15-780 — Graduate Artificial Intelligence:
Optimization

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University
Spring 2017

Outline

Introduction to optimization
Types of optimization problems, convexity

Solving optimization problems

Logistics

HWO, some unintentional ambiguity about “no late days” criteria

To be clear, in all future assignments, the policy is:
You have 5 late days, no more than 2 on any assignment

If you use up your five late days, you will receive 20% off per day for
these two days

If you submit any homework more than 2 days late, you will receive
zero credit

All homework, both programming and written portions, must be written
up independently

All students who submitted HWO have been taken off waitlist

Outline

Introduction to optimization

Continuous optimization

The problems we have seen so far (i.e., search) in class involve making
decisions over a discrete space of choices

An amazing property:

[Disoretesearch | (Gonvex) optimization_
Discrete Continuous
M Finite Infinite

Exponential Polynomial

One of the most significant trends in Al in the past 15 years has been the
integration of optimization methods throughout the field

Optimization definitions

We'll write optimization problems like this:
minimize f(x)
X
subject to x € €

which should be interpreted to mean: we want to find the value of x that
achieves the smallest possible value of f(x), out of all points in €

Important terms:
x € R™ — optimization variable (vector with n real-valued entries)
f:R™ — R — optimization objective
¢ C R™ - constraint set
r* = argmin f(x) — optimal solution
zel

fr=flzr) = Iaflelél f(zx) — optimal objective

Example: Weber point

Given a collection of cities (assume
on 2D plane) how can we find the
location that minimizes the sum of
distances to all cities?

VERMONT

NEW
HAMPSHIRE

AAAAAA
o

Bp—qn
MASSACHUSETELS)

Denote the locations of the cities as
y(1> y(m)

‘CONNECTICUT
Rl

’ooo,

BRNNSYLVANIA New.York

Phil7~~phia

Write as the optimization problem:

m
minimize ZHJ? — y(m>H2
T =

MARYLAND NEW JERSEY

Example: image deblurring

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure from (O’Connor and Vandenberghe, 2014)

Given corrupted image Y € R™*™ reconstruct image by solving
optimization problem:

1
mlmmlze Z‘Y (K * X) Z]’ —|—)\Z(X — X, j+1) + (Xi—i—l,j _X'ij)2>7
iJ]

where K * denotes convolution with a blurring filter

Example: robot trajectory planning

Many robotic planning tasks are more
complex than shortest path, e.g. have
robot dynamics, require “smooth” controls

Common to formulate planning problem as
an optimization task

Robot state x, and control inputs wu,

minimize ZHutHZ
L1.7 U171

Figure from (Schulman et al., 2014)

SU—bJeCt to xt—|—1 fdynamics (mtv ut)
x, € FreeSpace, Vt
T, = I Tp=21

init» goal

Example: machine learning

As we will see in much more detail shortly, virtually all (supervised)
machine learning algorithms boil down to solving an optimization problem
™m

C. (4)) ,,(?)
mlnlemlze;E(hg(ﬂ?), y')

Where %) € X are inputs, y'*) € ¥ are outputs, ¢ is a loss function, ad
hg is a hypothesis function parameterized by 6, which are the parameters
of the model we are optimizing over

Much more on this soon

10

The benefit of optimization

One of the key benefits of looking at problems in Al as optimization
problems: we separate out the definition of the problem from the method
for solving it

For many classes of problems, there are off-the-shelf solvers that will et
you solve even large, complex problems, once you have put them in the
right form

11

Outline

Types of optimization problems, convexity

12

Classes of optimization problems

Many different names for types of optimization problems: linear
programming, quadratic programming, nonlinear programming,
semidefinite programming, integer programming, geometric
programming, mixed linear binary integer programming (the list goes on
and on, can all get a bit confusing)

We're instead going to focus on two dimensions: convex vs. NoNconvex
and constrained vs. unconstrained

Constrained A

Unconstrained)

Convex Nonconvex

13

Constrained vs. unconstrained

A A C

> >
I9 X2

minimize f(x) HHTZHIAE f(x)

T subject to x € €

In unconstrained optimization, every point x € R"™ is feasible, so singular
focus is on minimizing f(x)

In contrast, for constrained optimization, it may be difficult to even find a
pointx € €

Often leads to very different methods for optimization (more next lecture)

14

Convex vs. nonconvex optimization

\/f e \”\/ﬁ@)

Convex function Nonconvex function

Originally, researchers distinguished between linear (easy) and nonlinear
(hard) problems

But in 80s and 90s, it became clear that this wasn’t the right distinction,
key difference is between convex and nonconvex problems

Convex problem:
minimize f(x)
T
subject to x € €

Where f is a convex function and € is a convex set

15

Convex sets

A set € is convex if, forany z,y € Cand0 <60 <1
Or+ (1—0)y e

N\

Convex set Nonconvex set
Examples:

All points € = R"

Intervals € = {x € R"™| | < x < u} (elementwise inequality)
Linear equalities € = {x € R"™"| Az = b} (for A € R™*™ b € R™)
Intersection of convex sets € =" €,

16

Convex functions

A function f:R™ — Ris convex if, forany z,y e R and 0 < 6 <1
fl0x+(1=0)y) <0f(x)+(1—-0)f(y)

Convex functions “curve upwards” (or at least not downwards)
If fis convex then — f is concave

If fis both convex and concave, it is affine, must be of form:

n

f(z) :Zaixi—l_b

1=1

17

Examples of convex functions

Exponential: f(x) = exp(ax), a € R
Negative logarithm: f(x) = —log x, with domain = > 0
Squared Euclidean norm: f(z) = |z|3 =x"2=3]" o7

Euclidean norm: f(x) = ||zl

Non-negative weighted sum of convex functions

f@) =3 wifi(@), w0, convex
1=1

18

Poll: convex sets and functions

Which of the following functions or sets are convex

1. A union of two convex sets € = €, U,
2. Theset{r € R?|lz > 0,z,2y > 1}
3. Thefunction f:R? — R, f(x) = 2,

4. The functionf:R? — R, f(z) = 25 + 23 + 2,2

19

Convex optimization

The key aspect of convex optimization problems that make them
tractable is that all local optima are global optima

Definition: a point x is globally optimal if x is feasible and there is no
feasible 3 such that f(y) < f(x)

Definition: a point x is locally optimal if x is feasible and there is some
R > 0 such that for all feasible y with |z — y|, < R, f(x) < f(y)

Theorem: for a convex optimization problem all locally optimal points are
globally optimal

20

Proof of global optimality

Proof: Given a locally optimal x (with optimality radius R), and suppose there
exists some feasible y such that f(y) < f(x)

Now consider the point

R

z=0x+ (1—0)y, 0=1—
4 2~

Since x,y € C (feasible set), we also have z € € (by convexity of)

Furthermore, since f is convex:

f(z) = f(0x + (1 —0)y) < 0f(x)+ (1 —0)f(y) a: aﬂd

L . R
|z —2lo = |l — (1 =gy + o H ‘

Thus, z is feasible, within radius R of x, and has lower objective value, a
contradiction of supposed local optimality of x

Solving optimization problems

Outline

22

The gradient

A key concept in solving optimization problems is the notation of the
gradient of a function (multi-variate analogue of derivative)

For f: R™ — R, gradient is defined as vector of partial derivatives
"0f (@) A

Oxy | | V.
o 1.t

0z

V. f(z) € R

of (z)

| Oz, | >
L2

Points in “steepest direction” of increase in function f

23

Gradient descent

Gradient motivates a simple algorithm for minimizing f(x): take small
steps in the direction of the negative gradient

Algorithm: Gradient Descent
Given:
Function f, initial point =, step size a > 0
Initialize:
T < I
Repeat until convergence:
<z —aV, f(x)

“Convergence” can be defined in a number of ways

24

Gradient descent works

Theorem: For differentiable f and small enough «, at any point x that is
not a (local) minimum

flz—aV,f(z)) < f(z)
l.e., gradient descent algorithm will decrease the objective

Proof: Any differentiable function f can be written in terms of its Taylor
expansion: f(x +v) = f(x)+ V_ f(z) v+ O(|v]3)

A

f(x +v)

25

Gradient descent works (cont)

Choosing v = —a'V_, f(x), we have
flz—aV,f(z) = f(z) —aV,f(2)'V,f(z) + O(|aV, f(2)]3)
< f(@) —a|V, f(@)]5 + ClaV, f(z)]3

= f(z) = (a—a?O)|V,f(2)]3
< f(z) (for a <1/C and |V, f(z)|5 > 0)
(Watch out: a bit of subtlety of this line, only holds for small oV, f(x))

We are guaranteed to have ||V, f(x)||3> 0 except at optima m

Works for both convex and non-convex functions, but with convex
functions guaranteed to find global optimum

20

Poll: modified gradient descent

Consider an alternative version of gradient descent, where instead of
choosing an update x — aV . f(x), we chose some other direction
x + av where v has a negative inner product with the gradient

V. f(x)lv<0
Will this update, for suitably chosen «, still decrease the objective?
1. No, not necessarily (for either convex or nonconvex functions)
2. Only for convex functions
3. Only for nonconvex functions

4. Yes, for both convex and nonconvex functions

27

Gradient descent in practice

Choice of a matters a lot in practice:
minimize 2z% + 3 + x,x5 — 62, — 51,4

3.0 - 3.0 3.0
2.5 \ 2.5 2.5
2.0 - 2.0 2.0
% 1.5 . Y 1.5 Y 1.5
1.0 - 1.0 1.0
0.5 . 0.5 0.5
0.0 L = 0.0 L . 0.0 L =
0.00.51.01.52.0253.0 0.00.51.01.52.0 2.5 3.0 0.00.51.01.52.0 2.5 3.0
x1 x1 x1
a = 0.05 a=0.2 a=0.42

28

Dealing with constraints, non-differentiability

For settings where we can easily project points onto the constraint set €,
can use a simple generalization called projected gradient descent

Repeat: z < Pp(z —aV,f(z))

If fis not differentiable, but continuous, it still has what is called a
subgradient, can replace gradient with subgradient in all cases (but
theory/practice of convergence is quite different)

29

Optimization in practice

We won’t discuss this too much yet, but one of the beautiful properties of
optimization problems is that there exists a wealth of tools that can solve
them using very simple notation

Example: solving Weber point problem using cvxpy (http://cvxpy.org)

import numpy as np
import cvxpy as cp

n,m = (5,10)

y = np.random.randn(n,m)

X = cp.Variable(n)

f = sum(cp.norm2(x - y[:,1i]) for i in range(m))

cp.Problem(cp.Minimize(f), []).solve()

30

