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NNs are computation graphs

+

● The left computation graph corresponds to 
the computation which computes f

● Nodes represent “operations”
● Here, θi represents a “weight”, and xi

represents an “input”
● Following the arrow direction computes the 

“forward” pass of the graph

A computation graph shows the structure of some computation in a directed graphical 
form, making partial results more clear.

Node

Input

Weight
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Presentation Notes
A weight can be seen as an additional input to a computation graph, perhaps one that is more associated with the graph (seen frequently in neural networks)
Weights may also be called “parameters”



Structure of Computation Graph

Graph is directed and acyclic
Two types of nodes:

f(x,θ1 , θ2 , ...)

Trainable Node:
Contains one or more “trainable” parameters, 
which are variables affecting the output of the 
graph but can be changed during training. 

f

θ1 , θ2 , ...

x f(x1,x2,...)

Non-trainable Node:
Can have several inputs, but contains no internal 
parameters.

f

x1

x2

...

The input to a node can be 
either an input to the entire 
graph, or it can be the output of 
another node.

The output of a node can feed 
into multiple other nodes.
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A weight can be seen as an additional input to a computation graph, perhaps one that is more associated with the graph (seen frequently in neural networks)
Weights may also be called “parameters”



Forward Pass Example

+

3

-2

12

-10
2

3

Presenter
Presentation Notes
The inputs and weights of the graph are shown in black, and results are shown in blue.
To calculate the output of each node, the partial result along all incoming arrows must be calculated. 
So, starting from the left, the above function can be calculated by breaking down the more complicated function into simpler components (nodes). 



Forward Pass Example
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Forward Pass Example
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A neural network can be viewed as a computation graph, with possibly several outputs. 

For the moment, let’s say we have a desired output.

Training means adjusting the weights so the inputs produce the desired outputs (FOR ALL INPUTS) 
- we do not control the inputs (xi) but we do control the weights (θi)
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Presentation Notes
The inputs and weights of the graph are shown in black, and results are shown in blue.
To calculate the output of each node, the partial result along all incoming arrows must be calculated. 
So, starting from the left, the above function can be calculated by breaking down the more complicated function into simpler components (nodes). 



● Target: desired output for a 
specific input

● Examples of inputs: images and 
the neural net can be used for 
classification, ie the target would 
be the class

Training neural networks

Presenter
Presentation Notes
The arbitrary function can be simple, or complex, but the training data must accurately reflect the desired function. It will soon be apparent that choosing good training data is just as, if not more, important (and challenging) than designing the network itself.

Note that a gradient is calculated for each training example, given the inputs of that training example. (a training example is simply a set of inputs [or x_is], along with a correct target [which may be a label, classification, action, etc])

We know that we can calculate the gradient, as long as we use differentiable functions in all of our nodes. This is because a computation graph is a composition of functions (its nodes), so when all of its nodes are differentiable, the overall graph/function is differentiable (and we can even calculate the gradient).

In this image, the Cat/Dog image is the input, and the label “cat” or “dog” is the target. So, for the image of the cat, we want the output to be “cat”, and the target for that input is “cat”



● In the case of neural networks, we often have a “target”, or desired output for an arbitrary input (e.g. an image 
classification)

● The loss function L is a metric used to measure the “distance” between the output (can be multivalued) with the 
desired output. Example of a loss function is L2 distance.  The loss function outputs a single real number which we 
try to minimize.

Training neural networks
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Note that a gradient is calculated for each training example, given the inputs of that training example. (a training example is simply a set of inputs [or x_is], along with a correct target [which may be a label, classification, action, etc])

We know that we can calculate the gradient, as long as we use differentiable functions in all of our nodes. This is because a computation graph is a composition of functions (its nodes), so when all of its nodes are differentiable, the overall graph/function is differentiable (and we can even calculate the gradient).



● In the case of neural networks, we often have a “target”, or desired output for an arbitrary input (e.g. an image 
classification)

● The loss function L is a metric used to measure the “distance” between the output (can be multivalued) with the 
desired output. Example of a loss function is L2 distance.  The loss function outputs a single real number which we 
try to minimize.

● To “train” a neural network, we want to adjust  the weights of the network such that  the network most accurately 
computes an arbitrary function (output of neural net), which is characterized by training data.

Training neural networks
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● In the case of neural networks, we often have a “target”, or desired output for an arbitrary input (e.g. an image 
classification)

● The loss function L is a metric used to measure the “distance” between the output (can be multivalued) with the 
desired output. Example of a loss function is L2 distance.  The loss function outputs a single real number which we 
try to minimize.

● To “train” a neural network, we want to adjust  the weights of the network such that  the network most accurately 
computes an arbitrary function (output of neural net), which is characterized by training data.

● This can be done by start ing with some init ial weights, then iteratively updating the weights using the gradient 
calculated from each training example (gradient descent).

Training neural networks
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Note that a gradient is calculated for each training example, given the inputs of that training example. (a training example is simply a set of inputs [or x_is], along with a correct target [which may be a label, classification, action, etc])

We know that we can calculate the gradient, as long as we use differentiable functions in all of our nodes. This is because a computation graph is a composition of functions (its nodes), so when all of its nodes are differentiable, the overall graph/function is differentiable (and we can even calculate the gradient).



● In the case of neural networks, we often have a “target”, or desired output for an arbitrary input (e.g. an image 
classification)

● The loss function L is a metric used to measure the “distance” between the output (can be multivalued) with the 
desired output. Example of a loss function is L2 distance.  The loss function outputs a single real number which we 
try to minimize.

● To “train” a neural network, we want to adjust  the weights of the network such that  the network most accurately 
computes an arbitrary function (output of neural net), which is characterized by training data.

● This can be done by start ing with some init ial weights, then iteratively updating the weights using the gradient 
calculated from each training example (gradient descent).

● To update the weights, we need to calculate          . We can do this for any computation graph by using the part ial 
derivative of each node and the chain rule to “propagate” the gradient backwards through the network. This process 
of computing the gradients is called backpropagation .

Training neural networks

Gradient with respect to output
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The arbitrary function can be simple, or complex, but the training data must accurately reflect the desired function. It will soon be apparent that choosing good training data is just as, if not more, important (and challenging) than designing the network itself.

Note that a gradient is calculated for each training example, given the inputs of that training example. (a training example is simply a set of inputs [or x_is], along with a correct target [which may be a label, classification, action, etc])

We know that we can calculate the gradient, as long as we use differentiable functions in all of our nodes. This is because a computation graph is a composition of functions (its nodes), so when all of its nodes are differentiable, the overall graph/function is differentiable (and we can even calculate the gradient).



Training

Compute a gradient for weights (back propagation, explained by example)

Update trainable parameters according to update rule:

Our goal is to minimize the function L, by changing only θ, while only knowing the gradient of L

Gradient descent
What is a gradient?
How do we use it?



Gradient Descent

The gradient tells which direction to update θ, but since the 
neural network is nonlinear, this direction is only valid for small 
changes in θ. Therefore, we weight the “gradient update” to θ 
with a small (generally ~0.001) learning rate (α) to ensure that 
the updates do not overshoot and therefore perform adversarial 
updates.

Gradient descent is like trying to find your way down a mountain 
without an overall map--you simply follow which direction the 
slope points until you reach the bottom.

Note that gradient descent only finds a local minimum, not the 
global minimum. However, in many cases, the local minimum 
will actually be the global minimum.



Simple Gradient Descent Example

Suppose:

Where and                                 (So L(3,-2) = 30)

The gradient will be

If we choose α = 0.1, then our update proceeds as 

The new theta value should decrease the output of L. Checking (L(0.8, -2) = 0.96) shows that  it  does. 

We can repeat  this process until the minimum (θ=0.25) is reached.



Backpropagation Example
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We will compute the gradients of 
the weights of this graph with 
respect to its output.

f1

f2
f3

f4
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The inputs of the graph are shown in red, weights in black, results in blue, and gradients in green.




Backpropagation Example
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The inputs of the graph are shown in red, inputs in black, results in blue, and gradients in green.
The incoming gradient of the final node is 1, since for this example we are trying to compute the gradients of the weights with respect to the output of the computation graph



Backpropagation Example
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The inputs of the graph are shown in dark red, weights in black, results in blue, and gradients in colors

The gradient of f wrt theta 3 is 1 since d/d(theta) (x+theta) = 1  i.e, if you increase theta_3 by 1, the outptut will increase by 1. Likewise, the gradient of y wrt to input is 1 because if you increase input by 1, the output increases by 1








Backpropagation Example
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- The gradient of  f w.r.t the 
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The gradient of theta_3 w.r.t y is 1 since d/d(theta) (x+theta) = 1  i.e, if you increase theta_3 by 1, the ouptut will increase by 1. 

Likewise, the gradient of y wrt to input is 1 because if you increase input by 1, the output increases by 1








Backpropagation Example
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The inputs to the “+” node have a gradient of 1 w.r.t  output  since the partial derivatives of a+b are 1 and 1



Backpropagation Example
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1.0 means that we have a 1:1 relation on the change of the output. So, in this case, increase the input by 5, the output increases by 5, So, if 12 becomes 15, then the output becomes 6. 

IN GRADIENT is the output but since we are going backwards, outputs are inputs. It is like dogs and cats switching roles. 




Backpropagation Example
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Now we calculate the gradient of  f w.r.t θ2
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The inputs of the graph are shown in red, weights in black, results in blue, and gradients in green.


Multiplying by the incoming gradient calculates d y/d \theta_2 via the chain rule.



Backpropagation Example
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Multiplying by the incoming gradient calculates d y/d \theta_2 via the chain rule.



Now we calculate the gradient of  y w.r.t θ2

,   so

The partial derivative of the node can be 
calculated as

Backpropagation Example
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Multiplying by the incoming gradient calculates d y/d \theta_2 via the chain rule.



Backpropagation Example
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Multiplying by the incoming gradient calculates d y/d \theta_2 via the chain rule.



Backpropagation Example
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Multiplying by the incoming 
gradient gives the gradient of f
w.r.t θ2

Now we calculate the gradient of  y w.r.t θ2
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Multiplying by the incoming gradient calculates d y/d \theta_2 via the chain rule.



Backpropagation Example
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If θ2 increases at a rate 1, then output increases at a rate  (-2.0 x 1 = -2), e.g, if θ2 increases by 3, 
then output decreases by 6. (note this is quite the special case because there are no nonlinearities)

Now we calculate the gradient of  y w.r.t θ2
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Multiplying by the incoming 
gradient gives the gradient of f
w.r.t θ2
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The inputs of the graph are shown in red, weights in black, results in blue, and gradients in green.


Multiplying by the incoming gradient calculates d f/d \theta_2 via the chain rule.



1.0

Backpropagation Example
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We repeat the same process to 
calculate the gradient for θ1
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If θ1 increases at a rate 1, then output increases at a rate  3.0 x 1 = 3, ie if T1 increases by 2, then output increases by 6. Look at change in T1 (=2), multiply by 
gradiet (3) = 6. Multiply by 1.0. OR cascade down  (input is 3, the weight is 6, 3x6 = 18. 18 - 10 = 8. 8 + 1 = 9. . (note this is quite the special case because there 
are no nonlinearities)
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Backpropagation Example
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Intuition behind the gradient:
It gives us a number which describes how a change to that number 
affects the output

So, a gradient of 1 means increasing this parameter at a rate 1 will 
increase the output at a rate of 1 as well (there is a 1 to 1 relationship)

Likewise, a larger gradient implies a smaller change in the parameter 
results in a large change in output, and a negative gradient implies that a 
decrease in the parameter results in an increase of the output
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Backpropagation Example
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We can apply the same process for calculating the gradient of 
the weights to calculate the gradients of the inputs.

However, since we cannot change the input of our neural 
network, we do not normally care about these gradients.
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Backpropagation Example
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We can apply the same process for calculating the gradient of 
the weights to calculate the gradients of the inputs.

However, since we cannot change the input of our neural 
network, we do not normally care about these gradients.
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More complicated functions
We can group a collection of nodes in 
the computation graph together to form 
structures which perform more 
complicated tasks.

A neuron in a neural network is one of 
these structures.

+

Presenter
Presentation Notes
Since the composition of differentiable functions is differentiable, and we can calculate the partial derivatives using the chain rule, nodes are often compressed to simplify figures, as shown above.

Note that here, we have hidden the values of the weights of the graph, but they are the same as before:
θ1 = 4
θ2 = 5
θ3 = 1




Neural network node

s

A node in a neural network uses nearly the same 
computation graph as before, but the output is 
passed through a nonlinear activation function, 
which can be either a trainable or non-trainable 
node.

In this case, the activation function is a sigmoid 
function (non-trainable):

This structure of nodes, when grouped together, 
forms a single neuron in the network. 

Generally, a neuron is a linear combination of 
many inputs composed with its nonlinear 
activation function.

+



Activation functions

There are many choices of activation functions
- See wikipedia article on activation functions

Common activation functions include
- identity f(x) = x
- sigmoid f(x) = 1 / (1+e-x)
- inverse tangent  f(x) = tan-1(x)
- rectified linear unit f(x) = max(0, x)
- and more...

The choice of activation function is very important! For hidden 
layers, the activation function must be nonlinear. For all 
activation functions, they ought to be differentiable.

The most common practice is to use ReLU on hidden layers, 
and identity on your output layer.

Presenter
Presentation Notes
Choice of activation function, particularly on the last layer, can affect the behavior of the neural network greatly. For example, if ReLU is used on the last layer, there is no way for the network to output negative values. Likewise, sigmoid only outputs numbers between 0 and 1. Arctan looks similar, but it ranges from -1 to 1. 

Additionally, there are additional activation functions which are useful to use on the output layer of the neural network, particularly the softmax function, not shown here. The softmax function rescales the outputs so they all fall between 0 and 1, and sum to 1. This is particularly useful when approximating probability distributions, or describing some sort of policy over a set of actions.

Note that some activation functions are trainable, and therefore have parameters which may be learned.

https://en.wikipedia.org/wiki/Activation_function


● In the case of neural networks, we often have a “target”, or desired output for an arbitrary input (e.g. an image 
classification)

● The loss function L is a metric used to measure the “distance” between the output (can be multivalued) with the 
desired output. Example of a loss function is L2 distance.  The loss function outputs a single real number which we 
try to minimize.

● To “train” a neural network, we want to adjust  the weights of the network such that  the network most accurately 
computes an arbitrary function (output of neural net), which is characterized by training data.

● This can be done by start ing with some init ial weights, then iteratively updating the weights using the gradient 
calculated from each training example (gradient descent).

● To update the weights, we need to calculate          . We can do this for any computation graph by using the part ial 
derivative of each node and the chain rule to “propagate” the gradient backwards through the network.

Backpropagation in neural networks

Presenter
Presentation Notes
The arbitrary function can be simple, or complex, but the training data must accurately reflect the desired function. It will soon be apparent that choosing good training data is just as, if not more, important (and challenging) than designing the network itself.

Note that a gradient is calculated for each training example, given the inputs of that training example. (a training example is simply a set of inputs [or x_is], along with a correct target [which may be a label, classification, action, etc])

We know that we can calculate the gradient, as long as we use differentiable functions in all of our nodes. This is because a computation graph is a composition of functions (its nodes), so when all of its nodes are differentiable, the overall graph/function is differentiable (and we can even calculate the gradient).



Backpropagation at a single node

f

θ

x1

x2

f(x1,x2,θ)

The nodes of a neural network must be 
differentiable!

Goal: Calculate

Presenter
Presentation Notes
Why the nodes must be differentiable is highlighted in slide 10.


For non-trainable nodes, just ignore the steps for calculating the gradient for the parameter.



Backpropagation at a single node

x1

x2

Goal: Calculate

f

θ

f(x1,x2,θ)



Backpropagation at a single node

x1

x2

The green line represents the incoming 
gradient w.r.t the loss function. 

If this node is the final node in the 
graph (i.e. this node computes the loss 
function), then the incoming gradient 
will be 1

Goal: Calculate

f

θ

f(x1,x2,θ)



Backpropagation at a single node

x1

x2

First, we calculate the gradient for the trainable parameters by using the chain 
rule, multiplying the incoming gradient with the partial w.r.t theta. We make 
sure to, save these for the update step later.

f

θ f(x1,x2,θ)

Presenter
Presentation Notes
If this was an untrainable node, we simply skip this step.

We know the partial derivative w.r.t theta since we know that the function calculated at this node is differentiable.



Backpropagation at a single node

x1

x2

Once we calculate                         , we can 
“backpropagate” the gradients to earlier nodes, 
recursively repeating this process for each 
node in the graph

Goal: Calculate

f

θ

f(x1,x2,θ)

and  



Since                    is 
differentiable, 
we can calculate

and            

Backpropagation at a single node

x1

x2

f

θ

f(x1,x2,θ)

Presenter
Presentation Notes
Here we make use of the assumption that the node is differentiable. If this “node” is itself actually a smaller computation graph, as long as all of its nodes are differentiable, then the node itself is differentiable. This follows from the fact that the composition of differentiable functions is itself differentiable.



Backpropagation at a single node
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Using the chain rule:

f

θ

f(x1,x2,θ)



Structure of a neural network

Image from wikipedia: https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg

A feed-forward artificial neural network is a 
computation graph which consists of neurons, 
each computing a linear combination of the 
previous layer composed with an activation 
function. 

The final layer is considered the output layer.

If there are any layers of the network which are 
not the input or output layers, those are 
considered hidden layers, and the network is a 
“deep” neural network.

Note that the input layer does not have any 
weights associated with it. 

Presenter
Presentation Notes
In previous slides, the input was not shown in a circle (as a node). In this graphic, and in many figures in the literature, the input is sometimes shown as a node in the computation graph.


https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg


Training a neural network

The purpose of the neural network is so we can create arbitrary functions, which capture a 
relationship described in training data. (e.g. a point on a topographical map vs the elevation 
of that point)

The loss function quantifies the performance of the neural network, by “scoring” the output of 
the neural network compared to some desired output (e.g. the absolute difference between 
the elevation predicted by the network, and true elevation of the point)

Backpropagation gives us a gradient which tells how changing our trainable parameters will 
reduce the loss.

If we minimize the loss function over all of the training data, the neural network becomes the 
best possible approximation of the function we are trying to train.



Training a neural network

Backpropagation gives us a gradient which tells how changing our trainable parameters will 
reduce the loss.

In other words, for each trainable parameter θ, and each training example i, we

can calculate          , where Li is the loss function for the network on input i.

Using this gradient, we can perform gradient descent to iteratively improve the overall 
performance of the neural network until the loss function is minimized, using the following 
update rule, applied to all parameters at each step:

Really, this is 
stochastic gradient 
descent



Training a neural network

The gradient tells which direction to update θ, but since the 
neural network is nonlinear, this direction is only valid for small 
changes in θ. Therefore, we weight the “gradient update” to θ 
with a small (generally ~0.001) learning rate (α) to ensure that 
the updates do not overshoot and therefore perform adversarial 
updates.

Gradient descent is like trying to find your way down a mountain 
without an overall map--you simply follow which direction the 
slope points until you reach the bottom.

Note that gradient descent only finds a local minimum, not the 
global minimum. However, in many cases, the local minimum 
will actually be the global minimum.



What next

● There have been many modifications, tweaks, etc. to the general ideas 
presented here, and other material may appear slightly differently, even if the 
core ideas are the same

● While the general framework for artificial neural networks have been 
described, this is not a hard-set rule which must be followed. Many of the 
most successful and most popular advances in machine/deep learning start 
from these ideas, and try more radical modifications to achieve better 
results.

● For more resources/to learn more, see wikipedia, and Google (there are 
many resources which go into far greater depth online).

● Additionally, take 10-601, 10-701, or other MLD courses
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