
Applying Deep Learning in Augmented Reality Tracking

Omer Akgul∗
Bilkent University

Department of Computer Engineering
omer.akgul@ug.bilkent.edu.tr

H. Ibrahim Penekli
Cadem Vision

halilibrahimp@cadem.com.tr

Yakup Genc
Gebze Technical University

Department of Computer Engineering
yakup.genc@gtu.edu.tr

Abstract

An existing deep learning architecture has been
adapted to solve the detection problem in camera-based
tracking for augmented reality (AR). A known target,
in this case a planar object, is rendered under various
viewing conditions including varying orientation, scale,
illumination and sensor noise. The resulting corpus is
used to train a convolutional neural network to match
given patches in an incoming image. The results show
comparable or better performance compared to state of
art methods. Timing performance of the detector needs
improvement but when considered in conjunction with
the robust pose estimation process promising results are
shown.

1. Introduction

As a man-machine interface technology, AR (Aug-

mented Reality) simply renders virtual information on

to real objects [1]. In order to achieve geometrically

valid rendering, one needs to track the object of interest

to be augmented. This can in principle be done using

computer vision techniques. The target object of inter-

est can be detected and tracked in a live video stream.

The target can be a simple planar marker [2, 3] or any

three-dimensional (3D) object [4, 5]. Known model of

the object can be used to determine the position and ori-

∗Visiting Gebze Technical University

entation of the object. Rendering of the virtual object

follows easily.

In practice, two-dimensional (2D) planar targets

are frequently used as an object of interest (see Fig-

ure 1). These type of targets are easy to track. Many

algorithms have been proposed [6, 2, 7] that detect the

target in the given image and track it in the consecutive

images. Detection algorithms employ a feature-based

approach where interest points are matched with that of

the reference views.

Figure 1: An example target used frequently in AR applica-

tions (target is provided as part of Vuforia SDK)

Recent advances in hardware and algorithms have

sparked an interest in deep learning algorithms. Deep

learning methods have successfully been used in com-

plex recognition tasks such as written digits recognition

and object classification. Specifically, convolutional

2016 12th International Conference on Signal-Image Technology & Internet-Based Systems

978-1-5090-5698-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SITIS.2016.17

47

2016 12th International Conference on Signal-Image Technology & Internet-Based Systems

978-1-5090-5698-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SITIS.2016.17

47

neural networks (CNNs) have been successfully used

in large scale detection tasks [8, 9].

Robust detection of objects for AR is still a chal-

lenging problem. As the AR applications are moving

more on the mobile devices, efficient and robust detec-

tion algorithms are being sought. Since deep learning

has shown successful results in large scale object detec-

tion, interest point detection can be done using CNNs as

well. This paper introduces a study where existing deep

learning architectures (e.g., AlexNet and GoogleNet)

have been modified to address the target detection prob-

lem for AR. We have shown that the resulting detector’s

performance is as good as the state of detection algo-

rithms and sometimes much better. The method is cur-

rently not fast enough to run on mobile devices but work

is underway to make it faster.

In the rest of this document, we first review the

state of art detection methods for AR tracking. We than

introduce our method along with a few others for com-

parison. After presenting the experimental results and

discussions we conclude with direction for future re-

search.

2. Background

Model-based (or target image) AR tracking in-

volves two major steps. First, the target is detected in

the incoming video stream using a detection algorithm

(see [2] for a complete treatment of AR tracking prob-

lem). The detection step, also known as tracker initial-

ization, yields the pose of the camera with respect to

the known target. This initial pose is in turn used by

a tracking algorithm in the second step. The tracking

continues till the target is no longer tracked in which

case the detector step kicks in. Usually tracking is more

robust and less time and resource consuming than detec-

tion. Therefore, as long as possible, tracking algorithm

is employed and detection algorithm is only used when

necessary.

Since tracking is out of scope of this paper, the

reader is referred to [2] or [5] for further reading. The

detection step on the other hand involves finding a set

of matches between the incoming and the reference im-

ages. Figure 2 depicts the major steps in the detection

process. An off-line stage, i.e., training, is employed to

find out the most relevant interest point and their iden-

tifying descriptors.

Commonly used interest points include [10, 11,

12]. Many descriptors such as SIFT [13], ORB [14]

and HIPS [7] exist. These are based on the fact that

there are textual information around the interest point

that makes the point valuable in matching. The train-

ing step concludes by deciding what features to use.

Figure 2: The steps of detection in an AR tracking scneario.

During detection step the incoming image goes through

the same interest point extraction and feature descriptor

calculation processes as in training. The calculated fea-

tures are matched against the reference. A model fitting

procedure is followed. Usualy robust methods such as

RANSAC [15] or one of its variants like PROSAC [16]

are employed. The robust fitting procedure ensures that

the matched features generate a geometricall consistent

model. In particular, for the 2D case, the model is a

simple homography [17].

The detection procedure is well established and

current work is focused either on improving the ro-

bustness of the matching algorithms or speeding up the

model fitting procedure. For matching, new feature de-

scriptors are being developed that is faster (with a lot of

consideration given to mobile devices) [7] and more ro-

bust with respect to illumination and pose changes. The

model fitting procedure is still one of the bottlenecks in

the process as it requires a good ratio of inliers vs out-

liers.

The detection step can in principle be done with

any detector including a deep neural network based

method. Up to our knowledge, there are no work that

uses CNNs for detection in AR. Deep learning has been

used in object class detection successfully. More re-

cent approaches have been successfully used in large

scale object detection problems [8, 9]. Platforms such

as CAFFE [18] and DIGITS make it possible to eas-

ily train new CNNs on powerfull GPUs such as NVidia

Tesla K20Xm.

3. The Method

We introduce a deep convolutional neural network

detector called DeepAR. It is based on one of the well

known CNN architectures, i.e., AlexNet [19]. We also

describe an efficient matching algorithm, HIPS [7], that

we have implemented for comparison purposes.

DeepAR: Following the feature-based detection

approaches, our method treats the correspondence prob-

lem as a recognition problem. A set of keypoints (a.k.a.

4848

interest points or corners) are extracted in the reference

image using one of the well-known corner detection al-

gorithms such as FAST [11] or Harris [10]. Patches

of size 15× 15 pixels are extracted around these key

points. In order to learn their representations, we gener-

ate a number of rendered views of the target simulating

scale, orientation and illumination changes likely to ap-

pear in the test images. The patches around the keypoint

represents a class. Our problem then becomes a classi-

fication task where a given patch is labeled as one of the

existing keypoints (see Figure 3).

Figure 3: DeepAR is a CNN-based detector. The detector

first extracts a set keypoints. A patch of size 15× 15 pixels

is exyracted and fed into to the CNN detector. The patch is

classified as one of the n predifined keypoints.

For CNN implementation, we have started with

AlexNet [19] and trained our network to detect the

patches. Our subsequent tests suggested some minor

modifications to the network but for the sake of clarity

we have kept the original network as is. We used 100

epochs in training. For training, we used mini batches

of size 50. For learning rate an exponential decay func-

tion is used. We trained the network using 80% of our

data for training and 20% of it for validation. Testing is

donee using the test images not present in the training

set. We have experimented a few of these parameters

and found no significant difference in performance.

HIPS: We have implementend the method de-

scribed in [7]. We build feature descriptors from a large

set of training images covering the entire range of view-

points to achieve a rotation and scale invariant descrip-

tor. For each viewpoint, small rotation, transformation

and blur is added for increased robustness.

As in the DeepAR case, FAST feature detector is

used to detect features on a reference image. 15× 15

patches are extracted around each feature. They are nor-

malized such that they have zero mean and unit stan-

dard deviation to provide robustness against illumina-

tion changes. HIPS requires a 8× 8 sparsely sampled

patch extracted from the original patches (see Figure 4).

Once the 8× 8 patches has been extracted for all

viewpoints, each pixel in the patch is quantised into 5

histogram bins. Each bin represents probability of in-

tensity appearance at selected position in all samples

around corresponding feature detected. We set the bit

Figure 4: Blue (dark) squares: The sparse 8×8 sampling grid

to form a patch. Pink squares with X: The 13 samples selected

to form the patch index (better viewed in color).

at selected position of the selected histogram bin, if the

intensity appearance probability in the histogram is less

than 5%. Otherwise, we clear the bit in the correspond-

ing bin on training patches (see Figure 5). We set the bit

at selected histogram bin if intensity falls into this bin;

otherwise, clear the bit on the runtime patches. Thus, fi-

nal feature descriptor needs 320 bit (40 bytes) memory

for each feature.

Figure 5: Creating histogram bins for a pixel on training.

To match training and runtime descriptors, we need

to calculate dissimilarity scores. Dissimilarity scores

can be simply computed by counting the number of bits

where both bits in the same position equal to ”1”. We

simply AND each of descriptor rows and OR the final

results. Computing the dissimilarity score requires 5

ANDs, 4 ORs and a bit count of a 64 bit integer. Bit

count is computed quickly using lookup tables or a sin-

gle CPU instruction if available. We declare a match if

dissimilarity score is less than a threshold (typically 5).

An indexing scheme is used to avoid linear search

when matching with a large database of features. Each

of the samples selected (see Figure 4) for the index is

4949

quantized to a single bit: 1 if the intensity is above the

mean of the sample and 0 otherwise. The 13 samples

are then concatenated to form a 13-bit integer. Only

patches with the same index is matched exhaustively.

4. Experimental Verification

The proposed algorithm has been implemented,

tested and compared against state of art methods using

real data. Two image targets (Pebbles and Pottery) have

been used to do the assessments. The reference images

of the targets in Figure 6 have been used to train the de-

tection algorithms. Five test images per target are used

in testing. The test images are given in Figure 7 to pro-

vide the reader with an idea about the variation in view-

point and imaging conditions compared to the reference

targets.

Figure 6: 2D image targets used in the experiments. Peb-

bles (left): A well-known target provided by Vuforia . Pottery

(right): A custom-made target used in some of our projects.

Figure 7: Test images of the 2D targets used in the experi-

ments showing variety in viewpoint and illumination condi-

tions.

In order to train the algorithms, about 100 cor-

ner points are selected using the algorithm described

in [11]. These points are shown in Figure 8 overlaid

on the reference images. Around 6000 images are ren-

dered from the reference view to account for variations

in scale, viewing angle, illumination and sensor noise.

The rendering process largely follows [7] (see Figure 9

for a few sample patches generated using this process).

We have implemented a version of the algorithm by [7]

that is fine tuned for best performance on each of the test

cases. The algorithm is described in the previous sec-

tion for completeness. Some of the details of these fine

tuning is outside the scope of this paper. It should be

stated for completeness that the implementation shows

better performance than what is reported in the original

paper.

Figure 8: The corners used to train for detection (best viewed

in color).

Figure 9: A few sample 15×15 patches extracted around the

selected corners for the Pottery marker.

The extracted patches are fed to the training algo-

rithm for both DeepAR and HIPS methods. The de-

tails of these two algorithms are provided in the pre-

vious section. We report the performance of the two

algorithms in several different ways. Each provides a

particular way of evaluating the results of a detector to

be used in an AR tracker.

In order to assess the accuracy of the methods, the

test images are manually marked. In other words, the

ground truth locations of the markers are known up to

sub-pixel accuracy. The manual marking is used to cal-

culate the ground truth homography (please see [17] for

a detailed discussion on how to calculate the homog-

raphy) between the original target and the test image.

The accuracy of the estimated homography can be cal-

culated using the re-projection error:

εp = ||pm−Hpr||2 (1)

where H is the homography between the reference and

the test image, pr is an interest point in the reference

image and pm is the corresponding ground truth loca-

tion of that point. || · ||2 indicates the Euclidean distance

calculated with the first two entries of the normalized

homogenous coordinates of pm and Hpr, the projected

point in the manually marked test image.

Overall Detector Performance: As explained ear-

lier, after the interest points are matched, they are fed to

a robust model fitting algorithm, e.g., RANSAC [15],

to enforce the geometric constraints leading the pose of

the camera. In our case the targets are planar, therefore

the geometric constraints will be captured by a 3× 3

homography matrix.

5050

The performance of the final camera pose can be

measured using the average re-projection error over all

interest points. Table 1 shows the error for estimated

homographies for DeepAR and ORB methods. ORB

[14] is another detection method that has a commonly

used implementation in OpenCV [20]. As expected,

DeepAR performs better than ORB as the implemen-

tation is optimized for this type of detection tasks.

DeepAR ORB

pebble 1 0.852 1.542

pebble 2 3.245 1.163

pebble 3 0.866 4.327

pottery 1 0.821 0.754

pottery 2 52.087 53.978

pottery 3 0.992 54.389

Table 1: Overall performance of the DeepAR compared

to ORB. Re-projection error for the calculated homography

against the ground truth is calculated using (1).

Interest Point Location: Feature detection is ex-

pected to be location sensitive. In other words, if the

corners are not located properly, the detectors may not

match the right patches in the reference view. Even

though the corner detectors (i.e., [10, 11]) are sub-pixel

accurate, they tend to generate a lot of superfluous cor-

ners. Non-maximal suppression [21] is usually em-

ployed to get rid of the extraneous points but it still can

cause localization errors. A detector should be immune

to patch localization to ease the burden on the robust

model fitting procedures such as RANSAC.

We have tested the detection accuracy when the

patch locations are erroneous. For this we have ex-

tracted patches within the several pixel neighborhood of

the original patch and checked if the match can be estab-

lished. Figure 10 shows the result of this test. DeepAR

method does very well within close proximity of the

original feature except in one of the frames where the

viewing angle is quite oblique. It performs consistently

better when the distance to the original feature is rela-

tively big. This shows that DeepAR method is a detec-

tor that can generalize for the cases where the feature

localization is poor.

Inliers and Outliers: We would like to make sure

that RANSAC process starts with many inliers and at

the same time with very little outliers. Figure 11 shows

the comparison on number of inliers for both meth-

ods. DeepAR method produces consistently more in-

liers than HIPS. However, as can be seen in Figure 12

the percentage of inliers vs outliers are less for DeepAR.

It generates more inliers but at the same time more out-

liers as well. HIPS assigns an uncertainty to the result-

ing matches. This is used to filter out most of the out-

Figure 10: Detection accuracy vs feature location error. The

ground truth corners in Pottery test images are moved ran-

domly within 4 pixel radius. The accuracy of detection is dis-

played against the error in the patch location (DeepAR results

are shown in dark blue and HIPS results are shown in light

gray).

liers. DeepAR finds the close matches with very high

certainty. When we look at the rank 2 matches as well,

the number of outliers reduces to a quarter. This sug-

gests that there are multiple patches with similar signa-

tures and a further filtering may be necessary to distin-

guish them.

Number of RANSAC Iterations: Another im-

plication of having a higher inlier-outlier ratio is that

RANSAC may need a high nunber of iterations for

finding the homography. In order to test the effect of

DeepAR generating higher number of outliers, we de-

signed a simple test. For all available test images, we

have taken one at random and taken a fixed number (50

matches in this casse) of matches at random. We then

5151

Figure 11: Comparison of number of inliers (i.e., the correct

matches) for DeepAR (dark blue) and HIPS (light gray) meth-

ods for the Pottery test .

Figure 12: The percentage of inliers against the outliers.

RANSAC would prefer a higher number for accuracy and

speed. DeepAR (in dark blue) generates more inliers but also

a lot of outliers whereas HIPS (in light gray) generates fewer

inliers and even fewer outliers.

fed these into RANSAC to find the homography. We

calculated the resulting modeling error as explained ear-

lier.

As it can be seen in Figure 13, DeepAR method

consistently finds better matches for RANSAC. With

a fixed number of iterations, matches provided by

DeepAR results in more accurate model fitting. Fig-

ure 14 shows the same analysis on individual frames of

the Pottery test images. In this case only 200 iterations

of RANSAC is used.

Figure 13: The effect of the number of RANSAC itera-

tions on accuracy of estimated homography given the detected

matches using DeepAR (in dark blue) and HIPS (light gray).

Even though DeepAR has larger outlier-inlier ratio, its de-

tected features consistently finds better homographies with the

same number of RANSAC iterations.

Timing Analysis: An important criterion for com-

Figure 14: For 200 iterations of RANSAC procedure,

DeepAR (in dark blue) generates better homographies for all

the of the Pottery test images. The results for HIPS is shown

in light gray.

paring the detection methods is the timing perfor-

mance. DeepAR method works on a given image of size

640x480 pixels in about 3 seconds on an off-the-shelf

desktop Nvidia GPU. The detection process for HIPS

on the other hand requires on the order tens of mil-

liseconds. As explained in the previous paragraphs, the

number of iterations required for RANSAC is much less

in the case of DeepAR. For similar accuracies, HIPS

would need many more number of iterations which

could prove to be costly. We cannot make a definitive

statement about the benefit of this result yet. Although

the time performance of the DeepAR system is not ex-

cellent we have observed the potential to make it much

faster. The software developed in order to test these

models were mostly written in interpreted languages.

This significantly dropped our performance. The use of

a low level compiled language would be to our bene-

fit. Graphical processors on mobile devices has also de-

veloped significantly throughout the years. Using these

mobile graphical processors will also increase our com-

putational speed. However we did not have the time nor

resources at the time of writing this paper to experiment

with these ideas. Our future work will address this point

further.

This section mostly presented the results on the

Pottery test images. It should be noted that similar

results are observed when the Pebbles test images are

used. These are omitted in the text due to space limita-

tions.

5. Conclusions

This study has shown that deep convolutional neu-

ral networks can be trained to detect targets for aug-

mented reality tracking. The target image is rendered to

create many synthetic views from different angles and

under different illumination conditions. The detection

performance is shown to be comparable (if not better

than) to one of the best algorithms in the literature. The

5252

detector performance is very strong especially in the

presence of error in feature localization. The method

can also be tailored to applications when the viewing

geometry and illumination conditions are known in ad-

vance. In this case, the rendered training views can be

customized to reflect the needs of the application.

In future work the detector will be extended to han-

dle 3D objects in addition to 2D image targets. This

poses additional issues in matching as viewpoint varia-

tions are more severe for locally non-planar patches. We

believe that a CNN can be trained to detect these type of

patches as well. We are also planning to design a sim-

pler CNN to improve the timing performance. Our ini-

tial tests with customized CNNs gave promising results.

Further research will look into the grouping of patches.

As stated in the previous section, even though there

are many more outliers generated by DeepAR method,

when we look at the best two matches, the chances of

finding the match increases four folds. This suggests

that some patches are very similar and there needs to be

another layer of filtering (or detector). A hierarchical

CNN based detector will be explored.

Acknowledgment

This work was funded by Cadem AS, Istanbul,

Turkey. We would like to thank them for their support.

References

[1] R. T. Azuma, “A survey of augmented reality,” Pres-
ence: Teleoperators and Virtual Environments, vol. 6,

no. 4, pp. 355–385, Aug. 1997.

[2] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and

D. Schmalstieg, “Real-time detection and tracking for

augmented reality on mobile phones,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 16,

no. 3, pp. 355–368, 2010.

[3] Vuforia. (2016) Vuforia 6 platform. [Online]. Available:

https://developer.vuforia.com/

[4] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and

N. Navab, “Marker-less tracking for AR: A learning-

based approach,” in Proceedings of the 1st International
Symposium on Mixed and Augmented Reality.

[5] G. Klein, “Visual tracking for augmented reality,” Ph.D.

dissertation, University of Cambridge, 2006.

[6] F. Zhou, H. B.-L. Duh, and M. Billinghurst,

“Trends in augmented reality tracking, interaction

and display: A review of ten years of ismar,”

in Proceedings of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, ser.

ISMAR ’08. Washington, DC, USA: IEEE Com-

puter Society, 2008, pp. 193–202. [Online]. Available:

http://dx.doi.org/10.1109/ISMAR.2008.4637362

[7] S. Taylor and T. Drummond, “Binary histogrammed in-

tensity patches for efficient and robust matching,” Inter-
national Journal of Computer Vision, vol. 94, no. 2, pp.

241–265, 2011.

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun,

“Learning hierarchical features for scene labeling,”

IEEE Transactions on Pattern Analysis and Machine In-
telligence, August 2013.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” in Computer
Vision and Pattern Recognition (CVPR), 2015.

[10] C. Harris and M. Stephens, “A combined corner and

edge detector,” in In Proc. of Fourth Alvey Vision Con-
ference, 1988, pp. 147–151.

[11] E. Rosten and T. Drummond, “Machine learning for

high-speed corner detection,” in Proceedings of the 9th
European Conference on Computer Vision - Volume Part
I, ser. ECCV’06, 2006.

[12] K. Mikolajczyk and C. Schmid, “A performance eval-

uation of local descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 10, pp. 1615–1630, Oct. 2005.

[13] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” Int. J. Comput. Vision, vol. 60,

no. 2, pp. 91–110, Nov. 2004.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,

“Orb: An efficient alternative to sift or surf,” in Proceed-
ings of the 2011 International Conference on Computer
Vision, ser. ICCV ’11. Washington, DC, USA: IEEE

Computer Society, 2011, pp. 2564–2571.

[15] M. A. Fischler and R. C. Bolles, “Random sample con-

sensus: A paradigm for model fitting with applications

to image analysis and automated cartography,” Com-
mun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[16] O. Chum and J. Matas, “Matching with prosac ” pro-

gressive sample consensus,” in Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 1 - Vol-
ume 01, ser. CVPR ’05. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 220–226.

[17] R. I. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed. Cambridge University

Press, ISBN: 0521540518, 2004.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:

Convolutional architecture for fast feature embedding,”

in Proceedings of the 22Nd ACM International Confer-
ence on Multimedia, ser. MM ’14. New York, NY,

USA: ACM, 2014, pp. 675–678.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional

neural networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C.

Burges, L. Bottou, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2012, pp. 1097–1105.

[Online]. Available: http://papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-

neural-networks.pdf

5353

[20] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal
of Software Tools, 2000.

[21] M. Brown, R. Szeliski, and S. Winder, “Multi-image

matching using multi-scale oriented patches,” in Pro-
ceedings of the 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1 - Volume 01, ser. CVPR ’05.

Washington, DC, USA: IEEE Computer Society, 2005,

pp. 510–517.

5454

