapt all these
methods for general integer variables

Techniques we present are actually largely applicable to any mixed integer
programming problem with convex objective and constraints (other than
integer constraint)

13

Difficult of binary integer programming

Theorem: Binary integer programming is NP-hard

Proof: We show this by reduction from 3SAT

Recall the 3SAT satisfiability problem: given binary variables 𝑧1,… 𝑧, ∈
𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 determine if there is some assignment that satisfies a set

of clauses in conjunctive normal form, e.g.,
𝑧1 ∨ 𝑧2 ∨ ¬𝑧3 ∧ 𝑧2 ∨ ¬𝑧4 ∨ 𝑧5 ∧ ⋯

Formulate this as a binary integer program: 𝑥1,… , 𝑥, ∈ 0,1 , with e.g.,
𝑧1 ∨ 𝑧2 ∨ ¬𝑧3 ⟺ 𝑥1 + 𝑥2 + 1 − 𝑥3 ≥ 1

Finding feasible solution to BIP equivalent to finding satisfying assignment

14

Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

15

Solving integer programs

How can we go about finding the solution to the binary integer program
 minimize

$
𝑐& 𝑥

subject to 𝐺𝑥 ≤ ℎ
 𝑥 ∈ 0,1 ,

Naïve solution: 2, possible assignments of all 𝑥 variables, just try each
one, return solution with minimum objective value out of those that satisfy
constraints

In the worst case, we can’t do any better than this, but often it is possible
to solve the problem much faster in practice

16

Key idea: relaxing integer constraints

Consider alternate optimization problem where we relax the constraint
𝑥- ∈ {0,1} to be 𝑥- ∈ 0,1 ≡ 0 ≤ 𝑥- ≤ 1, forming the linear program:

 minimize
$

𝑐& 𝑥
subject to 𝐺𝑥 ≤ ℎ
 𝑥 ∈ [0,1],

Key point #1: if the solution to this linear program 𝑥⋆ has all integer
values, then it is also the solution to the integer program

Key point #2: the optimal objective for the linear program will be lower
than that of the binary integer program

Both points follow trivially from the fact that 0,1 , ⊂ 0,1 ,

17

Integer solutions

Integer solutions are more common than you may naively expect, will
happen whenever the vertices of the polytope all have integer values

E.g., consider trivial optimization problem
 minimize

$
 𝑐& 𝑥

subject to 𝑥 ∈ 0,1 ,

Solution is:

𝑥-
⋆ = {1 if 𝑐- ≤ 0

0 otherwise

18

Poll: integer solutions

Consider the linear program, with 𝑐 and ℎ chosen so problem is feasible:
 minimize

$
𝑐& 𝑥

subject to 𝑥 ∈ 0,1 ,

 𝑥- − 𝑥-+1 ≤ ℎ-, 𝑖 = 1,… , 𝑛 − 1
Will the solutions to this linear program always take on integer values?

1. Yes, for all values of 𝑐 ∈ ℝ, and ℎ ∈ ℝ,−1

2. Yes, for any 𝑐 ∈ ℝ, but only for ℎ ∈ ℤ,−1

3. Yes, but only for 𝑐 ∈ ℤ, and ℎ ∈ ℤ,−1

4. Not necessarily, even for 𝑐 ∈ ℤ, and ℎ ∈ ℤ,−1

19

Branch and bound

LP relaxation is an quickly-computable approximation which gives us a
lower bound on the true solution: sounds a lot like an admissible
heuristic…

This leads us to the branch and bound algorithm: this is just greedy
informed search (i.e., 𝑓 𝑠 = ℎ(𝑠), no path cost, just heuristic cost),
applied using LP relaxation as the heuristic

Repeat:
1. Choose relaxed problem from frontier with lowest cost
2. If solution is not integer valued, pick a non-integer variable 𝑥- and

add problems with additional constraints 𝑥- = 0 and 𝑥- = 1
3. If solution is integer valued, return

20

Branch and bound in more detail

A more detailed description of branch and bound

Function: Solve-Relaxation(𝒞):
- Solve linear program plus additional constraints in 𝒞
- Return (objective value 𝑓⋆, solution 𝑥⋆ , and constraint set 𝒞)

Algorithm: Branch-and-Bound
- Push Solve-Relaxation({}) on to frontier set
- Repeat while frontier is not empty:

1. Get lowest cost solution from frontier: (𝑓 , 𝑥, 𝒞)
2. If 𝑧 is integer valued, return 𝑥
3. Else, choose some 𝑥- not integer valued and add

Solve-Relaxation(𝒞 ∪ {𝑥- = 0}),Solve-Relaxation(𝒞 ∪ {𝑥- = 1}),
to the frontier

21

Branch and bound example

 minimize
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to 0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
 𝑥- ∈ 0,1 , 𝑖 = 1,2,3

22

Branch and bound example

 minimize
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to 0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
 𝑥- ∈ [0,1], 𝑖 = 1,2,3

23

Search tree

𝑓⋆ = −0.143,𝑥⋆ = 0.43,1,1 ,𝒞 = {}{}

Frontier

Branch and bound example

 minimize
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to 0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
 𝑥- ∈ [0,1], 𝑖 = 1,2,3

24

Search tree

{}

x1 = 0 x1 = 1

𝑓⋆ = −0.143,𝑥⋆ = 0.43,1,1 ,𝒞 = {}
𝑓⋆ = 0.2,𝑥⋆ = 1, 0.2, 1 ,𝒞 = 𝑥1 = 1
𝑓⋆ = ∞,𝑥⋆ = ∅,𝒞 = 𝑥1 = 0

Frontier

Branch and bound example

 minimize
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to 0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
 𝑥- ∈ [0,1], 𝑖 = 1,2,3

25

Search tree

{}

x1 = 0 x1 = 1

x2 = 0 x2 = 1

𝑓⋆ = −0.143,𝑥⋆ = 0.43,1,1 ,𝒞 = {}
𝑓⋆ = 0.2,𝑥⋆ = 1, 0.2, 1 ,𝒞 = 𝑥1 = 1
𝑓⋆ = 1,𝑥⋆ = 1,1, 1 ,𝒞 = 𝑥1 = 1,𝑥2 = 1
𝑓⋆ = ∞,𝑥⋆ = ∅,𝒞 = 𝑥1 = 0
𝑓⋆ = ∞,𝑥⋆ = ∅,𝒞 = 𝑥1 = 1,𝑥2 = 0

Frontier

Branch and bound example

 minimize
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to 0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
 𝑥- ∈ [0,1], 𝑖 = 1,2,3

26

Search tree

{}

x1 = 0 x1 = 1

x2 = 0 x2 = 1

𝑓⋆ = −0.143,𝑥⋆ = 0.43,1,1 ,𝒞 = {}
𝑓⋆ = 0.2,𝑥⋆ = 1, 0.2, 1 ,𝒞 = 𝑥1 = 1
𝑓⋆ = 1,𝑥⋆ = 1,1, 1 ,𝒞 = 𝑥1 = 1,𝑥2 = 1
𝑓⋆ = ∞,𝑥⋆ = ∅,𝒞 = 𝑥1 = 0
𝑓⋆ = ∞,𝑥⋆ = ∅,𝒞 = 𝑥1 = 1,𝑥2 = 0

Frontier

Upper bounds

Often want to also maintain an upper (feasible) bound when possible

Algorithm: Branch-and-Bound-2
- Push Solve-Relaxation({}) on to frontier set
- Set 𝑓 ̅= ∞
- Repeat while frontier is not empty:

1. Get lowest cost solution from frontier: (𝑓 , 𝑥, 𝒞)
2. Set 𝑥̂ = round(𝑥), if feasible and 𝑐& 𝑥̂ < 𝑓 :̅ 𝑓 ̅= 𝑐& 𝑥,̂ 𝑥̅ = 𝑥̂
3. If 𝑓 ̅− 𝑓 ≤ 𝜖, return 𝑥̅
4. Else, choose some 𝑥- not integer valued and add

Solve-Relaxation(𝒞 ∪ {𝑥- = 0}),Solve-Relaxation(𝒞 ∪ {𝑥- = 1}),
to the frontier

27

Illustration: sudoku

Next class, and on the homework, we’ll see how to formulate sudoku
problems as integer programs

“World’s hardest sudoku”, let’s see how branch and bound fares

28

Extensions

Branch and bound solves problem after expanding 27 nodes

In fact, it’s not that easy to find a sudoku problem where the initial LP
relaxation in not already tight…

29

5 10 15 20 25

50

60

70

80

Iteration

O
bj

ec
tiv

e

Lower bound
Optimal

Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

30

Extension to non-binary / mixed problems

For problems with general integer constraint (not just binary constraints),
the algorithm is virtually identical

Only difference is that we pick non-integer 𝑥T̃ and then add
Solve-Relaxation(𝒞 ∪ {𝑥- ≥ 𝑥T̃ }), Solve-Relaxation(𝒞 ∪ {𝑥- ≤ 𝑥T̃ })
to the frontier

Can deal with mixed integer problems (some non-integer variables), by
simply not branching on non-integer variables, and by resolving over non-
integer variables after rounding integer variables

31

Cutting planes

Unusual to use pure branch and bound to solve real-world problems

Real solvers additionally use a concept called cutting planes to further
restrict the allowable set of non-integer solutions (“Branch and cut”)

Example: Gomory cut, in simplex method, consider row in 𝐴̃ = 𝐴ℐ
−1𝐴,

where corresponding entry in 𝑥ℐ̃ = 𝐴ℐ
−1𝑏 is not integer valued (call the

row 𝑎T̃); add the constraint
𝑎T̃ − 𝑎T̃

& 𝑥 ≥ 𝑥T̃ − 𝑥T̃

We won’t prove it, but not too hard to show that this constraint rules out
the current (non-integer) solution, while not excluding any integer
solutions

32

Off-the-shelf solvers

Extremely well-developed set of commercial solvers are available (free for
academic use), two most well known are CPLEX and Gurobi

Extremely well-vetted set of “pre-solve” problem simplification methods,
simplex and other LP solvers, branch and bound, and cutting plane
generation methods

Open source notably lags behind in this area, but SCIP solver
(http://scip.zib.de/) is the best one I’m aware of (“only” ~7X worse than
CPLEX, Gurobi on benchmark running times)

33

