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Probability in AI

Basic idea: the real world is probabilistic (at least at the level we can 
observe it), and our reasoning about it needs to be too 

The shift from “logical” to “probabilistic” AI systems (circa 80s, 90s) 
represented a revolution in AI

Probabilistic approaches are now intertwined with virtually all areas of AI
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Example: topic modeling

Can we learn about the content of text documents just be reading 
through them and see what sorts of words “co-occur”

Figure from (Blei et al., 2011) demonstrates words and topics recovered 
from reading 17,000 Science articles
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Figure 2: Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles
from the journal Science. At left is the inferred topic proportions for the example article in
Figure 1. At right are the top 15 most frequent words from the most frequent topics found in
this article.

is drawn from one of the topics (step #2b), where the selected topic is chosen from the
per-document distribution over topics (step #2a).2

In the example article, the distribution over topics would place probability on genetics,
data analysis and evolutionary biology, and each word is drawn from one of those three
topics. Notice that the next article in the collection might be about data analysis and
neuroscience; its distribution over topics would place probability on those two topics. This
is the distinguishing characteristic of latent Dirichlet allocation—all the documents in the
collection share the same set of topics, but each document exhibits those topics with di↵erent
proportion.

As we described in the introduction, the goal of topic modeling is to automatically discover
the topics from a collection of documents. The documents themselves are observed, while
the topic structure—the topics, per-document topic distributions, and the per-document
per-word topic assignments—are hidden structure. The central computational problem for
topic modeling is to use the observed documents to infer the hidden topic structure. This
can be thought of as “reversing” the generative process—what is the hidden structure that
likely generated the observed collection?

Figure 2 illustrates example inference using the same example document from Figure 1.
Here, we took 17,000 articles from Science magazine and used a topic modeling algorithm to
infer the hidden topic structure. (The algorithm assumed that there were 100 topics.) We

2
We should explain the mysterious name, “latent Dirichlet allocation.” The distribution that is used to

draw the per-document topic distributions in step #1 (the cartoon histogram in Figure 1) is called a Dirichlet

distribution. In the generative process for LDA, the result of the Dirichlet is used to allocate the words of the

document to di↵erent topics. Why latent? Keep reading.
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Example: biological networks

Can we automatically determine how the presence or absence of some 
proteins in a cell affect others?

Figure from (Sachs et al., 2005) shows automatically inferred protein 
probability network, which captured most of the known interactions using 
data-driven methods (far less manual effort than previous methods) 
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sample in this data set consists of quantita-
tive amounts of each of the 11 phosphorylated
molecules, simultaneously measured from sin-
gle cells [data sets are downloadable (8)]. For
purposes of illustration, examples of actual
fluorescence-activated cell sorter (FACS) data
plotted in prospective corelationship form are
shown in fig. S1. In most cases, this reflects the
activation state of the kinases monitored, or in
the cases of PIP3 and PIP2, the levels of these
secondary messenger molecules in primary cells,
under the condition measured. Nine stimula-
tory or inhibitory interventional conditions were
used (Table 1) (8). The complete data sets were
analyzed with the Bayesian network structure
inference algorithm (6, 9, 17).

A high-accuracy human primary T cell
signaling causality map. The resulting de
novo causal network model was inferred
(Fig. 3A) with 17 high-confidence causal arcs
between various components. To evaluate the
validity of this model, we compared the mod-
el arcs (and absent potential arcs) with those
described in the literature. Arcs were catego-
rized as the following: (i) expected, for con-
nections well-established in the literature that
have been demonstrated under numerous con-
ditions in multiple model systems; (ii) reported,
for connections that are not well known, but
for which we were able to find at least one
literature citation; and (iii) missing, which indi-
cates an expected connection that our Bayesian
network analysis failed to find. Of the 17 arcs
in our model, 15 were expected, all 17 were
either expected or reported, and 3 were missed
(Fig. 3A and table S1) (8, 18–22). Table 3
enumerates the probable paths of influence
corresponding to model arcs determined by
surveying published reports.

Several of the known connections from
our model are direct enzyme-substrate rela-
tionships (Fig. 3B) (PKA to Raf, Raf to Mek,
Mek to Erk, and Plc-g to PIP2), and one has a
relationship of recruitment leading to phos-
phorylation (Plc-g to PIP3). In almost all cases,

the direction of causal influence was correctly
inferred (an exception was Plc-g to PIP3, in
which case the arc was inferred in the reverse
direction). All the influences are contained
within one global model; thus, the causal di-
rection of arcs is often compelled so that these
are consistent with other components in the
model. These global constraints allowed de-
tection of certain causal influences from mole-
cules that were not perturbed in our assay.
For instance, although Raf was not perturbed
in any of the measured conditions, the meth-
od correctly inferred a directed arc from Raf
to Mek, which was expected for the well-
characterized Raf-Mek-Erk signal transduc-
tion pathway. In some cases, the influence of
one molecule on another was mediated by in-
termediate molecules that were not measured
in the data set. In the results, these indirect
connections were detected as well (Fig. 3B,
panel b). For example, the influence of PKA
and PKC on the MAPKs p38 and Jnk likely
proceeded via their respective (unmeasured)
MAPK kinase kinases. Thus, unlike some
other approaches used to elucidate signaling
networks [for example, protein-protein inter-
action maps (23, 24)] that provide static bio-
chemical association maps with no causal
links, our Bayesian network method can de-
tect both direct and indirect causal connections
and therefore provide a more contextual pic-
ture of the signaling network.

Another feature demonstrated in our mod-
el is the ability to dismiss connections that
are already explained by other network arcs
(Fig. 3B, panel c). This is seen in the Raf-
Mek-Erk cascade. Erk, also known as p44/42,
is downstream of Raf and therefore dependent
on Raf, yet no arc appears from Raf to Erk,
because the connection from Raf to Mek and
the connection from Mek to Erk explain the
dependence of Erk on Raf. Thus, an indirect
arc should appear only when one or more
intermediate molecules is not present in the
data set, otherwise the connection will proceed

via this molecule. The intervening molecule
may also be a shared parent. For example,
the phosphorylation statuses of p38 and Jnk
are correlated (fig. S2), yet they are not di-
rectly connected, because their shared parents
(PKC and PKA) mediate the dependence be-
tween them. Although we cannot know wheth-
er an arc in our model represents a direct or
indirect influence, it is unlikely that our model
contains an indirect arc that is mediated by
any molecule observed in our measurements.
Correlation exists between most molecule
pairs in this data set [per Bonferroni corrected
P value (fig. S2)], which can occur with close-
ly connected pathways. Therefore, the relative
lack of arcs in our model (Fig. 3A) contrib-
uted greatly to the accuracy and interpret-
ability of the inferred model.

A more complex example is the influence
of PKC on Mek, which is known to be me-
diated by Raf (Fig. 3B, panel d). PKC is
known to affect Mek through two paths of
influence, each mediated by a different ac-
tive phosphorylated form of the protein Raf.
Although PKC phosphorylates Raf directly
at S499 and S497, this event is not detected
by our measurements, because we use only
an antibody specific to Raf phosphorylation
at S259 (Table 2) (16). Therefore, our algo-
rithm detects an indirect arc from PKC to
Mek that is mediated by the presumed un-
measured intermediate Raf phosphorylated
at S497 and S499 (18). The PKC-to-Raf arc
represents an indirect influence that proceeds
via an unmeasured molecule, presumed to be
Ras (19, 20). We discussed above the ability
of our approach to dismiss redundant arcs. In
this case, there are two paths leading from
PKC to Mek, because each path corresponds
to a separate means of influence from PKC
to Mek: one via Raf phosphorylated at S259
and the other through Raf phosphorylated at
S497 and S499. Thus, neither path is redun-
dant. This result demonstrates the distinction
that this analysis is sensitive to specific phos-

Fig. 3. Bayesian network inference
results. (A) Network inferred from
flow cytometry data represents ex-
pected outcomes. This network rep-
resents a model average from 500
high-scoring results. High-confidence
arcs, appearing in at least 85% of
the networks, are shown. For clarity,
the names of the molecules are used
to represent the measured phospho-
rylation sites (Table 2). (B) Inferred
network demonstrates several fea-
tures of Bayesian networks. (a) Arcs
in the network may correspond to
direct events or (b) indirect influ-
ences. (c) When intermediate mol-
ecules are measured in the data
set, indirect influences rarely appear as an additional arc. No additional
arc is added between Raf and Erk because the dependence between Raf
and Erk is dismissed by the connection between Raf and Mek, and be-
tween Mek and Erk (for instance, see Fig. 1C). (d) Connections in the
model contain phosphorylation site–specificity information. Because Raf

phosphorylation on S497 and S499 was not measured in our data set,
the connection between PKC and the measured Raf phosphorylation site
(S259) is indirect, likely proceeding via Ras. The connection between PKC
and the undetected Raf phosphorylation on S497 and S499 is seen as an
arc between PKC and Mek.

R E S E A R C H A R T I C L E S

22 APRIL 2005 VOL 308 SCIENCE www.sciencemag.org526



Outline

Probability in AI

Background on probability

Common distributions

Maximum likelihood estimation

Probabilistic graphical models

7



Random variables

A random variable (informally) is a variable whose value is not initial known

Instead, these variables can take on different values (including a possibly 
infinite number), and must take on exactly one of these values, each with 
an associated probability, which all together sum to one

“Weather” takes values sunny, rainy, cloudy, snowy
𝑝 Weather =  sunny = 0.3
𝑝 Weather = rainy = 0.2
…

Slightly different notation for continuous random variables, which we will 
discuss shortly

8



Notation for random variables

In this lecture, we use upper case letters, 𝑋# to denote random variables

For a random variable 𝑋# taking values 1,2,3

𝑝 𝑋# = 
0.1
0.5
0.4

represents the set of probabilities for each value that 𝑋# can take on (this 
is a function mapping values of 𝑋# to numbers that sum to one)

Conversely, we will use lower case 𝑥# to denote a specific value of 𝑋#
(i.e., for above example 𝑥# ∈ 1,2,3 ), and 𝑝 𝑋# = 𝑥# or just 𝑝 𝑥#
refers to a number (the corresponding entry of 𝑝 𝑋# )
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Examples of probability notation

Given two random variables: 𝑋1 with values in {1,2,3} and 𝑋2 with 
values in 1,2 :

𝑝(𝑋1, 𝑋2) refers to the joint distribution, i.e., a set of 6 possible 
values for each setting of variables, i.e. a function mapping 
1,1 , 1,2 , 2,1 ,… to corresponding probabilities)

𝑝(𝑥1, 𝑥2) is a number: probability that 𝑋1 = 𝑥1 and 𝑋2 = 𝑥2

𝑝(𝑋1, 𝑥2) is a set of 3 values, the probabilities for all values of 𝑋1 for 
the given value 𝑋2 = 𝑥2, i.e., it is a function mapping 0,1,2 to 
numbers (note: not probability distribution, it will not sum to one)

We generally call all of these terms factors (functions mapping 
values to numbers, even if they do not sum to one)

10



Operations on probabilities/factors

We can perform operations on probabilities/factors by performing the 
operation on every corresponding value in the probabilities/factors

For example, given three random variables 𝑋1, 𝑋2, 𝑋3:

𝑝 𝑋1, 𝑋2  op  𝑝 𝑋2, 𝑋3

denotes a factor over 𝑋1, 𝑋2, 𝑋3 (i.e., a function over all possible 
combinations of values these three random variables can take), where the 
value for 𝑥1, 𝑥2, 𝑥3 is given by

𝑝 𝑥1, 𝑥2  op  𝑝 𝑥2, 𝑥3
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Conditional probability

The conditional probability 𝑝 𝑋1 𝑋2 (the conditional probability of 𝑋1
given 𝑋2) is defined as

𝑝 𝑋1 𝑋2 = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

Can also be written 𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑋2)𝑝(𝑋2)

More generally, leads to the chain rule:

𝑝 𝑋1,… , 𝑋) = ∏ 𝑝 𝑋# 𝑋1,…𝑋#−1

)

#=1
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Marginalization

For random variables 𝑋1,𝑋2 with joint distribution 𝑝 𝑋1,𝑋2

𝑝 𝑋1 = ∑ 𝑝 𝑋1,𝑥2

�

-2

= ∑ 𝑝 𝑋1 𝑥2 𝑝 𝑥2

�

-2

Generalizes to joint distributions over multiple random variables

𝑝 𝑋1,… ,𝑋# = ∑ 𝑝 𝑋1,… ,𝑋#,𝑥#+1,… ,𝑥)

�

-/+1,…,-2

For 𝑝 to be a probability distribution, the marginalization over all variables 
must be one

∑ 𝑝 𝑥1,… ,𝑥) = 1
�

-1,…,-2
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Bayes’ rule

A straightforward manipulation of probabilities:

𝑝 𝑋1 𝑋2 = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

= 𝑝 𝑋2 𝑋1)𝑝(𝑋1)
𝑝 𝑋2

= 𝑝 𝑋2 𝑋1)𝑝(𝑋1)
∑ 𝑝(𝑋2|𝑥1)

�
-1

𝑝 𝑥1

Poll: I want to know if I have come down with a rate strain of flu 
(occurring in only 1/10,000 people).  There is an “accurate” test for the flu: 
if I have the flu, it will tell me I have 99% of the time, and if I do not have it, 
it will tell me I do not have it 99% of the time.  I go to the doctor and test 
positive.  What is the probability I have the this flu?

1. ≈ 99%
2. ≈ 10%
3. ≈ 1%
4. ≈ 0.1%
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Independence

We say that random variables 𝑋1 and 𝑋2 are (marginally)
independent if their joint distribution is the product of their marginals

𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑝 𝑋2

Equivalently, can also be stated as the condition that

𝑝 𝑋1 𝑋2) = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

= 𝑝 𝑋1 𝑝 𝑋2
𝑝 𝑋2

= 𝑝 𝑋1

 
and similarly   𝑝 𝑋2 𝑋1 = 𝑝 𝑋2
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Conditional independence

We say that random variables 𝑋1 and 𝑋2 are conditionally 
independent given 𝑋3, if

𝑝 𝑋1, 𝑋2|𝑋3 = 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3)

Again, can be equivalently written:

𝑝 𝑋1 𝑋2,X3 = 𝑝 𝑋1, 𝑋2 𝑋3
𝑝 𝑋2 𝑋3

= 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3) 
𝑝 𝑋2 𝑋3

= 𝑝(𝑋1|𝑋3)

And similarly 𝑝 𝑋2 𝑋1, 𝑋3 = 𝑝 𝑋2 𝑋3

Important: Marginal independence does not imply conditional 
independence or vice versa
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Expectation

The expectation of a random variable is denoted:
𝐄 𝑋 = ∑ 𝑥 ⋅ 𝑝 𝑥

�

-

where we use upper case 𝑋 to emphasize that this is a function of the 
entire random variable (but unlike 𝑝(𝑋) is a number)

Note that this only makes sense when the values that the random variable 
takes on are numerical (i.e., We can’t ask for the expectation of the 
random variable “Weather”)

Also generalizes to conditional expectation:
𝐄 𝑋1|𝑥2 = ∑ 𝑥1 ⋅ 𝑝 𝑥1|𝑥2

�

-1
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Rules of expectation

Expectation of sum is always equal to sum of expectations (even when 
variables are not independent):

𝐄 𝑋1 + 𝑋2 = ∑ 𝑥1 + 𝑥2 𝑝(𝑥1, 𝑥2)
�

-1,-2

                = ∑ 𝑥1 ∑ 𝑝 𝑥1, 𝑥2 + ∑ 𝑥2

�

-2

∑ 𝑝 𝑥1, 𝑥2

�

-1

�

-2

�

-1

                = ∑ 𝑥1𝑝 𝑥1 + ∑ 𝑥2𝑝 𝑥2

�

-2

�

-1

= 𝐄 𝑋1 +  𝐄 𝑋2

If 𝑥1, 𝑥2 independent, expectation of products is product of expectations
𝐄 𝑋1𝑋2 = ∑ 𝑥1𝑥2

�

-1,-2

𝑝 𝑥1, 𝑥2 = ∑ 𝑥1𝑥2

�

-1,-2

𝑝 𝑥1 𝑝 𝑥2

             = ∑ 𝑥1𝑝 𝑥1 ∑ 𝑥2𝑝 𝑥2 =
�

-2

�

-1

𝐄 𝑋1 𝐄 𝑋2
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Variance

Variance of a random variable is the expectation of the variable minus its 
expectation, squared

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = ∑ 𝑥 − 𝐄 𝑥 2𝑝 𝑥
�

-
           = 𝐄 𝑋2 − 2𝑋𝐄 𝑋 + 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2

Generalizes to covariance between two random variables
𝐂𝐨𝐯 𝑋1, 𝑋2 = 𝐄 𝑋1 − 𝐄 𝑋1 𝑋2 − 𝐄 𝑋2
                  = 𝐄 𝑋1𝑋2 − 𝐄 𝑋1 𝐄[𝑋2]

19



Infinite random variables

All the math above works the same for discrete random variables that can 
take on an infinite number of values (I’m talking about countably infinite 
values here)

The only difference is that 𝑝(𝑋) (obviously) cannot be specified by an 
explicit dictionary mapping variable values to probabilities, need to specify 
the functional form that produces probabilities

To be a probability, we still must have ∑ 𝑝 𝑥 = 1�
-

Example:

𝑃 𝑋 = 𝑘 = 1
2

>
, 𝑘 = 1,… , ∞

20



Continuous random variables

For random variables taking on continuous values (we’ll only consider 
real-valued distributions), we need some slightly different mechanisms

As with infinite discrete variables, the distribution 𝑝(𝑋) needs to be 
specified as a function: here is referred to as a probability density 
function (PDF) and it must integrate to one ∫ 𝑝 𝑥 𝑑𝑥 = 1�

ℝ

For any interval 𝑎, 𝑏 , we have that 𝑝 𝑎 ≤ 𝑥 ≤ 𝑏 = ∫ 𝑝 𝑥 𝑑𝑥F
G

(with 
similar generalization to multi-dimensional random variables)

Can also be specified by their cumulative distribution function (CDF), 

𝐹 𝑎 = 𝑝 𝑥 ≤ 𝑎 = ∫ 𝑝(𝑥)
G

∞
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Bernoulli distribution

A simple distribution over binary {0,1} random variables
𝑝 𝑋 = 1; 𝜙 = 𝜙, 𝑃 𝑋 = 0; 𝜙 = 1 − 𝜙

where 𝜙 ∈ [0,1] is the parameter that governs the distribution 

Expectation is just 𝐄 𝑥 = 𝜙 (but not very common to refer to it this way, 
since this would imply that the {0,1} terms are actual real-valued 
numbers)

23



Categorical distribution

This is the discrete distribution we’ve mainly considered so far, a 
distribute over finite discrete elements with each probability specified

Written generically as:
𝑝 𝑋 = 𝑖; 𝜙 = 𝜙#

where 𝜙1,…𝜙> ∈ [0,1] are the parameters of the distribution (the 
probability of each random variable, must sum to one)

Note: we could actually parameterize just using 𝜙1,…𝜙>−1, since this 
would determine the last elements

Unless the actual numerical value of the 𝑖’s are relevant, it doesn’t make 
sense to take expectations of a categorical random variable

24



Distribution over real-valued numbers, empirically the most common 
distribution in all of data science (not in data itself, necessarily, but for 
people applying data science), the standard “bell curve”:

Probability density function:

𝑝 𝑥; 𝜇, 𝜎2 = 1
2𝜋𝜎2 1/2 exp − 𝑥 − 𝜇 2

2𝜎2 ≡ 𝒩 𝑥; 𝜇, 𝜎2

with parameters 𝜇 ∈ ℝ (mean) and 𝜎2 ∈ ℝ+ (variance)

Gaussian distribution

25
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Multivariate Gaussians

The Gaussian distribution is one of the few distributions that generalizes 
nicely to higher dimensions

We’ll discuss this in much more detail when we talk about anomaly 
detection and the mixture of Gaussians model, but for now, just know 
that we can also write a distribution over random vectors 𝑥 ∈ ℝ)

𝑝 𝑥; 𝜇, Σ = 1
2𝜋Σ 1/2 exp − 𝑥 − 𝜇 S Σ−1 𝑥 − 𝜇

where 𝜇 ∈ ℝ) is mean and Σ ∈ ℝ)×) is covariance matrix, and ⋅
denotes the determinant of a matrix

26



Exponential distribution

A one-sided Laplace distribution, often used to model arrival times

Probability density function:
𝑝 𝑥; 𝜆 = 𝜆 exp −𝜆𝑥

with parameter 𝜆 ∈ ℝ+ (mean/variance 𝐄 𝑋 = 1/𝜆, 𝐕𝐚𝐫 𝑥 = 1/𝜆2)

27
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Estimating the parameters of distributions

We’re moving now from probability to statistics

The basic question: given some data 𝑥 1 ,… , 𝑥 V , how do I find a 
distribution that captures this data “well”?

In general (if we can pick from the space of all distributions), this is a hard 
question, but if we pick from a particular parameterized family of 
distributions 𝑝 𝑋; 𝜃 , the question is (at least a little bit) easier

Question becomes: how do I find parameters 𝜃 of this distribution that fit 
the data?

29



Maximum likelihood estimation

Given a distribution 𝑝 𝑋; 𝜃 , and a collection of observed (independent) 
data points 𝑥 1 ,… , 𝑥 V , the probability of observing this data is simply

𝑝 𝑥 1 ,… , 𝑥 V ; 𝜃 = ∏ 𝑝 𝑥 # ; 𝜃
V

#=1
 

Basic idea of maximum likelihood estimation (MLE): find the 
parameters that maximize the probability of the observed data

maximize
X

 ∏ 𝑝 𝑥 # ; 𝜃  ≡  maximize
X

V

#=1
 ℓ 𝜃 = ∑ log 𝑝 𝑥 # ; 𝜃

V

#=1

where ℓ 𝜃 is called the log likelihood of the data

Seems “obvious”, but there are many other ways of fitting parameters
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Parameter estimation for Bernoulli

Simple example: Bernoulli distribution
𝑝 𝑋 = 1; 𝜙 = 𝜙, 𝑝 𝑋 = 0; 𝜙 = 1 − 𝜙

Given observed data 𝑥 1 ,… , 𝑥 V , the “obvious” answer is:

𝜙 ̂ = #1’s
# Total =

∑ 𝑥 #V
#=1
𝑚

But why is this the case?

Maybe there are other estimates that are just as good, i.e.?

𝜙 =
∑ 𝑥 #V

#=1 + 1
𝑚 + 2
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MLE for Bernoulli

Maximum likelihood solution for Bernoulli given by

maximize
\

 ∏ 𝑝 𝑥 # ; 𝜙
V

#=1
= maximize 

\
∏ 𝜙- / 1 − 𝜙 1−- /
V

#=1

Taking the negative log of the optimization objective (just to be consistent 
with our usual notation of optimization as minimization)

maximize
\

 ℓ 𝜙 = ∑ 𝑥 # log 𝜙 + 1 − 𝑥 # log 1 − 𝜙
V

#=1

Derivative with respect to 𝜙 is given by
𝑑

𝑑𝜙 ℓ 𝜙 = ∑ 𝑥 #

𝜙 − 1 − 𝑥 #

1 − 𝜙 =
∑ 𝑥 #V

#=1
𝜙 −

V

#=1

∑ (1 − 𝑥 # )V
#=1

1 − 𝜙

32



MLE for Bernoulli, continued

Setting derivative to zero gives:

∑ 𝑥 #V
#=1

𝜙 −
∑ (1 − 𝑥 # )V

#=1
1 − 𝜙 ≡ 𝑎

𝜙 − 𝑏
1 − 𝜙 = 0

⟹ 1 − 𝜙 𝑎 = 𝜙𝑏

⟹ 𝜙 = 𝑎
𝑎 + 𝑏 =

∑ 𝑥 #V
#=1
𝑚

So, we have shown that the “natural” estimate of 𝜙 actually corresponds 
to the maximum likelihood estimate
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MLE for Gaussian, briefly

For Gaussian distribution
𝑝 𝑥; 𝜇, 𝜎2 = 2𝜋𝜎2 −1/2 exp − 1/2 𝑥 − 𝜇 2/𝜎2

Log likelihood given by:

ℓ 𝜇, 𝜎2 = −𝑚1
2 log 2𝜋𝜎2 − 1

2∑ 𝑥 # − 𝜇 2

𝜎2

V

#=1

Derivatives (see if you can derive these fully):
𝑑

𝑑𝜇 ℓ 𝜇,𝜎2 = − 1
2 ∑ 𝑥 # − 𝜇

𝜎2

V

#=1
= 0 ⟹ 𝜇 = 1

𝑚 ∑ 𝑥 #
V

#=1
𝑑

𝑑𝜎2 ℓ 𝜇,𝜎2 = − 𝑚
2𝜎2 + 1

2 ∑ 𝑥 # − 𝜇 2

𝜎2 2

V

#=1
= 0 ⟹ 𝜎2 = 1

𝑚 ∑ 𝑥 # − 𝜇 2
V

#=1

34



Machine learning via maximum likelihood

Many machine learning algorithms (specifically the loss function 
component) can be interpreted as maximum likelihood estimation

Logistic regression:

minimize
X

 ∑ log (1 + exp −𝑦 # ⋅ ℎX 𝑥 #
V

#=1
 

 Softmax (multiclass logistic) regression:

minimize
X

 ∑ log ∑ exp ℎX 𝑥 #
`

>

`=1
− ℎX 𝑥 # S 𝑦 #

V

#=1

Where did these come from?
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Logistic model

Suppose our random variable 𝑌 takes on values in {−1,+1} and we 
want to model the condition distribution 𝑝(𝑌 |𝑋) as a function of 𝜃S 𝑥 for 
some parameters 𝜃

Since probabilities must be positive, let’s look at the distribution
𝑝 𝑦 = +1 𝑥; 𝜃 ∝ exp 𝜃S 𝑥 , 𝑝 𝑦 = −1 𝑥; 𝜃 ∝ 1

Then, because the actual probability values need to sum to one

𝑝 𝑦 = +1|𝑥; 𝜃 = exp 𝜃S 𝑥
1 + exp 𝜃S 𝑥 = 1

1 + exp −𝜃S 𝑥

This last term is called a logistic (or sigmoid) 
function 𝜎 𝑧 = 1/(1 + exp(−𝑧))
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Logistic probability model

Under linear logistic model we can write the likelihood as
𝑝 𝑦 𝑥; 𝜃 = 𝜎(𝑦 ⋅ 𝜃S 𝑥)

Maximum likelihood estimate for 𝜃 is then given by

maximize
X

∑ log 𝑝(𝑦 # |𝑥 # ; 𝜃)
V

#=1

   ≡ maximize
X

∑ log 1
1 + exp −𝑦 # ⋅ 𝜃S 𝑥 #

V

#=1

   ≡ minimize
X

∑ log (1 + exp −𝑦 # ⋅ ℎX 𝑥 #
V

#=1
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Softmax regression model

If instead 𝑌 takes on values in {1,… , 𝑘}, with
𝑝 𝑦 = 𝑗 𝑥; 𝜃 ∝ exp 𝜃`

S 𝑥

Then 

𝑝 𝑦 = 𝑗 𝑥; 𝜃 =
exp 𝜃`

S 𝑥
∑ exp 𝜃e

S 𝑥>
e=1

log 𝑝 𝑦 = 𝑗 𝑥; 𝜃 = 𝜃`
S 𝑥 − log ∑ exp 𝜃e

S 𝑥
>

e=1

⟹  minimize
X

 ∑ log ∑ exp 𝜃e
S 𝑥 #

>

e=1
− 𝜃f /

S 𝑥 #
V

#=1
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Least squares

In linear regression, assume 
𝑦 = 𝜃S 𝑥 + 𝜖, 𝜖 ∼ 𝒩 0, 𝜎2

⟺ 𝑝 𝑦 𝑥; 𝜃 = 𝒩 𝜃S 𝑥, 𝜎2

Then the maximum likelihood estimate is given by

maximize
X

∑ log 𝑝 𝑦 # 𝑥 # ; 𝜃) ≡
V

#=1
minimize

X
∑ 𝑦 # − 𝜃S 𝑥 # 2
V

#=1

i.e., the least-squares loss function can be viewed as MLE under 
Gaussian errors

Other approaches possible too: absolute loss function can be viewed as 
MLE under Laplace errors
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Probabilistic graphical models

Probabilistic graphical models are all about representing distributions
𝑝 𝑋

where 𝑋 represents some large set of random variables

Example: suppose 𝑋 ∈ 0,1 ) (𝑛-dimensional random variable), would 
take 2) − 1 parameters to describe the full joint distribution

Graphical models offer a way to represent these same distributions more 
compactly, by exploiting conditional independencies in the distribution

Note: I’m going to use “probabilistic graphical model” and “Bayesian 
network” interchangeably, even though there are differences
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Bayesian networks

A Bayesian network is defined by
1. A directed acyclic graph, 𝐺 = {𝑉 = 𝑋1,… , 𝑋) , 𝐸}
2. A set of conditional distributions 𝑝 𝑋# Parents 𝑋#

Defines the joint probability distribution

𝑝 𝑋 = ∏ 𝑝 𝑋# Parents 𝑋#

)

#=1

Equivalently: each node is conditionally independent of all non-
descendants given its parents
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Example Bayesian network

Conditional independencies let us simply the joint distribution:

𝑝 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑝 𝑋1 𝑝 𝑋2 𝑋1 𝑝 𝑋3 𝑋1, 𝑋2 𝑝 𝑋4 𝑋1, 𝑋2, 𝑋3
 
                        = 𝑝 𝑋1 𝑝 𝑋2 𝑋1)𝑝 𝑋3 𝑋2 𝑝 𝑋4 𝑋3
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24 − 1 = 15
parameters 

(assuming binary 
variables)

1 parameter 2 parameters
7 parameters



Generative model

Can also describe the probabilistic distribution as a sequential “story”, this 
is called a generative model

𝑋1 ∼ Bernoulli 𝜙 1

𝑋2| 𝑋1 = 𝑥1 ∼ Bernoulli 𝜙-1

2

𝑋3| 𝑋2 = 𝑥2 ∼ Bernoulli 𝜙-2

3

𝑋4| 𝑋3 = 𝑥3 ∼ Bernoulli 𝜙-3

3

“First sample 𝑋1 from a Bernoulli distribution with parameter 𝜙 1 , then 
sample 𝑋2 from a Bernoulli distribution with parameter 𝜙-1

2 , where 𝑥1 is 
the value we sampled for 𝑋1, then sample 𝑋3 from a Bernoulli …”
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More general generative models

This notion of a “sequential story” (generative model) is extremely 
powerful for describing very general distributions

Naive Bayes:
𝑌 ∼ Bernoulli 𝜙
𝑋#|𝑌 = 𝑦 ∼ Categorical 𝜙f

#

Gaussian mixture model:
𝑍 ∼ Categorical 𝜙
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇q, Σq
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More general generative models

Linear regression:
𝑌 |𝑋 = 𝑥 ∼ 𝒩 𝜃S 𝑥, 𝜎2

Changepoint model:
𝑋 ∼ Uniform 0,1

𝑌 |𝑋 = 𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡

Latent Dirichlet Allocation: 𝑀 documents, 𝐾 topics, 𝑁# words/document
𝜃# ∼ Dirichlet 𝛼  (topic distributions per document)
𝜙> ∼ Dirichlet 𝛽  (word distributions per topic)
𝑧#,` ∼ Categorical 𝜃#  (topic of 𝑖th word in document)
𝑤#,` ∼ Categorical 𝜙q/,`  (𝑖th word in document)
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