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Probability in Al

Basic idea: the real world is probabilistic (at least at the level we can
observe it), and our reasoning about it needs to be too

The shift from “logical” to “probabilistic” Al systems (circa 80s, 90s)
represented a revolution in Al

Probabillistic approaches are now intertwined with virtually all areas of Al



Example: topic modeling

Can we learn about the content of text documents just be reading
through them and see what sorts of words “co-occur”

“Genetics” “Evolution” “Disease” “Computers”
human evolution disease computer
. < genome evolutionary host models
°1e ] dna species bacteria information
genetic organisms diseases data
242 genes life resistance computers
> =z sequence origin bacterial system
‘_E ?E* & gene biology new network
e ¢ molecular groups strains systems
sequencing  phylogenetic control model
S 5] map living infectious parallel
” information diversity malaria methods
e g ’I genetics group parasite networks
18 168 16 26 36 46 56 66 76 86 96 mapping new parasites software
Topics project two united new
sequences common tuberculosis simulations

Figure from (Blei et al., 2011) demonstrates words and topics recovered
from reading 17,000 Science articles



Example: biological networks

Can we automatically determine how the presence or absence of some
proteins in a cell affect others?

A Model inference result
o Phospho-Proteins

O phospho-Lipids

O Perturbed in data

Expected 1517

Reported 1717

Reverse d 1
JE—

Missed 3

Figure from (Sachs et al., 2005) shows automatically inferred protein
probability network, which captured most of the known interactions using
data-driven methods (far less manual effort than previous methods)
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Random variables

A random variable (informally) is a variable whose value is not initial known

Instead, these variables can take on different values (including a possibly
infinite number), and must take on exactly one of these values, each with
an associated probability, which all together sum to one

“Weather” takes values {sunny, rainy, cloudy, snowy}
p(Weather = sunny) = 0.3
p(Weather = rainy) = 0.2

Slightly different notation for continuous random variables, which we will
discuss shortly



Notation for random variables

In this lecture, we use upper case letters, X, to denote random variables

For a random variable X, taking values {1,2,3}

0.1
p(X,) = (O.E’))
0.4

represents the set of probabilities for each value that X, can take on (this
is a function mapping values of X, to numbers that sum to one)

Conversely, we will use lower case x,; to denote a specific value of X,
(i.e., for above example x; € {1,2,3}), and p(X, = x,) or just p(x;)
refers to a number (the corresponding entry of p(X,))



Examples of probability notation

Given two random variables: X, with values in {1,2,3} and X, with
values in {1,2}:

p(X,, X,) refers to the joint distribution, i.e., a set of 6 possible
values for each setting of variables, i.e. a function mapping
(1,1),(1,2),(2,1), ... to corresponding probabilities)

p(x{,x,) is a number: probability that X; = x; and X, = x,

p(X1,x,) is a set of 3 values, the probabilities for all values of X for
the given value X, = x5, i.e., it is a function mapping 0,1,2 to
numbers (note: not probability distribution, it will not sum to one)

We generally call all of these terms factors (functions mapping
values to numbers, even if they do not sum to one)
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Operations on probabilities/factors

We can perform operations on probabilities/factors by performing the
operation on every corresponding value in the probabilities/factors

For example, given three random variables X, X,, X5:

p(X1,Xy5) (op) p(Xsy, X3)

denotes a factor over X, X5, X (i.e., a function over all possible
combinations of values these three random variables can take), where the
value for x, x5, x5 IS given by

p(xy,5) (0p) p(Tq,73)
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Conditional probability

The conditional probability p( X | X,) (the conditional probability of X}
given X,) is defined as

p(X17X2>

p<X1‘X2> — p<X2>

More generally, leads to the chain rule:

p(Xy,..., X)) = Hp(Xz"Xp e Xiq)
i=1

12



Marginalization

For random variables X, X, with joint distribution p( X7, X,)

p(Xy) = ZP<X175’32) = ZP(XH%)P(%)

Generalizes 1o joint distributions over multiple random variables

p<X17"'7Xi>: Z p(X17°"7X’I:7x?:—|—17"'7'/’C7’L)

xi+1,...,xn

For p to be a probability distribution, the marginalization over all variables

must be one
Z p(xy,..,x,)=1

:El,...,xn
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Bayes’ rule

A straightforward manipulation of probabilities:

p(X,|X,) = p(Xy, Xy) _ p(Xo|Xy)p(Xy) _ p(Xp|Xy)p(X,)

p(Xy) p(Xy) - lep(X2’$1)p($l)

Poll: | want to know if | have come down with a rate strain of flu
(occurring in only 1/10,000 people). There is an “accurate” test for the flu:
if | have the flu, it will tell me | have 99% of the time, and if | do not have it,
it will tell me | do not have it 99% of the time. | go to the doctor and test
positive. What is the probability | have the this flu?

1. =99%
2. ~10%
3. =1%

4. =0.1%
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Independence

We say that random variables X, and X, are (marginally)
independent if their joint distribution is the product of their marginals

p(Xy, Xy) = p(X7)p(X,)

Equivalently, can also be stated as the condition that

px, 1) (SEELS PO i)

(and similarly) p(X5|X;) = p(X,)
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Conditional independence

We say that random variables X, and X, are conditionally
independent given X, |f

p(X1>X2’X3> ZP(X1‘X3)P<X2‘X3)

Again, can be equivalently written:
p( X, Xo| X p( XXz )p(Xs| X
p(Xl‘X2,X3> (: ( B{ ;J' 3): < 1’ ;{) A(X'2‘ 3))
p(X5[X3) p(X5[X3)
= p(X;|X3)

Important: Marginal independence does not imply conditional
Independence or vice versa
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Expectation

The expectation of a random variable is denoted:
=> =z p(x)

where we use upper case X to emphasize that this is a function of the
entire random variable (but unlike p(X) is a number)

Note that this only makes sense when the values that the random variable
takes on are numerical (i.e., We can’t ask for the expectation of the
random variable “Weather”)

Also generalizes to conditional expectation:
E| X, |z,] = E :971 - p(T|Ts)
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Rules of expectation

Expectation of sum is always equal to sum of expectations (even when
variables are not independent):

E[X; + X,] = Z (z1 + z9)p(T1, T2)

m17x2

= Z% Zp(xth) + 25’32 ZP(%»%)
L1 L2 ) L1
= Z%p(%) + Z%P(%) =E[X,]+ E[X))]
Tq Ty
If x4, 5132 independent expectation of products is product of expeetations

E :%952]9 3317372 E :33195219 5’31 )

Lq,Lg Lq,Lo
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Variance

Variance of a random variable is the expectation of the variable minus its
expectation, squared

Var[X] = E[(X - BIX))? (= S E[sc]>2p<x>)

x

— E[X2 — 2XE[X] + E[X]?] = E[X?] — E[X]?

Generalizes to covariance between two random variables
Cov| X, X,] = E[(X; — E[X,])(X, — E[X},])]
= E[X, X,| - E[X, |E[X)]
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Infinite random variables

All the math above works the same for discrete random variables that can
take on an infinite number of values (I’'m talking about countably infinite
values here)

The only difference is that p(X') (obviously) cannot be specified by an
explicit dictionary mapping variable values to probabilities, need to specify
the functional form that produces probabilities

To be a probability, we still must have » | p(z) =1

Example:
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Continuous random variables

For random variables taking on continuous values (we’ll only consider
real-valued distributions), we need some slightly different mechanisms

As with infinite discrete variables, the distribution p(X') needs to be
specified as a function: here is referred to as a probability density
function (PDF) and it must integrate to one A% p(x)dr =1

For any interval (a, b), we have that p(a < x < b) = fbp(:c)dx (with

a

similar generalization to multi-dimensional random variables)

Can also be specified by their cumulative distribution function (CDF),

Fla) =ple<a) = [ p(a)
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Common distributions

Outline
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Bernoulli distribution

A simple distribution over binary {0,1} random variables
pX=1¢)=0¢, PX=0¢)=1-9¢

where ¢ € [0,1] is the parameter that governs the distribution

Expectation is just E|x] = ¢ (but not very common to refer to it this way,

since this would imply that the {0,1} terms are actual real-valued
numbers)
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Categorical distribution

This is the discrete distribution we’ve mainly considered so far, a
distribute over finite discrete elements with each probability specified

Written generically as:
p(X =1i;0) = ¢,

where ¢4, ... ¢, € [0,1] are the parameters of the distribution (the
probability of each random variable, must sum to one)

Note: we could actually parameterize just using ¢4, ... ¢;._, since this
would determine the last elements

Unless the actual numerical value of the 2’s are relevant, it doesn’t make
sense to take expectations of a categorical random variable
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Gaussian distribution

Distribution over real-valued numbers, empirically the most common
distribution in all of data science (not in data itself, necessarily, but for
people applying data science), the standard “bell curve”:

0.45
0.40
0.35
0.30

< 0.25

= 0.20
0.15
0.10
0.05
0.00

0

M:
o2 =1

-3 -2 -1 0 1 2 3

Probability density function:

1 T — 1)?
p(x; p,0?) = 2ro?y172 &P (—( 202> ) = N(x;p,0°)

with parameters i1 € R (mean) and 0? € R . (variance)
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Multivariate Gaussians

The Gaussian distribution is one of the few distributions that generalizes
nicely to higher dimensions

We'll discuss this in much more detail when we talk about anomaly
detection and the mixture of Gaussians model, but for now, just know
that we can also write a distribution over random vectors x € R"

= ‘27"-213‘1/2 exp(—(z — 1) S (2 — p))

p(x; p, X)

where 1 € R™ is mean and ¥ € R™*™ is covariance matrix, and |-|
denotes the determinant of a matrix
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Exponential distribution

A one-sided Laplace distribution, often used to model arrival times

1.0
0.8
—~ 0.6
B
2 04
0.2
0.0

Probability density function:
p(w; A) = Aexp(—Az)

with parameter A € R, (mean/variance E[X] = 1/, Var[z] = 1/)\?)
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Maximum likelihood estimation

Outline
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Estimating the parameters of distributions

We’re moving now from probability to statistics

The basic question: given some data az<1), ,x(m), how do | find a
distribution that captures this data “well”?

In general (if we can pick from the space of all distributions), this is a hard
question, but if we pick from a particular parameterized family of
distributions p(X; 8), the question is (at least a little bit) easier

Question becomes: how do | find parameters 6 of this distribution that fit
the data”?
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Maximum likelihood estimation

Given a distribution p(X; #), and a collection of observed (independent)
data points (1., ..., ™) the probability of observing this data is simply

=1

Basic idea of maximum likelihood estimation (MLE): find the
parameters that maximize the probability of the observed data

maxi@mize 1:[1 p(x¥;0) = max1m1ze 0(6 Zlogp

where £(6) is called the log likelihood of the data

Seems “obvious”, but there are many other ways of fitting parameters
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Parameter estimation for Bernoulli

Simple example: Bernoulli distribution

pX=L¢)=¢, pX=0¢)=1-¢
Given observed data :1;(1), ,a;(m), the “obvious” answer is:
¢?— #1l's 221 z!?
~ # Total m

But why is this the case?

Maybe there are other estimates that are just as good, i.e.?
S a1

_ Lei=1
= m + 2
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MLE for Bernoulli

Maximum likelihood solution for Bernoulli given by

m m
=1 i=1

Taking the negative log of the optimization objective (just to be consistent
with our usual notation of optimization as minimization)

m

maxiﬁmize (p) = ;($<i> log ¢+ (1 —z")log(1 — ¢))

Derivative with respect to ¢ is given by
d m @) @y ST 2@ S (1 )
— 7 — — 1=1 1=1
o= )

1=1

¢ 1—¢

¢ 1=9¢
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MLE for Bernoulli, continued

Setting derivative to zero gives:

Sret Yra-et) o b
N
= (1 —¢)a = ¢b
_a _ZZ1x(i)
:>¢_a,+b_ m

So, we have shown that the “natural” estimate of ¢ actually corresponds
to the maximum likelihood estimate
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MLE for Gaussian, briefly

For Gaussian distribution
p(z;p,02) = (2mo?) V2 exp(—(1/2)(z — p)? /0?)

Log likelihood given by:

1 1
O, 0%) = —m210g (2mo?) 52

Derivatives (see if you can derive these fully):

d 1 2 — g 1 O~
— Y 2y — _ — — ()= —_ (2)
7 {1 0%) ) =0=u m;aﬁ

=1

d oy m 1 (x(i)_:“)Q_ . (1) 2
R A B el L D Dl
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Machine learning via maximum likelihood

Many machine learning algorithnms (specifically the loss function
component) can be interpreted as maximum likelihood estimation

Logistic regression:

mini@mize ; log(1 + exp (_y(i) - hy (g;(i)))

Softmax (multiclass logistic) regression:

m k
mini@mize Z (logZexp(he(x(i>)j) — he(g;(i))Ty(i))
i=1 j=1

Where did these come from?
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Logistic model

Suppose our random variable Y takes on values in {—1,+1} and we
want to model the condition distribution p(Y|X) as a function of % x for
some parameters 6

Since probabilities must be positive, let’s look at the distribution
p(y = +1]x;0) ccexp(0'x),  ply = —1|;0) x 1

Then, because the actual probability values need to sum to one
exp(6'z) 1
1 +exp(Tx) 14 exp(—0Tx)

1.0

This last term is called a logistic (or sigmoid) ¢

function o(z) = 1/(1 + exp(—=2)) 04

0.2
0.0

p(y = +1jz;0) =

36



Logistic probability model

Under linear logistic model we can write the likelihood as
p(ylz;0) =o(y- 0" x)

Maximum likelihood estimate for 6 is then given by

imi ] ()] (9. g
maxbmlze; og p(y'|x'"; 0)

1
1 + exp(—y® - 0T z(¥)

™m
= maximize E log
0 ,
—1

N (1), (2)
minimize Z_Zl log(1 + exp ( Y\ hy(x ))
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Softmax regression model

If instead Y takes on values in {1, ..., k}, with
p(y = jlz;0) o exp(6; )

Then
. exp (07 )
py = jla;0) = —————
lel eXp(el ZIZ‘)
k
logp(y = jlz;0) = 6Tz —log » _exp(6] z)
=1

m k
— mini@mize Z (logz exp(@fw(i)) _ gg(i)x(z’))
i=1 =1




Least squares

In linear regression, assume
y=0"z+e, e~ N(0,02%)
<= p(ylz;0) = N (0" z,0%)

Then the maximum likelihood estimate is given by

maxi@mize Z log p(y¥|z(V); 0) = mini@mize Z (@) — §T 2()2
i=1 i=1

l.e., the least-squares loss function can be viewed as MLE under
Gaussian errors

Other approaches possible too: absolute loss function can be viewed as
MLE under Laplace errors
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Probabilistic graphical models

Outline
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Probabilistic graphical models

Probabilistic graphical models are all about representing distributions
p(X)

where X represents some large set of random variables

Example: suppose X € {0,1}" (n-dimensional random variable), would
take 2™ — 1 parameters to describe the full joint distribution

Graphical models offer a way to represent these same distributions more
compactly, by exploiting conditional independencies in the distribution

Note: I'm going to use “probabilistic graphical model” and “Bayesian
network” interchangeably, even though there are differences
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Bayesian networks

A Bayesian network is defined by
1. Adirected acyclic graph, G ={V ={X,,..., X, }, F'}
2. A set of conditional distributions p(X;|Parents(X;))

Defines the joint probability distribution
p(X) = Hp(Xi\Parents(Xi))

1=1

Equivalently: each node is conditionally independent of all non-
descendants given its parents
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Example Bayesian network

Conditional independencies let us simply the joint distribution:

p<X17X27X37X4> — P(Xl)p(Xz‘X1>p<X3|X1aXz)P(XzL’XpX27X3)

J

20 —1=15  =p(X)p(Xs|X1)p(X5]X5)p(Xy[X5)
parameters S ——
(assuming binary T %Q '
variables) 7 parameters

1 parameter 2 parameters
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Generative model

Can also describe the probabilistic distribution as a sequential “story”, this
is called a generative model

X5 =
@ @ @ @ X3 Xy = x5 ~ Bernoulli
X4 —

“First sample X; from a Bernoulli distribution with parameter o'V, then

sample X, from a Bernoulli distribution with parameter qﬁfﬁ, where x Is
the value we sampled for X, then sample X5 from a Bernoulli ...”

/\\/\/\\
-
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More general generative models

This notion of a “sequential story” (generative model) is extremely
powerful for describing very general distributions

Naive Bayes:
Y ~ Bernoulli(¢)

XY =y~ Categorical(gb,g))
Gaussian mixture model:

Z ~ Categorical(¢)
X Z=2~N(u,>%,)
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More general generative models

Linear regression:
VX =2~ N0z, 0°)

Changepoint model:
X ~ Uniform(0,1)

2 .
YIX = 2~ N(,ul,cIQ) %fx<t
N (g, 0°) if x>t

Latent Dirichlet Allocation: M documents, K topics, /N, words/document
6, ~ Dirichlet(«) (topic distributions per document)
¢ ~ Dirichlet(3) (word distributions per topic)

z; ; ~ Categorical(6;) (topic of ith word in document)
W, .~ Categorical(qb

i ) (¢th word in document)

Zfi, 7.]
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