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Probabilistic graphical models

Probabilistic graphical models are all about representing distributions
𝑝 𝑋

where 𝑋 represents some large set of random variables

Example: suppose 𝑋 ∈ 0,1 $ (𝑛-dimensional random variable), would 
take 2$ − 1 parameters to describe the full joint distribution

Graphical models offer a way to represent these same distributions more 
compactly, by exploiting conditional independencies in the distribution

Note: I’m going to use “probabilistic graphical model” and “Bayesian 
network” interchangeably, even though there are differences
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Bayesian networks

A Bayesian network is defined by
1. A directed acyclic graph, 𝐺 = {𝑉 = 𝑋1,… , 𝑋$ , 𝐸}
2. A set of conditional distributions 𝑝 𝑋+ Parents 𝑋+

Defines the joint probability distribution

𝑝 𝑋 = ∏ 𝑝 𝑋+ Parents 𝑋+

$

+=1

Equivalently: each node is conditionally independent of all non-
descendants given its parents
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Example Bayesian network

Conditional independencies let us simply the joint distribution:

𝑝 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑝 𝑋1 𝑝 𝑋2 𝑋1 𝑝 𝑋3 𝑋1, 𝑋2 𝑝 𝑋4 𝑋1, 𝑋2, 𝑋3
 
                        = 𝑝 𝑋1 𝑝 𝑋2 𝑋1)𝑝 𝑋3 𝑋2 𝑝 𝑋4 𝑋3
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24 − 1 = 15
parameters 

(assuming binary 
variables)

1 parameter 2 parameters
7 parameters



Poll: Simple Bayesian network

What conditional independencies exist in the following 
Bayesian network?

1. 𝑋1 and 𝑋2 are marginally independent

2. 𝑋4 is conditionally independent of 𝑋1 given 𝑋3

3. 𝑋1 is conditionally independent of 𝑋4 given 𝑋3

4. 𝑋1 is conditionally independent of 𝑋2 given 𝑋3

7

X1 X2

X3

X4



Generative model

Can also describe the probabilistic distribution as a sequential “story”, this 
is called a generative model

𝑋1 ∼ Bernoulli 𝜙 1

𝑋2| 𝑋1 = 𝑥1 ∼ Bernoulli 𝜙31

2

𝑋3| 𝑋2 = 𝑥2 ∼ Bernoulli 𝜙32

3

𝑋4| 𝑋3 = 𝑥3 ∼ Bernoulli 𝜙33

3

“First sample 𝑋1 from a Bernoulli distribution with parameter 𝜙 1 , then 
sample 𝑋2 from a Bernoulli distribution with parameter 𝜙31

2 , where 𝑥1 is 
the value we sampled for 𝑋1, then sample 𝑋3 from a Bernoulli …”
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More general generative models

This notion of a “sequential story” (generative model) is extremely 
powerful for describing very general distributions

Naive Bayes:
𝑌 ∼ Bernoulli 𝜙
𝑋+|𝑌 = 𝑦 ∼ Categorical 𝜙9

+

Gaussian mixture model:
𝑍 ∼ Categorical 𝜙
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇>, Σ>
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More general generative models

Linear regression:
𝑌 |𝑋 = 𝑥 ∼ 𝒩 𝜃A 𝑥, 𝜎2

Changepoint model:
𝑋 ∼ Uniform 0,1

𝑌 |𝑋 = 𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡

Latent Dirichlet Allocation: 𝑀 documents, 𝐾 topics, 𝑁+ words/document
𝜃+ ∼ Dirichlet 𝛼  (topic distributions per document)
𝜙J ∼ Dirichlet 𝛽  (word distributions per topic)
𝑧+,M ∼ Categorical 𝜃+  (topic of 𝑖th word in document)
𝑤+,M ∼ Categorical 𝜙>P,M  (𝑖th word in document)
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The inference problem

Given observations (i.e., knowing the value of some of the variables in a 
model), what is the distribution over the other (hidden) variables?

A relatively “easy” problem if we observe variables at the “beginning” of 
chains in a Bayesian network:

If we observe the value of 𝑋1, then 𝑋2, 𝑋3, 𝑋4 have the same 
distribution as before, just with 𝑋1 “fixed”

But if we observe 𝑋4 what is the distribution over 𝑋1, 𝑋2, 𝑋3?
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Many types of inference problems

Marginal inference: given a generative distribution for 𝑝 X over 𝑋 =
{𝑋1,… , 𝑋$}, determine 𝑝(𝑋ℐ) for ℐ ⊆ {1,… , 𝑛}

MAP inference: determine assignment with the maximum probability

Conditional variants: solve either of the two variants conditioned on 
some observable variables, e.g.

𝑝(𝑋ℐ|𝑋ℰ = 𝑥ℰ)
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Approaches to inference

There are three categories of common approaches to inference (more 
exist, but these are most common)

1. Exact methods: Bayes’ rule or variable elimination methods

2. Sampling approaches: draw samples from the the distribution over 
hidden variables, without construction them explicitly

3. Approximate variational approaches: approximate distributions over 
hidden variables using “simple” distributions, minimizing the 
difference between these distributions and the true distributions
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Exact inference example

Mixture of Gaussians model:

𝑍 ∼ Categorical 𝜙
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇>, Σ>

Task: compute 𝑝(𝑍|𝑥)

In this case, we can solve inference exactly with Bayes’ rule:

𝑝 𝑍 𝑥 = 𝑝 𝑥 𝑍 𝑝 𝑍
∑ 𝑝 𝑥 𝑧 𝑝 𝑧�

>

16

Z X



Exact inference in graphical moels

In some cases, it’s possible to exploit the structure of the graphical model 
to develop efficient exact inference methods

Example: how can I compute 𝑝(𝑋4)?

𝑝 𝑋4 = ∑ 𝑃 𝑥1 𝑃 𝑥2 𝑥1 𝑃 𝑥3 𝑥2 𝑃 𝑋4 𝑥3

�

31,32,33
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Need for approximate inference

In most cases, the exact distribution over hidden variables cannot be 
computed, would require representing an exponentially large distribution 
over hidden variables (or infinite, in continuous case)

𝑍+ ∼ Bernoulli 𝜙+ , 𝑖 = 1,… , 𝑛
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜃A 𝑧, 𝜎2

Distribution 𝑃 (𝑍|𝑥) is a full distribution over 𝑛 binary random variables
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Sample-based inference

If we can draw samples from a posterior distribution, then we can 
approximate arbitrary probabilistic queries about that distribution

A naive strategy (rejection sampling): draw samples from the generative 
model until we find one that matches the observed data, distribution over 
other variables will be samples of the hidden variables given observed 
variables 

As we get more complex models, and more observed variables, 
probability that we see our exact observations goes to zero

20
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Markov Chain Monte Carlo

Let’s consider a generic technique for generating samples from a 
distribution 𝑝 𝑋 (suppose distribution is complex so that we cannot 
directly compute or sample)

Our strategy is going to be to generate samples 𝑋X via some conditional 
distribution 𝑝(𝑋X+1|𝑋X), constructed to guarantee that 𝑝 𝑋X → 𝑝(𝑋)
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Metropolis-Hastings Algorithm

One of the workhorses of modern probabilistic methods

1. Pick some 𝑥0 (e.g., completely randomly)

2. For 𝑡 = 1,2,…
Sample: 

𝑥X̃+1 ∼ 𝑞 𝑋′ 𝑋 = 𝑥X

Set:

𝑥X+1 ≔ 𝑥X̃+1 𝑤. 𝑝. min 1, 𝑝 𝑥X̃+1 𝑞 𝑥X 𝑥X̃+1

𝑝 𝑥X 𝑞 𝑥X̃+1 𝑥X

𝑥X otherwise
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Notes on MH

We choose 𝑞(𝑋′|𝑋) so that we can easily sample from the distribution 
(e.g., for continuous distributions, it’s common to choose)

𝑞 𝑋′ 𝑋 = 𝑥 = 𝒩 𝑥′ 𝑥; 𝐼

Note that even if we cannot compute the probabilities 𝑝(𝑥X) and 𝑝(𝑥X̃+1)
we can often compute their ratio 𝑝(𝑥X̃+1)/𝑝(𝑥X) (requires only being able 
to compute the unnormalized probabilities), e.g., consider the case

23

X1 X2 X3 X4



Proof of MH algorithm

Theorem: For samples generated by MH, 𝑝(𝑋X) → 𝑝 𝑋 as 𝑡 → ∞

Proof: We’ll proceed in two parts.
1. (Detailed balance equations) First, we show that given any 

distribution 𝑝(𝑋) and a conditional distribution 𝑝 𝑋′ 𝑋 , then if 

             𝑝 𝑋 𝑝 𝑋′ 𝑋 = 𝑝 𝑋′ 𝑝 𝑋 𝑋′

and if 𝑝(𝑋′|𝑋) > 0, ∀𝑥, 𝑥′ then repeatedly sampling 𝑥X+1 ∼
𝑝 𝑋′ 𝑋 = 𝑥X gives 𝑝 𝑋X → 𝑝 𝑋

2. The Metropolis-Hastings update gives a distribution that satisfies 
the detailed balance equations
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Proof of MH algorithm (cont)

Part 1: (not a complete proof), detailed balance says that for 𝑥X, 𝑥X+1

𝑝 𝑥X 𝑝 𝑥X+1 𝑥X = 𝑝 𝑥X+1 𝑝 𝑥X 𝑥X+1

Summing both sizes over over 𝑥X gives
∑ 𝑝 𝑥X 𝑝 𝑥X+1 𝑥X

�

3b

= 𝑝 𝑥X+1

which is equivalent to the fact that 𝑝(𝑋) is a stationary distribution of the 
conditional distribution 𝑝(𝑋′|𝑋)

Under some properties of conditional distributions that we won’t cover, 
repeated sampling from the conditional will converge to the stationary 
distribution, assuming e.g. conditional has positive probabilities
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Proof of MH algorithm (cont)

Part 2: First, note that detailed balance is trivially satisfied for 𝑥X+1 = 𝑥X

𝑝 𝑥X+1 𝑥X 𝑝 𝑥X = 𝑝 𝑥X 𝑥X+1)𝑝 𝑥X+1

Now assuming 𝑥X+1 ≠ 𝑥X, suppose that (opposite case proceeds in 
exactly the same manner)

𝑝 𝑥X 𝑞 𝑥X+1 𝑥X ≤ 𝑝 𝑥X+1 𝑞(𝑥X|𝑥X+1)

Then:

min 1, 𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1)
𝑝 𝑥X 𝑞 𝑥X+1 𝑥X) = 1

min 1, 𝑝 𝑥X 𝑞 𝑥X+1 𝑥X)
𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1) 𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1) = 𝑝 𝑥X 𝑞 𝑥X+1 𝑥X)
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Proof of MH algorithm (cont)

So finally, note that

𝑝 𝑥X 𝑝 𝑥X+1 𝑥X = 𝑝 𝑥X 𝑞 𝑥X+1 𝑥X min 1, 𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1)
𝑝 𝑥X 𝑞 𝑥X+1 𝑥X)

                     = 𝑝 𝑥X 𝑞 𝑥X+1 𝑥X

                     = min 1, 𝑝 𝑥X 𝑞 𝑥X+1 𝑥X)
𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1) 𝑝 𝑥X+1 𝑞 𝑥X 𝑥X+1)

                     = 𝑝 𝑥X+1 𝑝 𝑥X 𝑥X+1)

Which shows that the transition probabilities satisfy detailed balance 
equations.

∎
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Poll: Metropolis-Hastings

Given the following true distributions 𝑝 and sampling distributions 𝑞 would 
result in creating accurate samples from the true distribution?

1. 𝑝 𝑥 = 𝒩 0,1 , 𝑞 𝑥′ = 𝑈 0,1

2. 𝑝 𝑥 = 𝑈 0,1 , 𝑞 𝑥′ = 𝒩(0,1)

3. 𝑝 𝑥 = 𝒩 0,1 , 𝑞 𝑥′|𝑥 = 𝑥 + 𝑈 0,1

28



Gibbs sampling

An application of MH to graphical models leads to what is called Gibbs 
sampling

Suppose we want to draw a sample from 𝑝(𝑍|𝑋 = 𝑥) (i.e., sample over 
unobserved variables given observed variables)

1. Initialize 𝑧 randomly

2. Repeat: pick some 𝑖 and sample
𝑧+ ∼ 𝑃 (𝑍+|𝑍¬+ = 𝑧¬+, 𝑋 = 𝑥)

Practical to implement as long as we can sample from a variable given a 
fixed value of all other variables (can exploit independence structure)
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Gibbs as Metropolis-Hastings

We can derive Gibbs sampling as an application of the MH algorithm, 
with the proposal distribution (omitting 𝑋 terms for simplicity)

𝑞+ 𝑍′ 𝑍 = {
𝑧+

′ ∼ 𝑃 (𝑍+|𝑍¬+ = 𝑧¬+) 
𝑧M

′ = 𝑧M

Under this distribution, proposal is always accepted:
𝑝 𝑧′ 𝑞+ 𝑧 𝑧′

𝑝 𝑧 𝑞+ 𝑧′ 𝑧 = 𝑝 𝑧+
′|𝑧¬+

′ 𝑝 𝑧¬+
′ 𝑝(𝑧+|𝑧¬+

′ )
𝑝 𝑧+ 𝑧¬+ 𝑝 𝑧¬+ 𝑝(𝑧+

′|𝑧¬+)
= 𝑝 𝑧+

′|𝑧¬+
′ 𝑝 𝑧¬+

′ 𝑝(𝑧+|𝑧¬+
′ )

𝑝 𝑧+ 𝑧¬+
′ 𝑝 𝑧¬+ 𝑝(𝑧+

′|𝑧¬+
′ ) = 1

Technically, this uses a different 𝑞+ selected at random for each 𝑍+
variable, but we can show that the product of all these individual 𝑞+’s lead 
to a single “global” 𝑞 that still has all the necessary properties
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Maximum likelihood estimation

Our discussion of probabilistic modeling thus far has maintained a 
separation between variables and parameters

Roughly speaking: variables are the things we take expectations over (or 
sample), and parameters are the things we optimize

E.g. maximum likelihood estimation required that we solve the problem 
(given observed data 𝑥 + ):

maximize
g

∑ log 𝑝 𝑥 + ; 𝜃
h

+=1
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Bayesian statistics

In Bayesian statistics, everything (including “parameters” 𝜃) is a random 
variable, we write likelihoods now as

𝑝 𝑥 + 𝜃

In order for these probabilities to be well-defined, we need to define prior 
distribution 𝑝 𝜃; 𝛼 on the “parameters” themselves, where 𝛼 are 
hyperparameters (typically fixed and not estimated at all)

Instead of finding a point estimate of 𝜃, in Bayesian statistics we try to 
quantify the distribution of 𝜃|𝑋 (𝜃 given the observed data), called the 
posterior distribution

𝑝 𝜃 𝑋 = 𝑝 𝑋 𝜃 𝑝 𝜃; 𝛼
∫ 𝑝 𝑋 𝜃 𝑝 𝜃; 𝛼 𝑑𝜃
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Bayesian linear regression

Bayesian linear regression model
𝜃 ∼ 𝒩 0, 𝜌𝐼
𝑌 |𝜃, 𝑥 ∼ 𝒩 𝜃A 𝑥, 𝜎2

Theorem: the posterior distribution is given by
𝜃|𝑥 1:h , 𝑦 1:h ∼ 𝒩(𝜇, Σ)

Σ = 1
𝜌 𝐼 + 1

𝜎2 𝑋A 𝑋
−1

𝜇 = 1
𝜎2 Σ𝑋A 𝑦

Where 𝑋 and 𝑦 and the normal matrix/vector of inputs/outputs

Key point: posterior distribution over 𝜃 is also Gaussians
34



Bayesian linear regression

Proof:

𝑝 𝜃 𝑥 1:h , 𝑦 1:h =
𝑝 𝑦 1:h 𝑥 1:h , 𝜃 𝑝 𝜃

∫ 𝑝 𝑦 1:h 𝑥 1:h , 𝜃′ 𝑝 𝜃′ 𝑑𝜃′

                        = 𝑐1 ⋅ 𝑝 𝑦 1:h 𝑥 1:h , 𝜃 𝑝 𝜃

                        = 𝑐2 ⋅ ∏ exp 1
2𝜎2 𝑦 + − 𝜃A 𝑥 +

2
2 exp 1

2𝜌 𝜃 2
2  

h

+=1

                        = 𝑐3 ⋅ exp 𝜃A 1
2𝜌 𝐼 + 1

2𝜎2 𝑋A 𝑋 𝜃A − 2
2𝜎2 𝜃A 𝑋A 𝑦

                        = 𝑐4 ⋅ exp 1
2 𝜃 − 𝜇 A Σ−1 𝜃 − 𝜇

where Σ = 1
p 𝐼 + 1

q2 𝑋A 𝑋
−1

, 𝜇 = 1
q2 Σ𝑋A 𝑦, which is a Gaussian 

distribution with the given mean and covariance.
35
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Conjugate priors

You may hear this term if you read about Bayesian statistics

All this is saying is the following: suppose
𝜃 ∼ 𝐹 𝛼   (𝐹  is some distribution)
𝑋|𝜃 ∼ 𝐺 𝜃  (𝐺 some other distribution)

Then if 𝐹 is a conjugate prior for 𝐺
𝜃|𝑋 ∼ 𝐹 (𝛼′)

i.e., the posterior has the same type of distribution as the prior

This is quite useful, as it represents just about the only case where we 
can represent the posterior distribution exactly
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Conjugate priors and limitations

Example: Normal distribution is conjugate for mean parameter of Normal 
(see Bayesian linear regression), Inverse Gamma is conjugate for variance 
parameter

Example: Beta distribution is conjugate prior for Bernoulli, Dirichlet is 
conjugate for categorical

In the vast majority of cases, you won’t use exact conjugate priors, 
meaning you can’t come up with a closed form distribution for the 
parameters given the data

Need to resort to approximate inference methods, often sampling
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(Simplified) Bayesian changepoint detection

Changepoint detection:
𝑋 ∼ Uniform 0,1

𝑌 |𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡

Bayesian changepoint detection:
𝑡 ∼ Uniform 0,1
𝜇1, 𝜇2 ∼ 𝒩 0, 𝜈2

𝜎2 ∼ InverseGamma 𝛼, 𝛽

𝑌 |𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡
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Samples from Generative model
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Adding observations

Now suppose we observe the following pairs of 𝑥, 𝑦 samples, this 
updates the posterior over samples
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Probabilistic programming

In recent years, there has been substantial effort to “automate” the 
specification of probabilistic models and inference within these models

In probabilistic programming languages, users specify the model similar 
to writing code, specify the observed variables (if any), and then perform 
inference (usually sampling-based) to compute posterior

Some common examples: PyMC, Stan, Edward
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Deep generative models

Probabilistic models + deep learning (what could be better?)

A huge landscape, going back many years, and we will just briefly 
mention a few models

• (Deep) restricted Boltzmann Machines
• Deep directed models (e.g. variational autoencoders)
• Generative adversarial networks

43



Restricted Boltzmann machine

An early undirected graphical model (Smolensky, 1986) that captures joint 
distribution over (Bernoulli) observed variables 𝑥 and hidden variables 𝑧

Training involves maximum likelihood estimation

maximize
g

 ∑ log 𝑝 𝑥 + ; 𝜃  
h

+=1
≡ maximize

g
 ∑ log ∑ 𝑝 𝑥 + , 𝑧; 𝜃

�

>

h

+=1
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𝑝 𝑥, 𝑧; 𝜃 ∝ exp 𝑥A 𝑊𝑧 + 𝑏1
A 𝑥 + 𝑏2

A 𝑧
𝜃 = {𝑊 , 𝑏1, 𝑏2}



Restricted Boltzmann machine (cont)

Sampling from the distribution 𝑝(𝑥, 𝑧; 𝜃) is also non-trivial, need to resort 
to MCMC methods

But, (block) Gibbs sampling has a nice form for such models: sample 
from 𝑝 𝑥 𝑧; 𝜃 = ∏ 𝑝(𝑥+|𝑧; 𝜃)�

+ then from 𝑝 𝑧 𝑥; 𝜃 = ∏ 𝑝 𝑧+ 𝑥; 𝜃�
+

This sample-based inference is typically used in training

45
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Deep RBMs

We can extend the RBM model to the 
“deep” setting

Training and sampling are still both 
“hard” (in fact even harder now), both 
involve MCMC sampling

Despite this, a lot of interesting tricks 
for training, e.g. in layer-wise fashion 
(e.g. Hinton 2006)

(Above paper partly responsible for 
resurgence of deep learning interest)

46
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Deep directed models

Replace undirected models with directed 
(generative) model

Sampling is now “easy”: supposing some 
simple distribution for 𝑝(𝑧J) (e.g., 
independent Bernoulli) and conditionals, 
just a matter of simple random sampling

Training is still challenging, need inference 
to compute posterior distribution

maximize
g

 ∑ log ∑ 𝑝 𝑥 + , 𝑧; 𝜃
�

>

h

+=1
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𝑝 𝑥, 𝑧1:J; 𝜃 = 𝑝 𝑧J; 𝜃 𝑝 𝑧J−1 𝑧J; 𝜃 ⋯ 𝑝(𝑥|𝑧1; 𝜃)
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Generative adversarial models (GANs)

An alternative approach to training deep directed models: try to build a 
classifier that can “tell apart” generated samples from real data

minimize 
𝜃𝑔

maximize
𝜃𝑑

 1
𝑚 ∑ log 𝑝(𝑥 𝑖 ; 𝜃𝑑) +

𝑚

𝑖=1
𝐄𝑥∼𝑝(𝑥,𝑧;𝜃𝑔)[log(1 − 𝑝(𝑥 ; 𝜃𝑑))]

Training requires solving a min-max optimization 
problem but current results suggest that it can 
generate very realistic samples

Has generated a lot of interest in the past year, 
some impressive results
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Examples of GANs

Samples of bedrooms (no training example looks like these in training set)
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From (Radford et al., 2016)



Text to image generating using GANs

Figure from (Zhang et al., 2016)

Trained on data set of birds and captions, but again, no images just like 
this in the training set
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