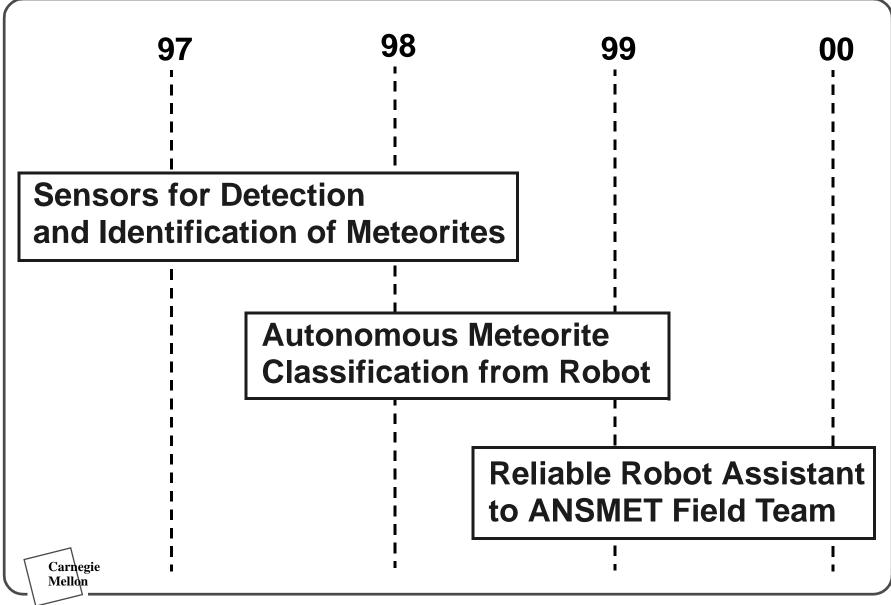
Robotic Search for Antarctic Meteorites

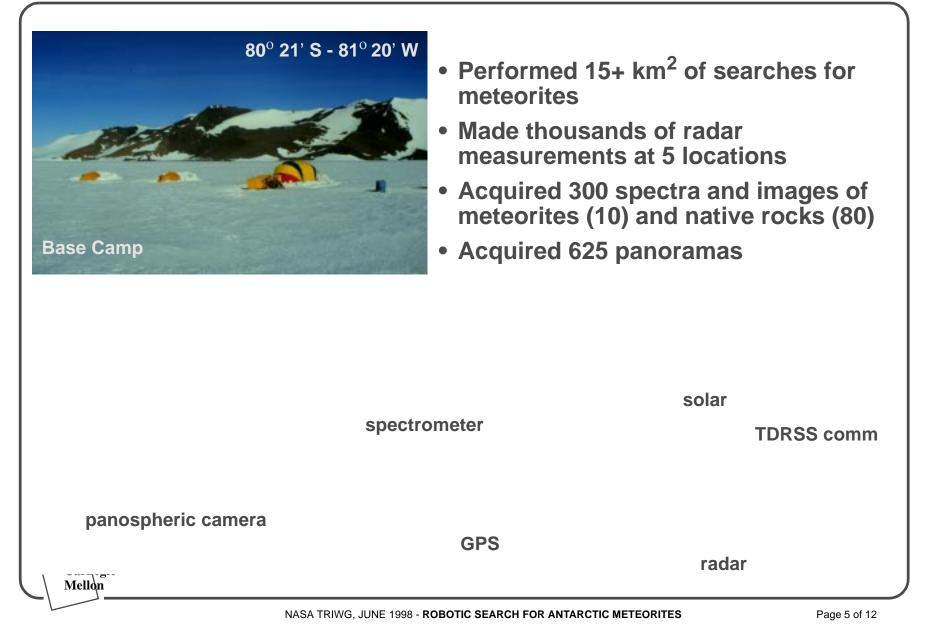
Dimi Apostolopoulos Carnegie Mellon University


Objectives

Develop meteorobot technology and demonstrate robotic search with planetary analogs of environment, electromechanical excursion, autonomous navigation, communication, and science in Antarctica

Use human-assisting robots to find meteorites otherwise overlooked by humans and in areas challenging to human search

Roadmap


NASA TRIWG, JUNE 1998 - ROBOTIC SEARCH FOR ANTARCTIC METEORITES

Atacama Desert Trek - July 1997

- Nomad detected planted meteorites with magnetic/ eddy current sensors
- Performed 50+ km of autonomous patterned searches
- Sensors discovered in-situ meteorites

Carnegie Mellon

Patriot Hills Experiments - January 1998

Technical Finds

Optical spectroscopy:

- Meteorites spectrally distinct from 90% of local rocks in the visible range
- Proximity to sample and artificial illumination critical

Radar modeling and search:

- Detected meteorites at shallow submergence (10 cm)
- Distinguished ice-snow-bedrock layers & crevasses

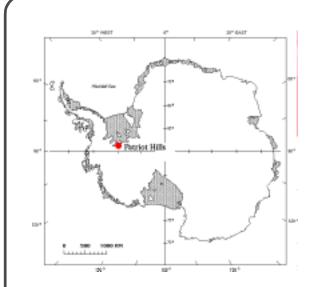
Panoramic imagery:

Carnegie Mellon

- Can track 10 cm object at 5 m
- Direct sunlight provides rich texture across blue ice to track ground features

Technical Finds

Solar energy collection:


- Average generated power 70 W/m²
- Diffuse and reflected light from ice account for 30% of solar energy

Communications (NASA Ames experiment):

- TDRSS is a viable option for Patriot Hills operations
- 4 successful 4.8 Kbs data transmission sessions using PortComm unit

Upcoming Antarctic Demonstration

Mellon

Robotic meteorite classification

• Autonomous ice traverse

Expedition Profile

- Field party from CMU, NASA Ames, UPitt, INACH
- 4 weeks / mid November mid December 1998
- Collaboration with FACH/INACH

Carnegie Mellon

- At Patriot Hills: Robotic meteorite search and autonomous ice traverse
 - Potential scenario: circumnavigate Patriot Hills
- At Pecora Escarpment: Human meteorite search and sensor validation
 - Potential scenario: Transport with Twin Otter (~800 km), search main icefield

Robotic Meteorite Confirmation

- Multiple sensors for meteorite detection and confirmation
- Hierarchical utilization of sensors (coarse: vision, medium: EM, fine: spectroscopy)
- Precise sensor placement with manipulator mechanism

Target: 30 planted meteorites, 300 rock samples

Autonomous Ice Traverse

- Safeguarded autonomous navigation of icefield with laser and stereo
- Landmark based navigation from panoramic imagery
- Patterned search for maximum area coverage and optimal utilization of onboard power
- Target: 20 km map distance, 40 km terrain distance

Summary of Objectives

- Polar robot operations
- Robotic meteorite discovery
- Robotic sensors and classifiers for detection and confirmation of Antarctic meteorites
- Validation of technologies of science autonomy, ice autonomous navigation, multi-scale planning and pose estimation, and ice mobility

