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Logistics

HW1 aiming to be out tomorrow night, will be due two weeks from 
posting date

Midterm is moving to 2/27 instead of 3/1
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Recall linear program

A large factory makes tables and chairs. Each table returns a profit of 
$200 and each chair a profit of $100. Each table takes 1 unit of metal and 
3 units of wood and each chair takes 2 units of metal and 1 unit of wood. 
The factory has 6K units of metal and 9K units of wood. How many tables 
and chairs should the factory make to maximize profit? 
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x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2
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Challenges of integer programming

The above example was “easy” in that the rounded solution to the LP 
happened to also be a solution to the integer program

In general, integer solution can be arbitrarily far from the LP solution

Can be hard to even find a feasible solution that is integer valued, e.g., 
imagine the task of finding an integer solution to some arbitrary set of 
linear equations 𝐴𝑥 = 𝑏
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Many applications (see next lecture)

Path planning with obstacles

Many problems in game theory

Constraint satisfaction problems

(Exact) most likely assignment in graphical models

Scheduling and unit commitment

Kidney exchange
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Integer linear programming

An optimization problem like linear programming, except that variables are 
required to take on integer values (e.g., in inequality form)

 minimize
$

 𝑐& 𝑥
subject to  𝐺𝑥 ≤ ℎ
               𝑥 ∈ ℤ, (integers)

Not a convex problem, because of integer constraint (set of all integers is not 
a convex set)

Can also consider mixed integer linear programming, with both integer and 
non-integer variables

 minimize
$

  𝑐& 𝑥
subject to  𝐺𝑥 ≤ ℎ
               𝑥- ∈ ℤ, 𝑖 ∈ ℐ ⊆ 1,… ,𝑛
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Other variations

For simplicity, in this lecture we will focus on binary integer programming, 
where 𝑥 variables are in {0,1}

 minimize  
$

𝑐& 𝑥
subject to  𝐺𝑥 ≤ ℎ
               𝑥 ∈ 0,1 ,

This is just for ease of presentation, we will discuss how to adapt all these 
methods for general integer variables

Techniques we present are actually largely applicable to any mixed integer 
programming problem with convex objective and constraints (other than 
integer constraint)
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Difficult of binary integer programming

Theorem: Binary integer programming is NP-hard

Proof: We show this by reduction from 3SAT

Recall the 3SAT satisfiability problem: given binary variables 𝑧1,… 𝑧, ∈
𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 determine if there is some assignment that satisfies a set 

of clauses in conjunctive normal form, e.g.,
𝑧1 ∨ 𝑧2 ∨ ¬𝑧3 ∧ 𝑧2 ∨ ¬𝑧4 ∨ 𝑧5 ∧ ⋯

Formulate this as a binary integer program: 𝑥1,… , 𝑥, ∈ 0,1 , with e.g.,
𝑧1 ∨ 𝑧2 ∨ ¬𝑧3 ⟺ 𝑥1 + 𝑥2 + 1 − 𝑥3 ≥ 1

Finding feasible solution to BIP equivalent to finding satisfying assignment

14



Outline

Introduction

Integer programming

Solving integer programs

Extensions and discussion

15



Solving integer programs

How can we go about finding the solution to the binary integer program
 minimize  

$
𝑐& 𝑥

subject to  𝐺𝑥 ≤ ℎ
               𝑥 ∈ 0,1 ,

Naïve solution: 2, possible assignments of all 𝑥 variables, just try each 
one, return solution with minimum objective value out of those that satisfy 
constraints

In the worst case, we can’t do any better than this, but often it is possible 
to solve the problem much faster in practice
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Key idea: relaxing integer constraints

Consider alternate optimization problem where we relax the constraint 
𝑥- ∈ {0,1} to be 𝑥- ∈ 0,1 ≡ 0 ≤ 𝑥- ≤ 1, forming the linear program:

 minimize  
$

𝑐& 𝑥
subject to  𝐺𝑥 ≤ ℎ
               𝑥 ∈ [0,1],

Key point #1: if the solution to this linear program 𝑥⋆ has all integer 
values, then it is also the solution to the integer program

Key point #2: the optimal objective for the linear program will be lower
than that of the binary integer program

Both points follow trivially from the fact that 0,1 , ⊂ 0,1 ,
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Integer solutions

Integer solutions are more common than you may naively expect, will 
happen whenever the vertices of the polytope all have integer values

E.g., consider trivial optimization problem
 minimize

$
  𝑐& 𝑥

subject to  𝑥 ∈ 0,1 ,

Solution is:

𝑥-
⋆ = {1 if 𝑐- ≤ 0

0 otherwise
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Poll: integer solutions

Consider the linear program, with 𝑐 and ℎ chosen so problem is feasible:
 minimize  

$
𝑐& 𝑥

subject to  𝑥 ∈ 0,1 ,

               𝑥- − 𝑥-+1 ≤ ℎ-, 𝑖 = 1,… , 𝑛 − 1
Will the solutions to this linear program always take on integer values?

1. Yes, for all values of 𝑐 ∈ ℝ, and ℎ ∈ ℝ,−1

2. Yes, for any 𝑐 ∈ ℝ, but only for ℎ ∈ ℤ,−1

3. Yes, but only for 𝑐 ∈ ℤ, and ℎ ∈ ℤ,−1

4. Not necessarily, even for 𝑐 ∈ ℤ, and ℎ ∈ ℤ,−1
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Branch and bound

LP relaxation is an quickly-computable approximation which gives us a 
lower bound on the true solution: sounds a lot like an admissible 
heuristic…

This leads us to the branch and bound algorithm: this is just greedy 
informed search (i.e., 𝑓 𝑠 = ℎ(𝑠), no path cost, just heuristic cost), 
applied using LP relaxation as the heuristic

Repeat:
1. Choose relaxed problem from frontier with lowest cost
2. If solution is not integer valued, pick a non-integer variable 𝑥- and 

add problems with additional constraints 𝑥- = 0 and 𝑥- = 1
3. If solution is integer valued, return
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Branch and bound in more detail

A more detailed description of branch and bound

Function: Solve-Relaxation(𝒞):
- Solve linear program plus additional constraints in 𝒞
- Return (objective value 𝑓⋆, solution 𝑥⋆ , and constraint set 𝒞)

Algorithm: Branch-and-Bound
- Push Solve-Relaxation({}) on to frontier set
- Repeat while frontier is not empty:

1. Get lowest cost solution from frontier: (𝑓 , 𝑥, 𝒞)
2. If 𝑧 is integer valued, return 𝑥
3. Else, choose some 𝑥- not integer valued and add

Solve-Relaxation(𝒞 ∪ {𝑥- = 0}),Solve-Relaxation(𝒞 ∪ {𝑥- = 1}), 
to the frontier
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Branch and bound example

 minimize  
$

2𝑥1 + 𝑥2 − 2𝑥3

subject to  0.7𝑥1 + 0.5𝑥2 + 𝑥3 ≥ 1.8
               𝑥- ∈ 0,1 , 𝑖 = 1,2,3
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Upper bounds

Often want to also maintain an upper (feasible) bound when possible

Algorithm: Branch-and-Bound-2
- Push Solve-Relaxation({}) on to frontier set
- Set 𝑓 ̅= ∞
- Repeat while frontier is not empty:

1. Get lowest cost solution from frontier: (𝑓 , 𝑥, 𝒞)
2. Set 𝑥̂ = round(𝑥), if feasible and 𝑐& 𝑥̂ < 𝑓 :̅ 𝑓 ̅= 𝑐& 𝑥,̂ 𝑥̅ = 𝑥̂
3. If 𝑓 ̅− 𝑓 ≤ 𝜖, return 𝑥̅
4. Else, choose some 𝑥- not integer valued and add

Solve-Relaxation(𝒞 ∪ {𝑥- = 0}),Solve-Relaxation(𝒞 ∪ {𝑥- = 1}), 
to the frontier
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Illustration: sudoku

Next class, and on the homework, we’ll see how to formulate sudoku
problems as integer programs

“World’s hardest sudoku”, let’s see how branch and bound fares
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Extensions

Branch and bound solves problem after expanding 27 nodes

In fact, it’s not that easy to find a sudoku problem where the initial LP 
relaxation in not already tight…
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Extension to non-binary / mixed problems

For problems with general integer constraint (not just binary constraints), 
the algorithm is virtually identical

Only difference is that we pick non-integer 𝑥T̃ and then add 
Solve-Relaxation(𝒞 ∪ {𝑥- ≥ 𝑥T̃ }), Solve-Relaxation(𝒞 ∪ {𝑥- ≤ 𝑥T̃ }) 
to the frontier

Can deal with mixed integer problems (some non-integer variables), by 
simply not branching on non-integer variables, and by resolving over non-
integer variables after rounding integer variables
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Cutting planes

Unusual to use pure branch and bound to solve real-world problems

Real solvers additionally use a concept called cutting planes to further 
restrict the allowable set of non-integer solutions (“Branch and cut”)

Example: Gomory cut, in simplex method, consider row in 𝐴̃ = 𝐴ℐ
−1𝐴, 

where corresponding entry in 𝑥ℐ̃ = 𝐴ℐ
−1𝑏 is not integer valued (call the 

row 𝑎T̃); add the constraint
𝑎T̃ − 𝑎T̃

& 𝑥 ≥ 𝑥T̃ − 𝑥T̃

We won’t prove it, but not too hard to show that this constraint rules out 
the current (non-integer) solution, while not excluding any integer 
solutions
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Off-the-shelf solvers

Extremely well-developed set of commercial solvers are available (free for 
academic use), two most well known are CPLEX and Gurobi

Extremely well-vetted set of “pre-solve” problem simplification methods, 
simplex and other LP solvers, branch and bound, and cutting plane 
generation methods

Open source notably lags behind in this area, but SCIP solver 
(http://scip.zib.de/) is the best one I’m aware of (“only” ~7X worse than 
CPLEX, Gurobi on benchmark running times) 
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