
Effects in Call-by-Push-Value*†

Robert Harper

Spring, 2024

1 Introduction

The cbpv framework (and its close relatives described in Harper (2024a)) is a general setting in which to
represent effects in programming languages. The key idea is to separate types that classify values from
types that classify computations. The value types define the sorts of objects that can be the results of
computations and that can be bound to variables within a computation. The computation types classify
effects, which act on the execution state of a program. This note is concerned with adding different
sorts of effects to the language, and seeing how they are accounted for in a dynamics of the language
with those constructs. Such effects are governed by equational laws, which are justified relative to the
dynamics by associating behavioral invariants to types.

As mentioned in Harper (2024a) effects can be (informally) classified into two categories, control
effects and storage effects. Examples of control effects are (1) general fixed point (recursion) operations
that give rise to non-termination as an effect; (2) raising and handling exceptions; (3) seizing the ex-
ecution state of a program as a continuation that can be activated at will. Examples of storage effects
are (1) printing to “standard output”; (2) reading from “standard input”; and (3) allocating, reading and
writingmutable storage cells any any value type. The control effects are all managed by augmenting the
state with an explicit control stack that governs the course of a computation. The storage effects are all
managed by maintaining an array of cells whose contents can be read and written during computation.
In each case the dynamics takes the form of a state transition system acting on states whose form is
determined by the effects under consideration.

Once the dynamics has been defined it makes sense to consider equational theories governing the
effectful operations and their interactions with each other and the other constructs of the cbpv frame-
work. These equations are intended to predict that certain computations engender the same behavior
whenever they arise. The exact nature of “sameness” and “behavior” is determined by the method
of logical relations, which associates execution invariants to types. For example, when control effects
are considered, computations are considered equal whenever they deliver the same outcome in related
stacks, and stacks are related whenever they deliver the same outcome when passed related values.
When storage effects are considered, two computations have the same behavior when they have the
same effects on storage cells and deliver the same answers. In all cases the main difficulty is in defin-
ing suitable relations; as effects become more complex both in themselves and in their interactions it
becomes increasingly challenging to ensure that the required invariants are properly defined.

*Copyright © Robert Harper. All Rights Reserved
†Thanks to Yue Yao for suggesting a marked improvement to an earlier draft of this note.

1



2 General Dynamics for CBPV

A dynamics for the “skeletal” instance of cbpv in which there are no actual effects, and types are limited
to F(𝐴) and U(𝑋), consists of

1. An evaluation relation, 𝑀 ⇓ 𝑉 for valuable expressions to their values. Values include susp(𝐶)
for some computation 𝐶, with others determined by their types.

2. A transition system, 𝐶 ↦,→ 𝐶′, acting on closed computations.

Exercise 1. Give a dynamics for the pure cbpv language described in Harper (2024a) according to the
above plan.

The next step is to define a family of logical relations interpreting value and computation types,
respectively, as binary relations defining exact equality for each. The general setup is as follows:

1. For each value type, 𝐴,

(a) Exact equality, 𝑉 .= 𝑉′ ∈ 𝐴, of closed values 𝑉 and 𝑉′ of type 𝐴 is determined by 𝐴. In
particular, susp(𝐶) .= susp(𝐶′) ∈ U(𝑋) iff 𝐶 .= 𝐶′ ∈ 𝑋.

(b) Exact equality,𝑀 .= 𝑀′ ∈ 𝐴, of closed valuables𝑀,𝑀′ of type𝐴, is defined tomean𝑀 ⇓ 𝑉,
𝑀′ ⇓ 𝑉′, and 𝑉 .= 𝑉′ ∈ 𝐴.

2. For each computation type, 𝑋,

(a) If 𝑋 = F(𝐴), then 𝐶 .= 𝐶′ ∈ 𝑋 iff 𝐶 ↦,→
∗

ret(𝑀), 𝐶′ ↦,→
∗

ret(𝑀′), and𝑀 .= 𝑀′ ∈ 𝐴.

(b) If 𝑋 = 𝐴⇀ 𝑋, then 𝐶 .= 𝐶′ ∈ 𝑋 iff𝑀 .= 𝑀′ ∈ 𝐴 implies ap(𝐶;𝑀) .= ap(𝐶′;𝑀′) ∈ 𝑋.

Exact equality closed substitutions 𝛾, 𝛾′ ∶ Γ is defined by 𝛾 .= 𝛾′ ∈ Γ iff Γ ⊢ 𝑥 ∶ 𝐴 implies
𝛾(𝑥) .= 𝛾′(𝑥) ∈ 𝐴. This, in turn, is used to define exact equality of open terms and computations as
follows:

• Γ≫𝑀 .= 𝑀′ ∈ 𝐴 iff �̂�(𝑀) .= 𝛾′(𝑀′) ∈ 𝐴 whenever 𝛾 .= 𝛾′ ∈ Γ.

• Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋 iff �̂�(𝐶) .= 𝛾(𝐶′) ∈ 𝑋 whenever 𝛾 .= 𝛾′ ∈ Γ.

The reflexivity theorem states that well-typed valuables and computations are self-related at their
types:

Theorem 1 (Reflexivity). 1. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝑀 .= 𝑀 ∈ 𝐴.

2. If Γ ⊢ 𝐶 ∶ 𝑋, then Γ≫ 𝐶 .= 𝐶 ∈ 𝑋.

Exercise 2. Prove Theorem 1 by induction on typing derivations.

The fundamental theorem states that all derivable equations are validated by the semantic interpre-
tation.

Theorem 2 (FTLR). 1. If Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ≫𝑀 .= 𝑀′ ∈ 𝐴.

2. If Γ ⊢ 𝐶 ≡ 𝐶′ ∶ 𝑋, then Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋.

2 October 15, 2024



Exercise 3. Prove Theorem 2 by induction on equality derivations. For the reflexive case, appeal to Theo-
rem 1; symmetry is immediate from the definitions, which do not privilege one side over the other; transi-
tivity requires using a reflexive instance of substitution equality.

Exercise 4. Formulate the relations associated to the other value and computation types given in Harper
(2024a) in such a way that the fundamental theorem may be extended to include them.

3 A Variety of Effects

In general the skeletal results may be extended to account for various effects according to the following
plan:

1. Define the states 𝒮(𝑋) for the execution of computations of type 𝑋.

2. Define the state transition relation on 𝒮(𝑋) for the primitive operations of the free computation
type that engender the effects under consideration.

3. Define the execution of the return and bind computations for the particular choice of effect. This
amounts to exhibiting the monadic structure of the free computation type.

4. Define the execution of the other computations, such as function application, under considera-
tion. These will not engender their own effects, but their execution in the effect context must be
specified.

Having done this it is then necessary to define the logical relations appropriate to the given notion
of effect. This means to define the relations associated to computation types as binary relations on
states, following the pattern given in Section 2. Then prove the reflexivity and fundamental theorems
appropriate to the chosen setting.

3.1 Reading and Printing

As an elementary example, it is natural to postulate commands to “print” and “read” a string when
executed. Their statics is given by the following rules:

print-cmd
Γ ⊢ 𝑀 ∶ string

Γ ⊢ print(𝑀) ∶ F(unit)

read-cmd

Γ ⊢ read ∶ F(opt(string))

The execution of these primitives is given in Figure 1 as a transition system on states of the form
(𝐼, 𝑂, 𝐶), where 𝐼 and𝑂 are lists of values of string type, and 𝐶 is a command of free computation type.1

Exercise 5. Extend the dynamics to account for states whose computations are of function and product
types. Verify the remark that the ambient states do not change other than by transitioning to a computation
of free type.

Two equations governing reading and printing are given in Figure 2. These equations call attention
to the status of functions in cbpv as computations, rather than values, in that these primitives commute
with abstraction and application.

1By analogy with Unix, one may think of 𝐼 as stdin and 𝑂 as stdout.

3 October 15, 2024



print-io-step
𝑀 ⇓ 𝑉

(𝐼, 𝑂, print(𝑀)) ↦,→ (𝐼, 𝑉::𝑂, ret(⟨⟩))

read-io-step-emp

(nil, 𝑂, read) ↦,→ (nil, 𝑂, ret(nothing))

read-io-step-non-emp

(𝑉::𝐼, 𝑂, read) ↦,→ (𝐼, 𝑂, ret(just(𝑉)))

ret-io
𝑀 ⇓ 𝑉

(𝐼, 𝑂, ret(𝑀)) ↦,→ (𝐼, 𝑂, ret(𝑉))

bnd-io-ret
𝑀1 ⇓ 𝑉1

(𝐼, 𝑂, bnd(ret(𝑀1) ; 𝑥.𝐸2)) ↦,→ (𝐼′, 𝑂′, [𝑉1∕𝑥]𝐸2)

bnd-io-step
(𝐼, 𝑂, 𝐸1) ↦,→ (𝐼′, 𝑂′, 𝐸′1)

(𝐼, 𝑂, bnd(𝐸1 ; 𝑥.𝐸2)) ↦,→ (𝐼′, 𝑂′, bnd(𝐸′1 ; 𝑥.𝐸2))

app-io
𝑀 ⇓ 𝑉

(𝐼, 𝑂, ap(𝜆(𝑥.𝐶);𝑀)) ↦,→ (𝐼′, 𝑂′, [𝑉∕𝑥]𝐶)

app-io-step
(𝐼, 𝑂, 𝐶) ↦,→ (𝐼′, 𝑂′, 𝐶′)

(𝐼, 𝑂, ap(𝐶;𝑀)) ↦,→ (𝐼′, 𝑂′, ap(𝐶′;𝑀))

Figure 1: Input/Output Dynamics

4 October 15, 2024



print-fun
Γ ⊢ 𝑀 ∶ string Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶 ∶ 𝑋

Γ ⊢ seq(print(𝑀); 𝜆(𝑥.𝐶)) ≡ 𝜆(𝑥. seq(print(𝑀);𝐶)) ∶ 𝐴⇀ 𝑋

print-app
Γ ⊢ 𝐶 ∶ 𝐴⇀ 𝑋 Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ string

Γ ⊢ seq(print(𝑁); ap(𝐶;𝑀)) ≡ ap(seq(print(𝑁);𝐶);𝑀) ∶ 𝑋

read-fun
Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ opt(string) ⊢ 𝐶 ∶ 𝑋

Γ ⊢ bnd(read ;𝑦. 𝜆(𝑥.𝐶)) ≡ 𝜆(𝑥. bnd(read ;𝑦.𝐶)) ∶ 𝐴⇀ 𝑋

read-app
Γ ⊢ 𝐶 ∶ 𝐴⇀ 𝑋 Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ bnd(read ;𝑥. ap(𝐶;𝑀)) ≡ ap(bnd(read ;𝑥.𝐶);𝑀) ∶ 𝑋

Figure 2: IO Equations

Exact equality of computations is defined by induction on their type.

𝐶 .= 𝐶′ ∈ F(𝐴) iff ∀ 𝐼, 𝑂

(𝐼, 𝑂, 𝐶) ↦,→
∗
(𝐼′, 𝑂′, ret(𝑀)),

(𝐼, 𝑂, 𝐶′) ↦,→
∗
(𝐼′, 𝑂′, ret(𝑀′)), and𝑀 .= 𝑀′ ∈ 𝐴

𝐶 .= 𝐶′ ∈ 𝐴⇀ 𝑋 iff 𝑀 .= 𝑀′ ∈ 𝐴 implies ap(𝐶;𝑀) .= ap(𝐶′;𝑀′) ∈ 𝑋
Thus, free computations must exhibit the same I/O behavior, and return exactly equal results, and
function computations must behave the same when applied to equal arguments. These relations are
extended to open expressions in the usual way:

Γ≫𝑀 .= 𝑀′ ∈ 𝐴 iff 𝛾 .= 𝛾′ ∈ Γ implies �̂�(𝑀) .= 𝛾′(𝑀′) ∈ 𝐴
Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋 iff 𝛾 .= 𝛾′ ∈ Γ implies �̂�(𝐶) .= 𝛾′(𝐶′) ∈ 𝑋

Exact equality of substitutions of values for variables is defined according to the types given by Γ.
The reflexivity and fundamental theorems are stated as in Section 2, albeit with the revised defini-

tions of the semantic judgments.

Exercise 6. Prove the reflexivity and fundamental theorems in the input/output setting. Be sure to check
carefully the rules for read and print, as well as the remaining command constructs. Assume that the value
types for strings is the diagonal relation, and that the option value type has the evident semantics.

3.2 Exceptions and Continuations

Setting aside the important question of the type of values to associate with exceptions, their dynamics
is easily formulated, treating a raise of an exception value analogously to a return. The bind command

5 October 15, 2024



raise
Γ ⊢ 𝑀 ∶ exn

Γ ⊢ raise(𝑀) ∶ 𝑋

bndow
Γ ⊢ 𝐶 ∶ F(𝐴) Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶1 ∶ 𝑋 Γ, 𝑥 ∶ exn ⊢ 𝐶2 ∶ 𝑋

Γ ⊢ bndow(𝐶 ; 𝑥.𝐶1 ; 𝑥.𝐶2) ∶ 𝑋

letcc
Γ, 𝑥 ∶ cont(𝑋) ⊢ 𝐶 ∶ 𝑋
Γ ⊢ letcc(𝑥.𝐶) ∶ 𝑋

throw
Γ ⊢ 𝑀 ∶ cont(𝑋) Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ throw(𝑀;𝐶) ∶ 𝑋

Figure 3: Statics of Exceptions and Continuations

is generalized to account ordinary and exceptional returns, integrating a return point and a handler
point in the same command. A stack-based dynamics is used to make it easier to integrate first-class
continuations, which seize stacks as values, and reactivate thematwill. Everything remains total, hence
amenable to a propositions-as-types interpretation. The connection to classical logic is fascinating, as
classical principles such as double-negation elimination arise as computation types, not value types.
Thus, classical logic has no new notions of proof (values of a type), but rather a new notion of proving
(computing a proof), and that makes all the difference.

As discussed inHarper (2016), the key step is to introduce a stack, or continuation, into the execution
state. If the only purpose is to give a dynamics for exceptions, there is no reason to make the stack
be something within the language itself, it is instead merely an auxiliary notion used in a particular
dynamics. However, as soon as it is possible to seize the stack as a value, to be reactivated later, perhaps
multiple times, then it is necessary for it to be a linguistic construct, a form of value, which is the
approach taken here.

First, the statics. Assume given a value type exn that is not otherwise specified here (though see
Section 3.5 below for one aspect of a full-fledged account of exception values.) Figure 3 defines the
extension of the cbpv command language supporting exceptions and continuations. The elimination
form for the free computation type, F(𝐴), is generalized to account for both normal- and exceptional re-
turns arising from execution of the given command of that type. When exceptions are to be propagated,
rather than handled, one may write bndow(𝐶 ; 𝑥.𝐶1 ; 𝑥. raise(𝑥)) as bnd(𝐶;𝑥.𝐶1), and when returns are
to be propagated rather than intercepted, one may write bndow(𝐶 ; 𝑥. ret(𝑥) ; 𝑥.𝐶2) as hdl(𝐶;𝑥.𝐶2).

The dynamics requires the auxiliary notion of a stack, or continuation, that makes explicit the con-
trol flow when executing a command. Such stacks, 𝐾, are either empty, ∙, or a composition 𝐾◦𝑥.𝐶 of a
stack 𝐾 accepting 𝑌 and a frame 𝑥.𝐶 transforming 𝑋-returning computations into 𝑌-returning compu-
tations. With the only negative type being F(𝐴), frames are always of the form 𝑦. bndow(𝑦 ; 𝑥.𝐶1 ; 𝑥.𝐶2),
where 𝑦 is not free in 𝐶1 or 𝐶2, abbreviated bndow(− ; 𝑥.𝐶1 ; 𝑥.𝐶2), but once other computation types
are admitted corresponding forms of frame are introduced.

Exercise 7. Give a precise definition of the typing of continuations according to the informal description
just given by defining the judgment 𝐾 ÷ F(𝐴) defining the well-formed stacks accepting values of type 𝐴.

The dynamics for computations of free type is given by the transition system given in Figure 4 de-
fined on states of the form 𝐾 ⊳ 𝐶, where 𝐶 ∶ F(𝐴) and 𝐾 ÷ F(𝐴). In that setting both ret and raise
transfer control to the two branches of the bndow computation. The dynamics of throw is simply a
“context switch” that installs the given stack as the current one and returns the given value to it.

6 October 15, 2024



ret
𝑀 ⇓ 𝑉

𝐾◦ bndow(− ; 𝑥.𝐶1 ; 𝑥.𝐶2) ⊳ ret(𝑀) ↦,→ 𝐾 ⊳ [𝑉∕𝑥]𝐶1

raise
𝑀 ⇓ 𝑉

𝐾◦ bndow(− ; 𝑥.𝐶1 ; 𝑥.𝐶2) ⊳ raise(𝑀) ↦,→ 𝐾 ⊳ [𝑉∕𝑥]𝐶2

bndow

𝐾 ⊳ bndow(𝐶 ; 𝑥.𝐶1 ; 𝑥.𝐶2) ↦,→ 𝐾◦ bndow(− ; 𝑥.𝐶1 ; 𝑥.𝐶2) ⊳ 𝐶

letcc

𝐾 ⊳ letcc(𝑥.𝐶) ↦,→ 𝐾 ⊳ [cont(𝐾)∕𝑥]𝐶

throw
𝑀 ⇓ cont(𝐾′)

𝐾 ⊳ throw(𝑀;𝐶) ↦,→ 𝐾′ ⊳ 𝐶

Figure 4: Dynamics of Exceptions and Continuations

Exercise 8. Extend the formulation of continuations to the type 𝐴 ⇀ 𝑋 of procedures accepting a value
of type 𝐴 and yielding a computation of type 𝑋. This will require extending the formation and typing
of stacks to permit application frames expecting a computation of function type, and corresponding rules
for execution of the application and abstraction commands. Formulate, and spell out the significance of,
double-negation elimination, using function types to express implications, and using suspension types to
encapsulate computations as values.

Some equational laws govern these constructs and their interactions, building on the general laws
given in Harper (2024a), are given in Figure 5.2

Exercise 9. State the analogues of the associative laws for the nesting of the bndow construct, generalizing
those given for bnd in Harper (2024a).

Exercise 10. What additional equations are appropriate for the interaction between exceptions, continu-
ations, and the constructs for function types considered in Exercise 8?

Define co-termination of states, 𝑠 ↓ 𝑠′, to mean that execution of 𝑠 and 𝑠′ both terminate with the
same answer. Exact equality of expressions and computations is then defined according to the following

2The construction used in Rule letcc-lift is defined in Harper (2022).

7 October 15, 2024



bnd-ret

Γ ⊢ bndow(ret(𝑀) ; 𝑥.𝐶1 ; 𝑥.𝐶2) ≡ [𝑀∕𝑥]𝐶1 ∶ 𝑋

bnd-raise

Γ ⊢ bndow(raise(𝑀) ; 𝑥.𝐶1 ; 𝑥.𝐶2) ≡ [𝑀∕𝑥]𝐶2 ∶ 𝑋

letcc-throw
Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ letcc(𝑘. throw(𝑘;𝐶)) ≡ 𝐶 ∶ 𝑋

letcc-drop
Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ letcc(𝑘.𝐶) ≡ 𝐶 ∶ 𝑋

letcc-fuse
Γ, 𝑘1 ∶ cont(𝑋), 𝑘2 ∶ cont(𝑋) ⊢ 𝐶 ∶ 𝑋

Γ ⊢ letcc(𝑘1. letcc(𝑘2.𝐶)) ≡ letcc(𝑘.[𝑘, 𝑘∕𝑘1, 𝑘2]𝐶) ∶ 𝑋

letcc-pop
Γ, 𝑘 ∶ cont(𝑋) ⊢ 𝐶 ∶ 𝑋 Γ, 𝑘 ∶ cont(𝑋), 𝑥 ∶ 𝐴 ⊢ 𝐶1 ∶ 𝑋 Γ, 𝑘 ∶ cont(𝑋), 𝑥 ∶ exn ⊢ 𝐶2 ∶ 𝑋

Γ ⊢ letcc(𝑘. bndow(throw(𝑘;𝐶) ; 𝑥.𝐶1 ; 𝑥.𝐶2)) ≡ letcc(𝑘. throw(𝑘;𝐶)) ∶ 𝑋

letcc-seq
Γ ⊢ 𝐶 ∶ F(𝐴) Γ, 𝑘 ∶ cont(𝑋), 𝑥 ∶ 𝐴 ⊢ 𝐶1 ∶ 𝑋 Γ, 𝑘 ∶ cont(𝑋), 𝑥 ∶ exn ⊢ 𝐶2 ∶ 𝑋
Γ ⊢ letcc(𝑘. bndow(𝐶 ; 𝑥.𝐶1 ; 𝑥.𝐶2)) ≡ bndow(𝐶 ; 𝑥. letcc(𝑘.𝐶1) ; 𝑥. letcc(𝑘.𝐶2)) ∶ 𝑋

letcc-lift
Γ, 𝑘 ∶ cont(F(𝐴)) ⊢ 𝐶 ∶ F(𝐴)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶1 ∶ 𝑋 Γ, 𝑥 ∶ exn ⊢ 𝐶2 ∶ 𝑋 𝐶′ ≝ bnd(𝑘′◦𝑥.𝐶1;𝑘.𝐶)
Γ ⊢ bndow(letcc(𝑘.𝐶) ; 𝑥.𝐶1 ; 𝑥.𝐶2) ≡ letcc(𝑘′. bndow(𝐶′ ; 𝑥.𝐶1 ; 𝑥.𝐶2)) ∶ 𝑋

Figure 5: Equational Laws Governing Exceptions and Continuations

8 October 15, 2024



plan:

𝑀 .= 𝑀′ ∈ ans iff either𝑀,𝑀′ ⇓ yes or𝑀,𝑀′ ⇓ no

𝑀 .= 𝑀′ ∈ cont(𝑋) iff 𝑀 ⇓ cont(𝐾), 𝑀′ ⇓ cont(𝐾′), and 𝐾 .= 𝐾′ ∈ 𝑋
𝑀 .= 𝑀′ ∈ U(𝑋) iff 𝑀 ⇓ susp(𝐶), 𝑀′ ⇓ susp(𝐶′), and 𝐶 .= 𝐶′ ∈ 𝑋

𝐶 .= 𝐶′ ∈ 𝑋 iff 𝐾 .= 𝐾′ ∈ 𝑋 implies 𝐾 ⊳ 𝐶 ↓ 𝐾′ ⊳ 𝐶′

𝐾 .= 𝐾′ ∈ F(𝐴) iff 𝑀 .= 𝑀′ ∈ 𝐴 implies 𝐾 ⊳ ret(𝑀) ↓ 𝐾′ ⊳ ret(𝑀′) and
𝑀 .= 𝑀′ ∈ exn implies 𝐾 ⊳ raise(𝑀) ↓ 𝐾 ⊳ raise(𝑀′)

The logical relations for closed constructs is extended as usual to the open case by considering all
exactly equal substitution instances. The reflexivity theorem states that well-formed expressions and
computations are self-related by logical equality.

Theorem 3 (Reflexivity). 1. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝑀 .= 𝑀 ∈ 𝐴.

2. If Γ ⊢ 𝐶 ∶ 𝑋, then Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋.

Exercise 11. Prove Theorem 3.

The fundamental theorem states that all derivable equations are semantically valid.

Theorem 4 (FTLR). 1. If Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ≫𝑀 .= 𝑀′ ∈ 𝐴.

2. If Γ ⊢ 𝐶 ≡ 𝐶′ ∶ 𝑋, then Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋.

Exercise 12. Prove Theorem 4 for the language as stated, then extend the proof to account for function
types.

3.3 Partiality

Partiality is introduced by permitting self-referential suspensions, which is sufficient to encode other
forms of self-referential values such as recursive functions. The possibility of non-termination means
that semantic equality must be weakened to allow two undefined computations to be equal, and other-
wise similarly to equality in the total case. The existence of the relational intepretation is dependent on
a crucial lemma stating that, roughly, any terminating computation involving a recursive suspension
requires only finitely many unrollings of that suspension. A stack-based dynamics is used to facilitate
the proof of this property.

A natural way to introduce partiality is to generalize the suspension type to be self-referential in
that they are provided themselves as argument when forced.

susp-rec
Γ, 𝑥 ∶ U(𝑋) ⊢ 𝐶 ∶ 𝑋
Γ ⊢ susp(𝑥.𝐶) ∶ U(𝑋)

force-rec
Γ ⊢ 𝑀 ∶ U(𝑋)

Γ ⊢ force(𝑀) ∶ 𝑋

Forcing a suspension unrolls the recursion by substitution the suspension itself into the suspended
computation.

9 October 15, 2024



The dynamics is stated within the stack framework of Section 3.2.

force-susp
𝑀 ⇓ susp(𝑥.𝐶)

𝐾 ⊳ force(𝑀) ↦,→ 𝐾 ⊳ [susp(𝑥.𝐶)∕𝑥]𝐶

The stack plays no active role in this transition; it is rather a technical device for facilitating the proof
of Theorem 5.

Exercise 13. Define a well-typed divergent computation and demonstrate that its execution diverges.

Exercise 14. Use recursive suspensions to define a generic recursive computation, fix(𝑥.𝐶), with statics
fix
Γ, 𝑥 ∶ U(𝑋) ⊢ 𝐶 ∶ 𝑋
Γ ⊢ fix(𝑥.𝐶) ∶ 𝑋

and dynamics fix(𝑥.𝐶) ↦,→ [susp(fix(𝑥.𝐶))∕𝑥]𝐶. Then define fun(𝑓, 𝑥.𝐶) to be fix(𝑓. 𝜆(𝐶.)), and check
that this behaves as a recursive function when applied to an argument.

A critical property of self-reference is called compactness, or unwinding, which states that only a
finite iterated unrolling of a recursive suspension suffices for any given terminating computation. Note
well, the order of quantification is that given a terminating computation involving a designated recursive
suspension, there exists a finite unwinding of that suspension that suffices to achieve the same outcome.

To state this precisely requires a formulation of a finite approximation to a recursive suspension,
written susp(𝑛)(𝑥.𝐶), where 𝑛 ≥ 0. The dynamics of truncated suspensions is given by the following
rules:

force-susp-zero
𝑀 ⇓ susp(0)(𝑥.𝐶)

𝐾 ⊳ force(𝑀) ↦,→ 𝐾 ⊳ force(𝑀)

force-susp-succ
𝑀 ⇓ susp(𝑛+1)(𝑥.𝐶)

𝐾 ⊳ force(𝑀) ↦,→ 𝐾 ⊳ [susp(𝑛)(𝑥.𝐶)∕𝑥]𝐶

Exercise 15. Give definitions for susp(𝑛)(𝑥.𝐶) within the language in such a way that the above rules
are admissible, rather than extensions to the language. Hint: Define the indexed suspension as an 𝑛-fold
composition of non-self-referential suspensions.

A terminating computation involving a truncated suspension will terminate with the same answer
when the bound is removed.3

Exercise 16. Define the erasure of a truncated suspension to be the suspension with the index removed,
and extend it to all expressions and computations structurally. Prove for all 𝑛 ≥ 0,

𝐾 ⊳ [susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉),

implies
𝐾 ⊳ [susp(𝑥.𝐶0)∕𝑥]𝐶 ↦,→

∗
∙ ⊳ ret(𝑉).

3Following Pitts (2005) it is expedient to use the derived form of indexed suspensions in Exercise 15 in the proofs of the
following lemmas.

10 October 15, 2024



Hint: it will be necessary to prove the stronger formulation,

[susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉)

implies
[susp(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑥.𝐶0)∕𝑥]𝐶 ↦,→

∗
∙ ⊳ ret(𝑉).

If a computation involving an 𝑛-bounded suspension terminates, then it will also terminate with
the same answer then the bound is increased to 𝑛 + 1.

Exercise 17. Prove for all 𝑛 ≥ 0 if

[susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉)

then
[susp(𝑛+1)(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑛+1)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→

∗
∙ ⊳ ret(𝑉).

Compactness states that in a terminating computation only finitely many unrollings of a recursive
suspension are required for the result.

Theorem 5 (Compactness). If 𝐾 ⊳ [susp(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉), then for some 𝑛 ≥ 0, 𝐾 ⊳

[susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉).

Exercise 18. Prove the following slightly stronger statement of compactness: if

[susp(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉),

then, for some 𝑛 ≥ 0,

[susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐾 ⊳ [susp(𝑛)(𝑥.𝐶0)∕𝑥]𝐶 ↦,→
∗
∙ ⊳ ret(𝑉).

All cases follow routinely by induction; consider only the case that 𝐶 = force(𝑥), which is to say that the
distinguished suspension is being forced. Use Exercise 17 to increase indices as necessary. See Pitts (2005)
for the proof of a similar result.

There is only one equation governing self-referential suspensions,

force-susp-rec
Γ, 𝑥 ∶ U(𝑋) ⊢ 𝐶 ∶ 𝑋

Γ ⊢ force(susp(𝑥.𝐶)) ≡ [susp(𝑥.𝐶)∕𝑥]𝐶 ∶ 𝑋

The logical relations are defined according to the principles given in Section 3.2, albeit modified to
account for partiality. To this end define Kleene equivalence between states,

𝐾 ⊳ 𝐶 ≃ 𝐾′ ⊳ 𝐶′ iff 𝐾 ⊳ 𝐶 ↦,→
∗
∙ ⊳ 𝑉 iff 𝐾′ ⊳ 𝐶′ ↦,→

∗
∙ ⊳ 𝑉

11 October 15, 2024



where 𝑉 is either yes or no. Using this notation, the formulation of exact equality given in Section 3.2
becomes

𝑀 .= 𝑀′ ∈ U(𝑋) iff force(𝑀) .= force(𝑀′) ∈ 𝑋

𝐶 .= 𝐶′ ∈ 𝑋 iff 𝐾 .= 𝐾′ ∈ 𝑋 implies 𝐾 ⊳ 𝐶 ≃ 𝐾′ ⊳ 𝐶′

𝐾 .= 𝐾′ ∈ F(𝐴) iff 𝑀 .= 𝑀′ ∈ 𝐴 implies 𝐾 ⊳ ret(𝑀) ≃ 𝐾′ ⊳ ret(𝑀′)

Exercise 19. Extend the foregoing definitions to account for function types, 𝐴 ⇀ 𝑋, which may diverge
when applied.

The proofs of reflexivity of equality and of the fundamental theorem hinge on the following two
lemmas whose proofs in turn rely on Theorem 5.

Lemma 6 (Truncated Suspensions). Suppose that 𝑥 ∶ U(𝑋) ≫ 𝐶 .= 𝐶′ ∈ 𝑋. Then, for all 𝑛 ≥ 0,
susp(𝑛)(𝑥.𝐶) .= susp(𝑛)(𝑥.𝐶′) ∈ U(𝑋).

Proof. The proof is by induction on 𝑛, making use of the definitions of exact equality given above. The
base case of 𝑛 = 0 is immediate, for the indicated 0-truncated suspensions diverge whenever executed
on any stack. Assume the theorem for 𝑛, and suppose that𝐾 .= 𝐾′ ∈ 𝑋, with the intention to show that
𝐾 ⊳ force(susp(𝑛+1)(𝑥.𝐶)) ≃ 𝐾′ ⊳ force(susp(𝑛+1)(𝑥.𝐶′)). First, note that 𝐾 ⊳ force(susp(𝑛+1)(𝑥.𝐶)) ↦,→

𝐾 ⊳ [susp(𝑛)(𝑥.𝐶)∕𝑥]𝐶, and similarly for the right-hand side. But then by the assumption on 𝐶 and 𝐶′,
the inductive hypothesis, and the definition of Kleene equivalence, the result follows immediately.

Lemma 7 (Suspensions). If Γ, 𝑥 ∶ U(𝑋)≫ 𝐶 .= 𝐶′ ∈ 𝑋, then Γ≫ susp(𝑥.𝐶) .= susp(𝑥.𝐶′) ∈ U(𝑋).

Proof. Suppose that 𝛾 .= 𝛾′ ∈ Γ, and define, for brevity, �̂� ≝ �̂�(𝐶) and 𝐶′ ≝ 𝛾′(𝐶′). Suppose further
that 𝐾 .= 𝐾′ ∈ 𝑋; it suffices to show

𝐾 ⊳ force(susp(𝑥.𝐶)) ≃ 𝐾 ⊳ force(susp(𝑥.𝐶′)).

Suppose that𝐾 ⊳ susp(𝑥.𝐶) ↦,→
∗
∙ ⊳ ret(𝑉) for some answer𝑉. By Theorem 5 there is 𝑛 ≥ 0 such that

𝐾 ⊳ force(susp(𝑛)(𝑥.𝐶)) ↦,→
∗
∙ ⊳ ret(𝑉).

By Lemma 6 and the assumption, it follows that

𝐾 ⊳ force(susp(𝑛)(𝑥.𝐶′)) ↦,→
∗
∙ ⊳ ret(𝑉),

and hence by Theorem 16
𝐾 ⊳ force(susp(𝑥.𝐶′)) ↦,→

∗
∙ ⊳ ret(𝑉),

The converse is proved identically, establishing the lemma.

It is then straightforward to formulate and prove reflexivity and the fundamental theorem for the
logical relations defined above.

Exercise 20. State the reflexivity and fundamental theorems for logical relations in this setting, and give
a proof of the cases involving the function type.

12 October 15, 2024



rec-fold
Γ ⊢ 𝐶 ∶ [rec(𝑢.𝑋)∕𝑢]𝑋
Γ ⊢ fold(𝐶) ∶ rec(𝑢.𝑋)

rec-unfold
Γ ⊢ 𝐶 ∶ rec(𝑢.𝑋)

Γ ⊢ unfold(𝐶) ∶ [rec(𝑢.𝑋)∕𝑢]𝑋

unfold-fold

unfold(fold(𝐶)) ↦,→ 𝐶

unfold-arg
𝐶 ↦,→ 𝐶′

unfold(𝐶) ↦,→ unfold(𝐶′)

Figure 6: Recursive Computation Types

3.4 Recursive Types

The compactness theorem (Theorem 5) states that, as far as specifications of program behavior are
concerned, there is nothing more to say about a recursive suspension than can be gleaned from all of
its finite unrollings. This observation is critical to the definition of exact equality at suspension types,
which otherwisewould be circular and hence not properly defined. Similar issues arise in the definition
of exact equality for general recursive types—which stands to reason in that recursive suspensions are
definable in the presence of recursive types using self-application—and a similar indexed method is
used to define it.

First, in a cbpv setting unrestricted recursive types arise as computation types of the form rec(𝑢.𝑋),
where 𝑢 is a type variable bound within 𝑋 that refers to the recursive type itself. Unlike inductive and
coinductive types, there is no restriction on the occurrences of 𝑢 within 𝑋. Consequently, divergent
computations may be defined using recursive types, and hence only make sense in a setting that em-
braces partiality. The introductory and eliminatory forms for recursive types are computations that fold
and unfold elements of these types, and hence must be regarded as computations. The statics and dy-
namics of recursive types in the cbpv setting are given in Figure 6. The dynamics is defined directly on
computations, rather than via a stack, because there is no need to prove compactness in this setting;
rather, exact equality is defined in indexed form directly to resolve circularity.

Exercise 21. Let self(𝑋) be the recursive type rec(𝑢.U(𝑢) ⇀ 𝑋). Let fix(𝑥.𝐶) be ap(unfold(force(𝑆));𝑆),
and define 𝑆 ∶ U(self(𝑋)) such that fix(𝑥.𝐶) ↦,→ [susp(fix(𝑥.𝐶))∕𝑥]𝐶.

The equational theory of recursive types expresses that the fold and unfold operations are mutally
inverse:

unfold-fold
Γ ⊢ 𝐶 ∶ [rec(𝑢.𝑥)∕𝑢]𝑋

Γ ⊢ unfold(fold(𝐶)) ≡ 𝐶 ∶ [rec(𝑢.𝑋)∕𝑢]𝑋

fold-unfold
Γ ⊢ 𝐶 ∶ rec(𝑢.𝑋)

Γ ⊢ fold(unfold(𝐶)) ≡ 𝐶 ∶ rec(𝑢.𝑋)

The question is how to justify these equations in terms of the dynamics given in Figure 6. The most
obvious formulation suffers from circularity:

𝐶 .= 𝐶′ ∈ rec(𝑢.𝑋) iff unfold(𝐶) .= unfold(𝐶′) ∈ [rec(𝑢.𝑋)∕𝑢]𝑋

The difficulty is that the type [rec(𝑢.𝑋)∕𝑢]𝑋 is larger than rec(𝑢.𝑋) whenever 𝑢 occurs within 𝑋, dis-
rupting the usual strategy of defining these relations by induction on the structure of the type. The

13 October 15, 2024



solution is to index exact equality of computations by 𝑛 ≥ 0, specifying a recursion level that is used to
resolve the circularity. When 𝑛 = 0, any two computations are deemed equal; otherwise it is defined as
before for each type 𝑋 and for each positive 𝑛, except that exact equality of recursive types reduces the
recursion level when unfolded:

𝐶 .= 𝐶′ ∈𝑛+1 rec(𝑢.𝑋) iff unfold(𝐶) .= unfold(𝐶′) ∈𝑛 [rec(𝑢.𝑋)∕𝑢]𝑋

Exact equality of value types is similarly indexed, with suspension types handled as follows:

susp(𝐶) .= susp(𝐶′) ∈𝑛 U(𝑋) iff 𝐶 .= 𝐶′ ∈𝑛 𝑋.

All other clauses remain unchanged, albeit with the recursion level playing a passive role. As ever,
the indexed semantic membership judgments are defined as the indexed reflexive instances of exact
equality.

Exact equality is extended to open valuables and open computations at all recursion levels.

Γ≫𝑀 .= 𝑀′ ∈ 𝐴 iff ∀𝑛 ≥ 0 if 𝛾 .= 𝛾′ ∈𝑛 Γ then �̂�(𝑀) .= 𝛾′(𝑀′) ∈𝑛 𝐴
Γ≫ 𝐶 .= 𝐶′ ∈ 𝑋 iff ∀𝑛 ≥ 0 if 𝛾 .= 𝛾′ ∈𝑛 Γ then �̂�(𝐶)

.= 𝛾′(𝐶′) ∈𝑛 𝑋

That is, for all recursion levels, equal substitutions at that level give rise to equal valuables (computa-
tions) at that level.

With this in hand it is a simple matter to prove the reflexivity and fundamental theorems in the
indexed form just given.

Exercise 22. State and prove the appropriate reflexivity and fundamental theorems for recursive types.
Hint: the inductive hypotheses for any rule states the validity of the premises for all recursion levels; this is
needed to handle the indexed treatment of equality at recursive type.

3.5 Symbol Generation

Aswith partiality, dynamic symbol generation is a fundamental effect that is often used to define higher-
level notions of effect such as dynamically classified values or dynamically allocated mutable cells.
To account for symbols in the cbpv framework, the typing judgments are indexed by a signature, Σ,
consisting of a finite sequence of declarations 𝑎 ∼ 𝐴 associating a type, 𝐴, to the symbol, 𝑎. The
associated type of a symbol 𝑎 is to be uniquely determined by Σ; consequently, a signature permits at
most one such association for a given symbol. The significance of the associated type depends on the
situation. For example, when symbols serve as names for mutable cells, the associated type is that of
the contents of the cell, and when symbols serve as classes, the associated type is that of the classified
data.

Being a “generic” form of effect, new symbols are allocated by the computation new𝐴(𝑎.𝐶), which
introduces the symbol 𝑎 with associated type 𝐴 for use within the computation 𝐶. As the notation
suggests, the symbol 𝑎 is bound within 𝐶, andmay always be 𝛼-varied to ensure that it is, in fact, “new”
relative to the ambient signature of symbols. The statics and dynamics of symbol generation are given
in Figure 7. In this setting the judgments of the statics are indexed by the signature of active symbols,
which is extended within the body of an allocation. The dynamics is given as a transition system on
states of the form 𝜈 Σ {𝐶 } consisting of a signature and a computation. The dynamically active symbols
have global scope to allow values containing symbols to be used without restriction. Although not

14 October 15, 2024



new
Γ ⊢Σ,𝑎∼𝐴 𝐶 ∶ 𝑋

Γ ⊢Σ new𝐴(𝑎.𝐶) ∶ 𝑋

ok
⊢Σ 𝐶 ∶ 𝐴
𝜈 Σ {𝐶 } ok

init
𝐶 ∶ ans

𝜈 𝜀 {𝐶 } initial

final
𝑉 valΣ

𝜈 Σ { ret(𝑉) } final

new-exec

𝜈 Σ { new𝐴(𝑎.𝐶) } ↦,→ 𝜈 Σ, 𝑎 ∼ 𝐴 {𝐶 }

Figure 7: Symbol Generation: Statics and Dynamics

quote
Σ ⊢ 𝑎 ∼ 𝐴

Γ ⊢Σ quote⟨𝑎⟩ ∶ sym(𝐴)

gensym

Γ ⊢Σ gensym𝐴 ∶ sym(𝐴)

eq
Γ ⊢Σ 𝑀1 ∶ sym(𝐴) Γ ⊢Σ 𝑀2 ∶ sym(𝐴)

Γ ⊢Σ eq(𝑀1 ;𝑀2) ∶ bool

Figure 8: Symbol Type Statics

needed here, evaluation of terms is similarly indexed by a signature, written 𝑀 ⇓Σ 𝑉, to allow for
values that contain symbols.

With this in hand one may consider a variety of language concepts that make use of symbols. Per-
haps the most immediate application is to introduce a type, sym(𝐴), whose values are quoted symbols,
written quote⟨𝑎⟩. Symbol values are introduced by gensym𝐴, which allocates a new symbol with asso-
ciated type 𝐴 and returns the corresponding symbol value. Two symbol values may be compared for
equality with eq(𝑀1 ;𝑀2), which returns a boolean. The statics of these constructs is given in Figure 8,
and their dynamics is given in Figure 9. Note that whereas symbol generation is a proper computation,
the equality test of two valuable expressions is itself valuable, for as the dynamics makes clear no effects
are involved in its evaluation.

Some equations governing symbol generation are given in Figure 10. These may be justified using
Kripke-style logical relations in which the possible worlds are signatures ordered by Σ′ ≤ Σ iff Σ ⊢ 𝑎 ∼
𝐴 implies Σ′ ⊢ 𝑎 ∼ 𝐴. Exact equality of values at a world,𝑀 .= 𝑀′ ∈ 𝐴 [Σ], is defined by induction on

15 October 15, 2024



sym-val

quote⟨𝑎⟩ valΣ,𝑎∼𝜏

sym-gen

𝜈 Σ { gensym𝐴 } ↦,→ 𝜈 Σ, 𝑎 ∼ 𝐴 { ret(quote⟨𝑎⟩) }

sym-eq-tt
𝑀1 ⇓Σ quote⟨𝑎⟩ 𝑀2 ⇓Σ quote⟨𝑎⟩

eq(𝑀1 ;𝑀2) ⇓Σ true

sym-eq-ff
𝑀1 ⇓Σ quote⟨𝑎1⟩ 𝑀2 ⇓Σ quote⟨𝑎2⟩ (𝑎1 ≠ 𝑎2)

eq(𝑀1 ;𝑀2) ⇓Σ false

Figure 9: Symbol Type Dynamics

gensym-new

Γ ⊢Σ gensym𝐴 ≡ new𝐴(𝑎. ret(quote⟨𝑎⟩)) ∶ F(sym(𝐴))

eq-true
Γ ⊢Σ 𝑀 ∶ sym(𝐴)

Γ ⊢Σ eq(𝑀 ;𝑀) ≡ true ∶ bool

eq-false
(𝑎1 ≠ 𝑎2)

Γ ⊢Σ eq(quote⟨𝑎1⟩ ; quote⟨𝑎2⟩) ≡ false ∶ bool

bnd-new
Γ ⊢Σ,𝑎1∼𝐴1

𝐶1 ∶ F(𝐴1) Γ, 𝑥 ∶ 𝐴1 ⊢Σ 𝐶2 ∶ 𝑋2
Γ ⊢Σ bnd(new𝐴1(𝑎1.𝐶1);𝑥.𝐶2) ≡ new𝐴1(𝑎1. bnd(𝐶1;𝑥.𝐶2)) ∶ 𝑋2

new-fun
Γ, 𝑥 ∶ 𝐵 ⊢Σ,𝑎∼𝐴 𝐶 ∶ 𝑋

Γ ⊢Σ new𝐴(𝑎. 𝜆(𝑥.𝐶)) ≡ 𝜆(𝑥. new𝐴(𝑎.𝐶)) ∶ 𝐵 ⇀ 𝑋

Figure 10: Equality of Symbol Expressions and Computations

16 October 15, 2024



the structure of 𝐴, with the following clauses being pertinent to the present situation:

𝑀 .= 𝑀′ ∈ sym(𝐴) [Σ] iff 𝑀 ⇓Σ quote⟨𝑎⟩ and𝑀′ ⇓Σ quote⟨𝑎⟩, where Σ ⊢ 𝑎 ∼ 𝐴
𝑀 .= 𝑀′ ∈ U(𝑋) [Σ] iff 𝑀 ⇓Σ susp(𝐶), 𝑀′ ⇓Σ susp(𝐶′), and ∀Σ′ ≤ Σ 𝐶 .= 𝐶′ ∈ 𝑋 [Σ′]

Notewell that in the case of suspensions, the condition quantifies over all futureworldsΣ′ ofΣ to ensure
that the encapsulated computations are well-behaved whenever the suspension is forced, which may
well be in a situation in which new symbols beyond those in Σmay have been generated.

Exact equality of computations relative to a world Σ is defined as follows:

𝐶 .= 𝐶′ ∈ F(𝐴) [Σ] iff 𝜈 Σ {𝐶 } ↦,→
∗
𝜈 Σ1 { ret(𝑀) },

𝜈 Σ {𝐶′ } ↦,→
∗
𝜈 Σ1 { ret(𝑀′) }, and𝑀 .= 𝑀′ ∈ 𝐴 [Σ1]

𝐶 .= 𝐶′ ∈ 𝐴⇀ 𝑋 [Σ] iff 𝑀 .= 𝑀′ ∈ 𝐴 [Σ] implies ap(𝐶;𝑀) .= ap(𝐶′;𝑀′) ∈ 𝑋 [Σ]

These may be extended to open terms by considering exactly equal substitutions for the variables de-
clared in the given context.

Lemma 8 (Generalized Head Expansion). Suppose that𝑀 .= 𝑀′ ∈ 𝐴 and 𝑥 ∶ 𝐴 ≫Σ 𝐶
.= 𝐶′ ∈ 𝑋 so

that [𝑀∕𝑥]𝐶 .= [𝑀′∕𝑥]𝐶′ ∈ 𝑋 [Σ]. Then ap(𝜆(𝑥.𝐶);𝑀) .= ap(𝜆(𝑥.𝐶′);𝑀′) ∈ 𝑋 [Σ].

Sketch. Let 𝑋 = 𝐴1 ⇀ …𝐴𝑛 ⇀ F(𝐵), and suppose that𝑀𝑖
.= 𝑀′

𝑖 ∈ 𝐴𝑖 [Σ] for each 1 ≤ 𝑖 ≤ 𝑛. Then by
assumption

ap(… ap([𝑀∕𝑥]𝐶;𝑀1);…𝑀𝑛)
.= ap(… ap([𝑀′∕𝑥]𝐶′;𝑀′

1);…𝑀
′
𝑛) ∈ F(𝐵),

and hence by head expansion, the indicated term being the head redex,

ap(… ap(ap(𝜆(𝑥.𝐶);𝑀);𝑀1);…𝑀𝑛)
.= ap(… ap(ap(𝜆(𝑥.𝐶′);𝑀′);𝑀′

1);…𝑀
′
𝑛) ∈ F(𝐵),

as may be seen immediately from the definition of exact equality at free types.

Exercise 23. State and prove the reflexivity theorem and fundamental theorem for the language with
symbols using the definitions of exact equality of expressions and computations outlined above. Hint: make
use of the generalized head expansion lemma at function types.

Exercise 24. Validate the equations in Figure 10 as exact equalities between computations.

Exercise 25 (Challenging). How should exact equality be defined to validate the following two rules, stat-
ing that unused symbols can be dropped, and that the order of allocation does not matter?

new-drop
Γ ⊢Σ 𝐶 ∶ 𝑋

Γ ⊢Σ new𝐴(𝑎.𝐶) ≡ 𝐶 ∶ 𝑋

new-swap
Γ ⊢Σ,𝑎∼𝐴,𝑏∼𝐵 𝐶 ∶ 𝑋

Γ ⊢Σ new𝐴(𝑎. new𝐵(𝑏.𝐶)) ≡ new𝐵(𝑏. new𝐴(𝑎.𝐶)) ∶ 𝑋

Exercise 26. What is an appropriate version of generalized head expansion in the presence of product
types?

17 October 15, 2024



dcl
Γ ⊢Σ 𝑀 ∶ 𝐴 𝐴 ground Γ ⊢Σ,𝑎∼𝐴 𝐶 ∶ 𝑋

Γ ⊢Σ dcl(𝑀;𝑎.𝐶) ∶ 𝑋

get
Σ ⊢ 𝑎 ∼ 𝐴

Γ ⊢Σ get⟨𝑎⟩ ∶ F(𝐴)

set
Σ ⊢ 𝑎 ∼ 𝐴 Γ ⊢Σ 𝑀 ∶ 𝐴
Γ ⊢Σ set⟨𝑎⟩(𝑀) ∶ F(𝐴)

Figure 11: Modernized Algol Statics (Key Rules)

get
Σ ⊢ 𝑎 ∼ 𝐴 𝜇(𝑎) = 𝑉

{𝜇 ∥ get⟨𝑎⟩ } ↦,→
Σ

{𝜇 ∥ ret(𝑉) }

set
Σ ⊢ 𝑎 ∼ 𝐴 𝑀 ⇓Σ 𝑉 𝜇′(𝑎) = 𝑉, 𝜇′(𝑏) = 𝜇(𝑏) ow

{𝜇 ∥ set⟨𝑎⟩(𝑀) } ↦,→
Σ

{𝜇′ ∥ ret(𝑉) }

Figure 12: Dynamics for a Fixed Signature

3.6 Mutable State

The statics of a cbpv formulation of Modernized Algol (Harper, 2016) with free assignables is sum-
marized in Figure 11. Typing judgments are indexed by a signature, Σ, associating ground types to
assignables by a sequence of declarations 𝑎 ∼ 𝐴. A ground type is a value type constructed from value
types other than suspension or total function types; these include finite sums and products of ground
types, and inductive types constructed from other ground types. The significance of this restriction will
emerge when formulating exact equality for computations that allocate and mutate memory cells.

Exercise 27. Give an inductive definition of the judgment𝐴 ground stating that𝐴 is a ground type. Then
prove that equality of values of ground types is decidable by defining a total function eq𝐴 ∶ 𝐴⊗𝐴 → bool
by induction on the derivation of 𝐴 ground.

The formulation of Modernized Algol will be considered in two stages: first, for a pre-allocated
collection of assignables of ground type, and second, permitting allocation of such assignables with
global scope.

In the first instance the dynamics is given by a signature-indexed transition relation between states
of the form 𝜇 ∥ 𝐶 consisting of a memory and a command that acts on it, written

{𝜇 ∥ 𝐶 } ↦,→
Σ

{𝜇′ ∥ 𝐶′ }.

Such states are assumed well-formed in the sense that ⊢Σ 𝐶 ∶ 𝑋 for some computation type 𝑋, and 𝜇
is a composition of cells, 𝑎1 → 𝑀1 ∥ ⋯ ∥ 𝑎𝑛 → 𝑀𝑛, such that Σ ⊢ 𝑎𝑖 ∼ 𝐴𝑖 and ⊢𝜀 𝑀𝑖 ∶ 𝐴𝑖 for each
1 ≤ 𝑖 ≤ 𝑛.4 The definition of the dynamics of get and set for a fixed signature is given in Figure 12.5

4The assignables in a well-formed signature are distinct from each other, so no two cells govern the same assignable.
5The notation 𝜇(𝑎) = 𝑀 means that 𝜇 assigns𝑀 to assignable 𝑎.

18 October 15, 2024



Some illustrative equations governing the dynamics of get and set are given in Figure 13. These
equations express critical properties of set and get in terms of the ambient sequentialization of the cbpv
framework. Informally, these equations allow a sequence of set and get operations to be put into a
simplified form consisting of a sequence of get’s followed by a sequence of set’s, the idea being to read
the memory so as to provide the data required to modify it.

The justification of these equations is given in terms of the following formulation of exact equality
for a fixed signature Σ:

𝑀 .= 𝑀′ ∈ 𝐴 iff … according to 𝐴 …

𝐶 .= 𝐶′ ∈ F(𝐴) iff 𝜇 .= 𝜇′ ∈ Σ implies

𝜇 ∥ 𝐶 ↦,→
∗
𝜇1 ∥ ret(𝑀), 𝜇′ ∥ 𝐶′ ↦,→

∗
𝜇′1 ∥ ret(𝑀′),

𝜇1 ≡ 𝜇′1 ∶ Σ and𝑀
.= 𝑀′ ∈ 𝐴

𝐶 .= 𝐶′ ∈ 𝐴⇀ 𝑋 iff 𝑀 .= 𝑀′ ∈ 𝐴 implies ap(𝐶;𝑀) .= ap(𝐶′;𝑀′) ∈ 𝑋

𝜇 .= 𝜇′ ∈ Σ iff Σ ⊢ 𝑎 ∼ 𝐴 implies 𝜇(𝑎) .= 𝜇′(𝑎) ∈ 𝐴

Two principles reflected in these definitions are that two computations, taken in isolation, are related
with respect to all possible exactly equal memories, and that two computations are required to result in
the same memory only once they have both completed.

Because the signature of assignables is fixed throughout, exact equality of valuables and ofmemories
is defined with its dependency on it left implicit. In particular exact equality of suspensions is defined
in the evident way:

𝑀 .= 𝑀′ ∈ U(𝑋) iff 𝑀 ⇓Σ susp(𝐶), 𝑀′ ⇓Σ susp(𝐶′), 𝐶 .= 𝐶′ ∈ 𝑋

In particular the encapsulated computations are compared with respect to arbitrary memories that are
exactly equal according to the signature. However, this raises an important issue with the purported
definition of exact equality: it is not clear that it is well-defined! The difficulty is that the types of the
memory cells are not constituent types of the classifier of the values or computations being compared,
and so it is not immediately clear that the conditions given above determine a unique notion of exact
equality.

One solution, adopted here, is to restrict the contents of memory cells to ground type. If we restrict
memories to ground type, then 𝜇 .= 𝜇′ ∈ Σ is equivalent to 𝜇 ≡ 𝜇′ ∶ Σ, and the mentioned difficulties
with the definition are avoided. With these points inmind, it is then possible to formulate the reflexivity
and fundamental theorems for the case of a fixed collection of assignables of ground type.

Exercise 28. Show that if suspensions were permitted to be stored in memory, then it is possible to de-
fine general recursion, and hence to define non-terminating computations. (Note, however, that valuable
expressions remain terminating.)

Exercise 29. Prove that exactly equal valuable expressions of ground type are definitionally equivalent.

Exercise 30. State and prove representative cases of reflexivity and the fundamental theorem for the (re-
vised) formulation of exact equality discussed above. Hint: Make use of a generalized head expansion
lemma 8 suitable for this setting.

19 October 15, 2024



set-get-same
Σ ⊢ 𝑎 ∼ 𝐴

Γ ⊢Σ seq(set⟨𝑎⟩(𝑀); get⟨𝑎⟩) ≡ set⟨𝑎⟩(𝑀) ∶ F(𝐴)

set-get-diff
Σ ⊢ 𝑎 ∼ 𝐴 Σ ⊢ 𝑏 ∼ 𝐵 (𝑎 ≠ 𝑏) Γ ⊢Σ 𝑀 ∶ 𝐴

Γ ⊢Σ seq(set⟨𝑎⟩(𝑀); get⟨𝑏⟩) ≡ bnd(get⟨𝑏⟩;𝑦. seq(set⟨𝑎⟩(𝑀); ret(𝑦))) ∶ F(𝐵)

set-set-same
Γ ⊢ 𝑎 ∼ 𝐴 Γ ⊢Σ 𝑀 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑁 ∶ 𝐴

Γ ⊢Σ bnd(set⟨𝑎⟩(𝑀);𝑥. set⟨𝑎⟩(𝑁)) ≡ letv(𝑀;𝑥. set⟨𝑎⟩(𝑁)) ∶ F(𝐴)

set-set-diff
Σ ⊢ 𝑎 ∼ 𝐴 Σ ⊢ 𝑏 ∼ 𝐵 (𝑎 ≠ 𝑏) Γ ⊢Σ 𝑀 ∶ F(𝐴) Γ, 𝑥 ∶ 𝐴 ⊢Σ 𝑁 ∶ F(𝐵)

Γ ⊢Σ bnd(set⟨𝑎⟩(𝑀);𝑥. set⟨𝑏⟩(𝑁)) ≡ letv(𝑀;𝑥. bnd(set⟨𝑏⟩(𝑁);𝑦. seq(set⟨𝑎⟩(𝑥); ret(𝑦)))) ∶ F(𝐵)

get-set
Σ ⊢ 𝑎 ∼ 𝐴

Γ ⊢Σ bnd(get⟨𝑎⟩;𝑥. set⟨𝑎⟩(𝑥)) ≡ get⟨𝑎⟩ ∶ F(𝐴)

get-get
Σ ⊢ 𝑎 ∼ 𝐴 Σ ⊢ 𝑏 ∼ 𝐵

Γ ⊢Σ seq(get⟨𝑎⟩; get⟨𝑏⟩) ≡ get⟨𝑏⟩ ∶ F(𝐴)

get-fun
Σ ⊢ 𝑎 ∼ 𝐴 Γ, 𝑦 ∶ 𝐴, 𝑥 ∶ 𝐵 ⊢ 𝐶 ∶ 𝑋

Γ ⊢Σ bnd(get⟨𝑎⟩;𝑦. 𝜆(𝑥.𝐶)) ≡ 𝜆(𝑥. bnd(get⟨𝑎⟩;𝑦.𝐶)) ∶ 𝐵 ⇀ 𝑋

set-fun
Σ ⊢ 𝑎 ∼ 𝐴 Γ ⊢ 𝑀 ∶ 𝐴 Γ, 𝑦 ∶ 𝐴, 𝑥 ∶ 𝐵 ⊢ 𝐶 ∶ 𝑋

Γ ⊢Σ bnd(set⟨𝑎⟩(𝑀);𝑦. 𝜆(𝑥.𝐶)) ≡ 𝜆(𝑥. bnd(set⟨𝑎⟩(𝑀);𝑦.𝐶)) ∶ 𝐵 ⇀ 𝑋

Figure 13: Equations for State Operations

20 October 15, 2024



dcl

𝜈 Σ {𝜇 ∥ dcl(𝑀;𝑎.𝐶) } ↦,→ 𝜈 Σ, 𝑎 ∼ 𝐴 {𝜇 ∥ 𝑎 → 𝑀 ∥ 𝐶 }

get

𝜈 Σ, 𝑎 ∼ 𝐴 {𝜇 ∥ 𝑎 → 𝑀 ∥ get⟨𝑎⟩ } ↦,→ 𝜈 Σ, 𝑎 ∼ 𝐴 {𝜇 ∥ 𝑎 → 𝑀 ∥ ret(𝑀) }

set

𝜈 Σ, 𝑎 ∼ 𝐴 {𝜇 ∥ 𝑎 → _ ∥ set⟨𝑎⟩(𝑀) } ↦,→ 𝜈 Σ, 𝑎 ∼ 𝐴 {𝜇 ∥ 𝑎 → 𝑀 ∥ ret(𝑀) }

Figure 14: Dynamics with Allocation

Exercise 31. Can the foregoing be extended to account for the total function value type? If so, show how,
and, if not, argue why it is impossible to do so.

Exercise 32. Extend the foregoing to account for references, & 𝑎, and their associated setref and getref
operations as defined in Harper (2016). Reference types should be considered ground; check that equality
of values of ground type remains decidable. Observe that reference values are simply symbols, as described
in Section 3.5, albeit without, for the moment, their dynamic allocation.

The dynamics of Modernized Algol with scope-extruding declaration of assignables is given by the
transition relation between states of the form 𝜈 Σ {𝜇 ∥ 𝐶 } given in Figure 14. Such states are assumed
to be well-formed in the same sense as for the fixed-signature dynamics, albeit with the signature now
forming part of the state. An important invariant governing the dynamics in Figure 14 is that if 𝜈 Σ {𝜇 ∥
𝐶 } ↦,→ 𝜈 Σ′ {𝜇′ ∥ 𝐶 }, then Σ′ ≤ Σ in the sense that if Σ ⊢ 𝑎 ∼ 𝐴, then Σ′ ⊢ 𝑎 ∼ 𝐴 as well (but could

also associate (ground) types to assignables other than those given by Σ.)
The validity of these equations is established by defining exact equality as follows:

𝑀 .= 𝑀′ ∈ U(𝑋) [Σ] iff 𝑀 ⇓Σ susp(𝐶), 𝑀′ ⇓Σ susp(𝐶′), and ∀Σ′ ≤ Σ, 𝐶 .= 𝐶′ ∈ 𝑋 [Σ′]

𝐶 .= 𝐶′ ∈ F(𝐴) [Σ] iff 𝜇 ≡ 𝜇′ ∶ Σ implies

𝜈 Σ {𝜇 ∥ 𝐶 } ↦,→
∗
𝜈 Σ1 {𝜇1 ∥ ret(𝑀) },

𝜈 Σ {𝜇′ ∥ 𝐶′ } ↦,→
∗
𝜈 Σ1 {𝜇′1 ∥ ret(𝑀′) },

𝜇1 ≡ 𝜇′1 ∶ Σ1 and𝑀
.= 𝑀′ ∈ 𝐴 [Σ1]

𝐶 .= 𝐶′ ∈ 𝐴⇀ 𝑋 [Σ] iff 𝑀 .= 𝑀′ ∈ 𝐴 [Σ] implies ap(𝐶;𝑀) .= ap(𝐶′;𝑀′) ∈ 𝑋 [Σ]

As in Section 3.5 exact equality of encapsulated computations is defined by quantification over fu-
ture worlds to ensure that these values remain equal in any further evolution of the store engendered
by the surrounding computation, as expressed by the following lemma:

21 October 15, 2024



dcl-ret
Γ ⊢Σ 𝑀 ∶ 𝐴 Γ ⊢Σ 𝑁 ∶ 𝐴

Γ ⊢Σ dcl(𝑀;𝑎. ret(𝑁)) ≡ ret(𝑁) ∶ F(𝐴)

dcl-get
Γ ⊢Σ 𝑀 ∶ 𝐴

Γ ⊢Σ dcl(𝑀;𝑎. get⟨𝑎⟩) ≡ dcl(𝑀;𝑎. ret(𝑀)) ∶ F(𝐴)

dcl-set
Γ ⊢Σ 𝑀 ∶ 𝐴 Γ ⊢Σ 𝑁 ∶ 𝐴

Γ ⊢Σ dcl(𝑀;𝑎. set⟨𝑎⟩(𝑁)) ≡ dcl(𝑁;𝑎. get⟨𝑎⟩) ∶ F(𝐴)

dcl-dcl
Γ ⊢Σ 𝑀 ∶ 𝐴 Γ ⊢Σ 𝑁 ∶ 𝐴

Γ ⊢Σ dcl(𝑀;𝑎. dcl(𝑁;𝑏.𝐶)) ≡ dcl(𝑁;𝑏. dcl(𝑀;𝑎.𝐶)) ∶ 𝑋

dcl-bnd
Γ ⊢Σ 𝑀 ∶ 𝐴 Γ ⊢Σ,𝑎∼𝐴 𝐶1 ∶ F(𝐴1) Γ, 𝑥 ∶ 𝐴1 ⊢Σ 𝐶2 ∶ F(𝐴2)

Γ ⊢Σ bnd(dcl(𝑀;𝑎.𝐶1);𝑥.𝐶2) ≡ dcl(𝑀;𝑎. bnd(𝐶1;𝑥.𝐶2)) ∶ F(𝐴2)

dcl-fun
Γ ⊢Σ 𝑀 ∶ 𝐴 Γ, 𝑦 ∶ 𝐵 ⊢Σ,𝑎∼𝐴 𝐶 ∶ 𝑋

Γ ⊢Σ dcl(𝑀;𝑎. 𝜆(𝑦.𝐶)) ≡ 𝜆(𝑦. dcl(𝑀;𝑎.𝐶)) ∶ 𝐵 ⇀ 𝑋

Figure 15: Equations for Declarations

22 October 15, 2024



Lemma 9 (Anti-Monotonicity). If𝑀 .= 𝑀′ ∈ 𝐴 [Σ] and Σ′ ≤ Σ, then𝑀 .= 𝑀′ ∈ 𝐴 [Σ′].

Exercise 33. Prove Lemma 9. Note well the role of the quantification over future worlds in the definition
of exact equality for suspensions!

The extension of these judgments to open terms is, for the purpose of proving reflexivity, defined as
follows:

Γ≫Σ 𝐴 ∈ 𝑀 iff 𝛾 ≡ 𝛾′ ∶ Γ [Σ], implies �̂�(𝑀) .= 𝛾′(𝑀) ∈ 𝐴 [Σ]

Γ≫Σ 𝑋 ∈ 𝐶 iff 𝛾 ≡ 𝛾′ ∶ Γ [Σ], implies �̂�(𝐶) .= 𝛾′(𝐶) ∈ 𝑋 [Σ]

Exercise 34. Formulate and prove (representative cases of) the reflexivity theorem in the presence of dec-
larations as well as get/set operations.

The definition of semantic equality of open terms follows a similar pattern to the open semantic
membership judgments given above.

Exercise 35. State and prove (representative cases of) the fundamental theorem in the presence of dec-
larations. Be sure to demonstrate the validity of the equations given in Figure 15. Hint: Make use of a
generalized head expansion lemma 8 suitable in this setting.

Exercise 36. Formulate equations governing the behavior of the new, getref, and setref operations defined
in Harper (2016), and prove that they are valid with respect to the extension of exact equality to account
for references in the setting that also accounts for declarations.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cam-
bridge, England, Second edition, 2016.

Robert Harper. Continuations, aka contradictions, aka contexts, aka stacks. Unpublished lecture note.,
February 2022. URL https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tlc-cont.pdf.

Robert Harper. Call-by-push-value. Unpublished lecture note., January 2024a. URL https://www.cs.
cmu.edu/~rwh/courses/atpl/pdfs/cbpv.pdf.

Robert Harper. Kripke-style logical relations for normalization. Unpublished lecture note, Spring
2024b. URL https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/kripke.pdf.

Paul Blain Levy. Call-By-Push-Value. Springer Netherlands, Dordrecht, 2003. ISBN 978-94-010-3752-5
978-94-007-0954-6. doi: 10.1007/978-94-007-0954-6. URL http://link.springer.com/10.1007/
978-94-007-0954-6.

BenjaminC. Pierce. Advanced topics in types and programming languages. MIT Press, Cambridge,Mass,
2005. ISBN 978-0-262-16228-9.

A. M. Pitts. Typed Operational Reasoning. In Advanced Topics in Types and Programming Languages,
pages 245–289. MIT Press, Cambridge, MA, 2005.

23 October 15, 2024



Andrew Pitts. Step-Indexed Biorthogonality: a Tutorial Example. In Dagstuhl Seminar Proceedings
(DagSemProc), volume 10351, pages 1–10, Dagstuhl, Germany, 2010. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi: 10.4230/DagSemProc.10351.6. URL https://drops.dagstuhl.de/
entities/document/10.4230/DagSemProc.10351.6.

Andrew Pitts and Ian Stark. Operational reasoning for functions with local state. In Higher-Order Op-
erational Techniques in Semantics, Publications of the Newton Institute, pages 227–273. Cambridge
University Press, 1998.

24 October 15, 2024


