
Journal of Automated Reasoning21: 295–325, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

295

Analytica – An Experiment in Combining Theorem
Proving and Symbolic Computation?

ANDREJ BAUER and EDMUND CLARKE
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, U.S.A. e-mail: andrej@cs.cmu.edu; emc@cs.cmu.edu

XUDONG ZHAO
Mail Stop: JFT-102, Intel Corporation, 2111 N.E. 25th Ave., Hillsboro, OR 97124, U.S.A.
e-mail: xzhao@cs.cmu.edu

(Received: April 1996; accepted: March 1997)

Abstract. Analytica is an automatic theorem prover for theorems in elementary analysis. The prover
is written in the Mathematica language and runs in the Mathematica environment. The goal of the
project is to use a powerful symbolic computation system to prove theorems that are beyond the scope
of previous automatic theorem provers. The theorem prover is also able to deduce the correctness of
certain simplification steps that would otherwise not be performed. We describe the structure of
Analytica and explain the main techniques that it uses to construct proofs. Analytica has been able
to prove several nontrivial theorems. In this paper, we show how it can prove a series of lemmas that
lead to the Bernstein approximation theorem.

Key words: computer algebra, Analytica, symbolic computation, Mathematica, theorem proving.

1. Introduction

Current automatic theorem provers, particularly those based on some variant of
resolution, have concentrated on obtaining ever higher inference rates by using
clever programming techniques, parallelism, etc. We believe that this approach is
unlikely to lead to a useful system for actually doing mathematics. The main prob-
lem is the large amount of domain knowledge that is required for even the simplest
proofs. In this paper, we describe an alternative approach that involves combining
an automatic theorem prover with a symbolic computation system. The theorem
prover, which we callAnalytica, is able to exploit the mathematical knowledge
that is built into this symbolic computation system. In addition, it can guarantee the
correctness of certain steps that are made by the symbolic computation system. For
example, in certain situations the theorem prover can guarantee that an expression

? This research was sponsored in part by the National Science Foundation under grant no. CCR-
8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and by the Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced
Research Projects Agency (ARPA) under grant F33615-93-1-1330.

JADKSP04.tex; 23/09/1998; 9:37; p.1
VTEX(P) PIPS No.: 181212 (jarskap:mathfam) v.1.15

296 ANDREJ BAUER ET AL.

is not zero, and the symbolic computation system can then divide by it. This would
not be possible without the support of a theorem prover.

Analyticais written in the Mathematica programming language and runs in the
interactive environment provided by this system [23]. This programming language
is based on term rewriting. A short description of the key features of the language
is given in Section 3. Each step made by Analytica is the application of a rewriting
rule. The rules can be divided into two sets. One set consists of rules that are built
into Mathematica, such as simplification and factorization of polynomials. We call
these rules the Mathematica rules. The other set consists of rules that we have
added. These rules are called Analytica rules. For example, the inference phase of
Analytica contains a rule that rewrites the sequenth→ c∨(a∧b) into two sequents
h→ c ∨ a andh→ c ∨ b. Another example is a rule in Analytica’s simplification
phase that rewrites the sequenth→ x ·y = 0 intoh→ x = 0∨y = 0. Additional
rules are given in Section 5.

Since we wanted to generate proofs that were similar to proofs constructed by
humans, we have used a variant of the sequent calculus [12, 13] in the inference
phase of our theorem prover. However, quantifiers are handled by Skolemization
instead of explicit quantifier introduction and elimination rules. Although inequal-
ities play a key role in all of analysis, Mathematica is able to handle only very
simple inequalities. We have implemented the SUP-INF method of Bledsoe [6] to
handle the linear inequality systems. In addition, we have developed a technique
that is able to handle a large class of nonlinear inequalities as well. This technique
is more closely related to the BOUNDER system developed at MIT [20] than to
the traditional SUP-INF method. Another important component of Analytica deals
with expressions involving summation and product operators. A large number of
rules are devoted to the basic properties of these operators. We have also integrated
Gosper’s algorithm for hypergeometric sums with the other summation rules, since
it can be used to find closed-form representations for a wide class of summations
that occur in practice.

Analytica is able to prove several nontrivial examples, such as the basic prop-
erties of the stereographic projection [10], and a series of three lemmas that lead
to a proof of Weierstrass’s example of a continuous nowhere differentiable func-
tion [10]. In the appendix we show how Analytica can prove four lemmas from
which the Bernstein approximation theorem follows.

There has been relatively little research on theorem proving in analysis. Bled-
soe’s work in this area [4, 5] is certainly the best known. Analytica has been heavily
influenced by his research. More recently, Farmer, Guttman, and Thayer at Mitre
Corporation [11] have developed an interactive theorem prover for analysis proofs
that is based on a simple type theory. Neither of these uses a symbolic computation
system for manipulating mathematical formulas. Suppes and Takahashi [21] have
combined a resolution theorem prover with theReducesystem. London and Musser
[18] have experimented with the use ofReducefor program verification. More
recently, Harisson and Théry [17] have combinedMaple with the HOL theorem

JADKSP04.tex; 23/09/1998; 9:37; p.2

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 297

prover, and Ballarin, Homann and Calmet [2] have combinedMapleandIsabelle.
However, these systems do not appear to be able to handle very complicated proofs.

The paper is organized as follows. In Section 2, we give two simple examples
that illustrate the power of our theorem prover and show how it uses various sym-
bolic computation techniques provided by Mathematica. In Section 3, we briefly
describe the Mathematica programming language. We concentrate on the rewrite
rule facility that is used extensively in our prover. Our intention is to provide
enough of an introduction to the language that a reader who is unfamiliar with
Mathematica will still be able to understand most of the code that we use in ex-
amples. Section 4 contains an overview of the structure of Analytica and the major
techniques that it uses in constructing proofs. Sections 5 and 6 describe several of
the most important techniques in greater detail. Section 5 deals with summation
and includes a short description of how we have integrated Gosper’s algorithm into
the prover. In Section 6, we discuss how Analytica treats inequalities. In Section 7,
we state and prove the Bernstein approximation theorem; the automated proof of
the theorem is presented in Appendix B. Section 8 concludes with a discussion of
improvements and extensions that we hope to add to Analytica.

2. Simple Examples Proved by Analytica

In each example, the input for the prover is given first. The theorem and its proof are
automatically generated by the theorem prover. Mathematica can generate LATEX
commands to typeset mathematical expressions.

2.1. THE SUM OF TWO ROOTS OF A QUADRATIC EQUATION

Note that in this example the input to the theorem prover contains division by a
free variablea, which makes the right-hand side of the theorem undefined when
a = 0. However, the division is “shielded” by a hypothesisa 6= 0. Analytica
never introduces division unless it can prove that the divisor is nonzero. If the
input already contains divisions, then all Analytica guarantees is that if the theorem
makes sense, so will a proof. For a further discussion of this problem, see Section 8.

Prove[imp[and[a!=0, x!=y, a x^2 + b x + c == 0,
a y^2 + b y + c == 0],

x + y == -b/a]]

THEOREM.(
a 6= 0∧ x 6= y ∧ ax2 + bx + c = 0∧ ay2 + by + c = 0⇒ x + y = −b

a

)
Proof.

a 6= 0∧ x 6= y ∧ c + bx + ax2 = 0∧ c + by + ay2 = 0H⇒ x + y = −b
a

JADKSP04.tex; 23/09/1998; 9:37; p.3

298 ANDREJ BAUER ET AL.

reduces to

c + bx + ax2 = 0∧ c + by + ay2 = 0H⇒ x = y ∨ a = 0∨ x + y = −b
a

rewrite as

c + bx + ax2 = 0∧ c + by + ay2 = 0

H⇒ x − y = 0∨ a = 0∨ b + ax + ay
a

= 0

reduces to

c + bx + ax2 = 0∧ c + by + ay2 = 0

H⇒ x − y = 0∨ a = 0∨ b + a(x + y) = 0

solve linear equation

c = −(x(b + ax)) ∧ c = −(y(b + ay))
H⇒ x − y = 0∨ a = 0∨ b + a(x + y) = 0

substitute using equation

−(x(b + ax)) = −(y(b + ay))
H⇒ x − y = 0∨ a = 0∨ b + a(x + y) = 0

reduces to

x(b + ax) = y(b + ay) H⇒ x − y = 0∨ a = 0∨ b + a(x + y) = 0

rewrite as

(x − y)(b + ax + ay) = 0H⇒ x − y = 0∨ a = 0∨ b + ax + ay = 0

reduces to

x − y = 0∨ b + a(x + y) = 0

H⇒ x − y = 0∨ a = 0∨ b + a(x + y) = 0

simplify formula using local context

True
2

2.2. CLOSED FORM FOR A SUMMATION

Prove[imp[and[integer[n], 0<=n, m!=1], sum[2^k/(1+m^(2^k)),
{k, 0, n}] == 1/(m-1) + 2^(n+1)/(1-m^(2^(n+1)))]];

JADKSP04.tex; 23/09/1998; 9:37; p.4

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 299

THEOREM.(
integer(n) ∧ 0≤ n ∧m 6= 1⇒

n∑
k=0

2k

1+m2k
= 1

m− 1
+ 2n+1

1−m2n+1

)

Proof.

integer(n) ∧ 0≤ n ∧m 6= 1H⇒
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

reduces to

integer(n) ∧ 0≤ n H⇒ m = 1∨
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

prove

n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

use induction onn.
Base case withn = 0

m = 1∨ 1

1+m =
1

−1+m +
2

1−m2

reduces to

True

induction step

integer(n) ∧ 0≤ n ∧
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

H⇒ m = 1∨
1+n∑
k=0

2k

1+m2k
= 1

−1+m +
4 · 2n

1−m4·2n

calculate summations

integer(n) ∧ 0≤ n ∧
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

H⇒ m = 1∨ 2 · 2n
1+m2·2n +

(
n∑
k=0

2k

1+m2k

)
= 1

−1+m +
4 · 2n

1−m4·2n

JADKSP04.tex; 23/09/1998; 9:37; p.5

300 ANDREJ BAUER ET AL.

substitute using equation

integer(n) ∧ 0≤ n ∧
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

H⇒ m = 1∨ 2 · 2n
1+m2·2n +

1

−1+m +
2 · 2n

1−m2·2n =
1

−1+m +
4 · 2n

1−m4·2n

reduces to

True
2

3. Mathematica

Mathematica provides a powerful rule-based programming language. Analytica is
written entirely in this language. Mathematica rules have the form “Pattern op
Body”, where the operation partop can be one of “=, :=, ->, :>”. Normally, a
rule is applicable to a class of expressions. Thepattern part of the rule specifies
the class of expressions. This part is constructed from an expression by replacing
various parts withblank patterns. There are four kinds of blank patterns, “x_, x_.,
x__, x__ _”. The first matches an arbitrary expression; the second indicates that the
expression is optional; the third matches a sequence containing one or more expres-
sions; and the last matches an expression sequence that may be empty. Names can
be used to distinguish blank patterns. If a blank pattern appears more than once with
the same name in a composite pattern, then each instance should match the same
term. For example, consider the four patternsf[x_, x_], f[x_., x_.], f[x__,
x__], f[x___, x__ _]. The expressionf[a, a] matches all four patterns,f[a,
b, a, b] matchesf[x__, x__] andf[x___, x__ _], f[]matchesf[x_., x_.]
andf[x___, x__ _], andf[a, b] does not match any pattern.

Thebody of the rule specifies the expression to which the left-hand side should
be rewritten. In a conditional rewrite rule, the body has the form “exp /; cond”.
In this case, the rule is applied only when the conditioncond is satisfied. When a
rule is applied, the variables appearing in the body that are names of blank patterns
in the pattern part are replaced by the expressions that the corresponding blank
patterns match.

The operation part of the rule determines when the body of the rule is evaluated.
If the operation part is “=” or “ ->”, the rule is aneager rule, and the body is
evaluated as soon as the rule is introduced. If the operation part is “:=” or “ :>”, the
rule is alazy rule, and the body is evaluated only after the rule has been applied.

Rules may also differ in the way that they are applied. A rule with the operation
part “=” or “ :=” is a global rule. It is applied as soon as some expression occurs
that matches its pattern part. A rule with operation part “->” or “ :>” is a local rule
and is not applied automatically. Local rules are explicitly applied by using “/.”

JADKSP04.tex; 23/09/1998; 9:37; p.6

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 301

or “//.”. The expression “e /. R” causes the list of rulesR to be applied to the
expressione once; while “e //. R” causes the list of rulesR to be applied to the
expressione repeatedly until the expression fails to change [23].

4. An Overview of Analytica

Analytica consists of four different phases: Skolemization, simplification, infer-
ence, and rewriting. When a new formula is submitted to Analytica for proof, it is
first Skolemized to a quantifier-free form. Then it is simplified using a collection
of algebraic and logical reduction rules. If the formula reduces to true, the current
branch of the inference tree terminates with success. If not, the theorem prover
checks to see whether the formula matches the conclusion of some inference rule.
If a match is found, Analytica will try to establish the hypothesis of the rule. If the
hypothesis consists of a single formula, then it will try to prove that formula. If the
hypothesis consists of a series of formulas, then Analytica will attempt to prove
each of the formulas in sequential order. If no inference rule is applicable, then
various rewrite rules will be used in an attempt to convert the formula to another
equivalent form. If the rewriting phase is unsuccessful, the search terminates in fail-
ure; otherwise the simplification, inference, and rewriting phases will repeat with
the new formula. Backtracking will cause the entire inference tree to be searched
before the proof of the original goal formula terminates with failure.

4.1. SKOLEMIZATION PHASE

In Analytica (as in Bledsoe’sUT Prover [4]), we use Skolemization to deal with
the quantifiers that occur in the formula to be proved. Initially, quantified vari-
ables are standardized so that each has a unique name. We define theposition
of a quantifier within a formula aspositive if it is in the scope of an even num-
ber of negations, andnegativeotherwise.Skolemizationconsists of the following
procedure: Replace(∃x.9(x)) at positive positions or(∀x.9(x)) at negative posi-
tions by(9(f (y1, y2, . . . , yn))), wherex, y1, y2, . . . , yn are all the free variables
in 9(x) and f is a new function symbol, called aSkolem function. The origi-
nal formula is satisfiable if and only if its Skolemized form is satisfiable. We
call ¬Skolemize(¬f) the negatively Skolemized formof f . A formula is valid if
and only if its negatively Skolemized form is valid. When a negatively Skolem-
ized formula is put in prefix form, all quantifiers are existential. These quantifiers
are implicitly represented by marking the corresponding quantified variables. The
marked variables introduced by this process are calledSkolem variables. The re-
sulting formula will be quantifier-free. For example, the Skolemized form of the
formula

(∃x.∀y.P (x, y))→ (∃u.∀v.Q(u, v))

JADKSP04.tex; 23/09/1998; 9:37; p.7

302 ANDREJ BAUER ET AL.

is given by

P(x, y0(x))→ Q(u0(), v),

while its negatively Skolemized form is

P(x0(), y)→ Q(u, v0(u)).

wherex, y, u andv are Skolem variables, andu0, v0, x0, y0 are Skolem functions.
Although formulas are represented internally in Skolemized form without quan-
tifiers, quantifiers are added when a formula is displayed, so that proofs will be
easier to read.

4.2. SIMPLIFICATION PHASE

Simplification is the key phase of Analytica. A formula is simplified with respect
to its proof context. Intuitively, the proof context consists of the formulas that may
be assumed true when the formula is encountered in the proof. The formula that
results from simplifyingf under contextC is denoted by Simplify(f,C). In order
for the simplification procedure to be sound, Simplify(f,C) must always satisfy
the condition

C ` Simplify(f,C)↔ f.

When a sequent0 ` 1 enters the simplification phase, the disjunction1 is
simplified in the context0 augmented by thegiven propertiesC0 of the vari-
ables and constants. In other words, the simplification phase consists of computing
Simplify(1,0 ∧ C0).

The simplification procedure forcomposite formulasis given by the following
rules:

1. Simplify(¬f,C) = ¬Simplify(f,C).
2. Simplify(f1 ∧ f2, C) = f ′1 ∧ Simplify(f2, C ∧ f ′1) wheref ′1 = Simplify(f1,
C ∧ f2).

3. Simplify(f1 ∨ f2, C) = f ′1 ∨ Simplify(f2, C ∨ ¬f ′1) wheref ′1 = Simplify(f1,
C ∧ ¬f2).

4. Simplify(f1→ f2, C) = f ′1→ Simplify(f2, C∧f ′1) wheref ′1 = Simplify(f1,
C ∧ ¬f2).

The soundness of these rules can be easily established by structural induction.
For example, if the soundness condition holds forf1 andf2, it will also hold for
f1 ∧ f2.

A large number of rules are provided for simplifyingatomic formulas. They
consist of simplification rules for inequalities, equations, summations and products,
limits, and frequently used functions, such asAbs, Min, andMax. Simplification
of inequalities is described in Section 6, and simplification of summations and
products is discussed in Section 5.

JADKSP04.tex; 23/09/1998; 9:37; p.8

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 303

The following example illustrates how the context information is used to sim-
plify formulas.

THEOREM.(
0< a < b⇒ b3− a3 > (b − a)3)

Proof.

0< a < b H⇒ −a3+ b3 > (−a + b)3

reduces to

0< a ∧ a − b < 0H⇒ 3a(a − b)b < 0

reduces to

0< a ∧ a − b < 0 H⇒ (0< b ∧−a + b < 0∨ a − b < 0∧ b < 0) ∧
a < 0∨ 0< a ∧
(0< b ∧ a − b < 0∨−a + b < 0∧ b < 0)

simplify formula using context information

0< a ∧ a − b < 0H⇒ 0< b

replace expression with its lower or upper bounds

0< a ∧ a − b < 0H⇒ 06 a

reduces to

True
2

4.3. INFERENCE PHASE

The inference phase is based on asequent calculus[13]. We selected this approach
because we wanted our proofs to be readable. Suppose thatf is the formula that
we want to prove. In this phase we attempt to find an instantiation for the Skolem
variables that makesf a valid ground formula. In order to accomplish this,f is
decomposed into a set ofsequentsusing rules of the sequent calculus. Each sequent
has the form0 ` 1, where0 and1 are initially sets of subformulas off . The
formulaf will be proved if substitution can be found that makes all of the sequents
valid. A sequent0 ` 1 is valid if it is impossible to make all of the elements of0
true and all of the elements of1 false.

In Analytica, the functionFindSubstitution(f) is used to determine the appro-
priate substitution forf . If f is not provable,FindSubstitution(f) will return Fail.

JADKSP04.tex; 23/09/1998; 9:37; p.9

304 ANDREJ BAUER ET AL.

FindSubstitutionhas rules corresponding to each of the rules of the sequent calcu-
lus except those concerning quantifiers. The two rules for implication are given as
examples:

1. Implication on the left:
FindSubstitution(0,A→ B,1 ` 3) = σ1σ2 where

σ1 = FindSubstitution(0,1 ` A,3), and
σ2 = FindSubstitution(0σ1, Bσ1,1σ1 ` 3σ1).

2. Implication on the right:
FindSubstitution(0 ` 1,A→ B,3) = FindSubstitution(0,A ` 1,B,3)

Rules are also needed for atomic formulas. The three below are typical.

1. Equation:FindSubstitution(0 ` 1, a = b,3) = σ whereaσ = bσ .
2. Inequality:FindSubstitution(0, a < b,1 ` 3) = σ whereaσ = bσ .
3. Matching:FindSubstitution(0,A,1 ` 3,B,2) = σ whereAσ = Bσ .

Backtracking is often necessary in the inference phase when there are multiple
subgoals, because a substitution that makes one subgoal valid may not make an-
other subgoal valid. When this happens, it is necessary to find another substitution
for the first subgoal. In order to restart the inference phase at the correct point,
a stack is added to the procedure described above. When a rule is applied that
may generate several subgoals, one subgoal is selected as the current goal, and the
others are saved on the stack. If some substitutionσ makes the current subgoal
valid, thenσ is applied to the other subgoals on the stack, and Analytica attempts
to prove them. If the other subgoals are not valid underσ , then Analytica returns
to the previous goal and tries to find another substitution that makes it valid.

Special tactics are included in the inference phase for handling inequalities and
constructing inductive proofs. The inequality tactics are described in Section 6.

The induction tactic selects a suitable induction scheme for the formula to be
proved, and attempts to establish the basis and induction steps. A typical induction
scheme is

f (n0) ∧ ∀n(n ≥ n0 ∧ f (n)→ f (n+ 1))⇒ ∀n(n ≥ n0→ f (n)).

The induction tactics identifies an induction variablen and determines a base value
for it. To find a suitable induction variable for formulaf , we list all variables that
appear inf and select those that have type integer. To reduce the search space, we
would like to make sure that our choice of the induction variable is a good one; in
other words, the induction hypothesis should be useful for proving the induction
conclusion. This will be more likely if the terms that appear in the induction con-
clusion also appear in the induction hypothesis or in the current context. Hence, we
arrive at the following heuristic for selecting the induction variable: Usen as the
induction variable to provef (n) provided that after we simplifyf (n+ 1), it con-
tains only terms that appear inf (n), or in the current context, or are polynomials
in n.

JADKSP04.tex; 23/09/1998; 9:37; p.10

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 305

Once the induction variablen has been selected, a base value for that variable
must be found in order to start the induction. In Analytica, a suitable base value
may be determined by calculating the set of lower bounds ofn as described in
Section 6 and choosing the simplest element of this set. If the basis case fails for
this value, Analytica will choose another base value and try again until the basis
is proven or no other choice is available. In the former case, the induction step is
tried; otherwise the induction scheme fails, and Analytica will try other techniques
like those in the rewriting phase. This strategy is used in the induction proof for the
second example in Section 2.

4.4. REWRITE PHASE

Five rewriting tactics are used in Analytica:

1. When the left-hand side of an equation in the hypothesis appears in the sequent,
it is replaced by the right-hand side of the equation, for example,

n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

H⇒ 2 · 2n
1+m2·2n +

(
n∑
k=0

2k

1+m2k

)
= 1

−1+m +
4 · 2n

1−m4·2n

substitute using equation
n∑
k=0

2k

1+m2k
= 1

−1+m +
2 · 2n

1−m2·2n

H⇒ 2 · 2n
1+m2·2n +

1

−1+m +
2 · 2n

1−m2·2n =
1

−1+m +
4 · 2n

1−m4·2n .

2. Rewrite a trigonometric expression to an equivalent form.
Given thata is an odd integer,k,m, n are integers,m ≤ n,
− cos(πanx)+ (−1)k cos(πa−m+n(amx − k)) = 0

rewrite trigonometric expressions
True

3. Move all terms in equations or inequalities to left-hand side, and factor the
expression.

(−1+ x3)
2(−1+ y2

2 + y2
3

(−1+ y3)2
= −1+ x2

3 +
(−1+ x3)

2y2
2

(−1+ y3)2

rewrite as
2(−1+ x3)(x3 − y3)

−1+ y3
= 0.

4. Solve linear equations.
c + bx + ax2 = 0∧ c + by + ay2 = 0

H⇒ x − y = 0∨ b + a(x + y) = 0

JADKSP04.tex; 23/09/1998; 9:37; p.11

306 ANDREJ BAUER ET AL.

solve linear equation
c = −(x(b + ax)) ∧ c = −(y(b + ay))
H⇒ x − y = 0∨ b + a(x + y) = 0.

5. Replace a user-defined function by its definition. In the example below, the
user-defined functionS is expanded.

0< πambm + (1− ab)Abs(S(m))
expand definition

0< πambm + (1− ab)Abs

(−1+m∑
n=0

bn(− cos(πanx)+ cos(πan(x + h)))
h

)
.

5. Summation

Summations play an important role in symbolic computation. Nevertheless, Math-
ematica’s ability to handle summations is very limited. A summation with range
from n1 to n2, wheren1 andn2 are integer constants andn1 ≤ n2, is explicitly
expanded into a sum withn2−n1+1 terms. However, a summation with a symbolic
range will not be simplified. Consequently, we have introduced a number of rules
for dealing with summations. Although most of these rules are based on simple
identities, Analytica is able to handle a variety of summations. A few rules for
summation are listed below. There are three groups of rules. For illustration, we
show how some of them are coded in Mathematica. The functionFreeQ[a, b]
returnsTrue if expressionb does not appear in expressiona.

1. Rules that reduce the number of summations occurring in an expression:
n2∑
n=n1

c→ c · (n2− n1+ 1) n does not occur inc

sum[c_, {n_, n1_, n2_}] :> c (n2-n1+1)/; FreeQ[c,n]

a ·
n2∑
n=n1

f1(n)+ b ·
n2∑
n=n1

f2(n)→
n2∑
n=n1

(af1(n)+ bf2(n))

a_. sum[f1_, {n_, n1_, n2_}] + b_. sum[f2_, {n_, n1_, n2_}] :>
sum[a f1 + b f2, {n, n1, n2}]

a ·
n2∑
n=n1

f (n)+ a ·
n3∑

n=n2+1

f (n)→ a ·
n3∑
n=n1

f (n)

a_. sum[f_, {n_, n1_, n2_}] + a_. sum[f_, {n_, m_, n3_}] :>
a sum[f, {n, n1, n3}] /; simplify[m - n2 == 1]

a ·
n3∑
n=n1

f (n)− a ·
n2∑
n=n1

f (n)→ a ·
n3∑

n=n2+1

f (n)

a_. sum[f_, {n_, n1_, n3_}] + b_. sum[f_, {n_, n1_, n2_}] :>
a sum[f, {n, n2+1, n3}] /; simplify[a + b == 0]

JADKSP04.tex; 23/09/1998; 9:37; p.12

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 307

a ·
n2∑
n=n1

f (n)− a ·
n2∑
n=n3

f (n)→ a ·
n3−1∑
n=n1

f (n)

a_. sum[f_, {n_, n1_, n2_}] + b_. sum[f_, {n_, n3_, n2_}] :>
a sum[f, {n, n1, n3-1}] /; simplify[a + b == 0]

2. Rules that simplify summands. The functionsimpler below is a heuristic that
decides whether one expression is simpler than another.

n2∑
n=n1

cf (n) = c ·
n2∑
n=n1

f (n) wheren does not occur inc

sum[c_ f_, {n_, n1_, n2_}] :>
c sum[f, {n, n1. n2}] /; FreeQ[c, n],

n2∑
n=n1

f (n+ 1) =
n2+1∑
n=n1+1

f (n)

sum[f_, {n_, n1_, n2_}] :>
sum[f/.(n->n-1), {n, n1+1, n2+1}] /; simpler[f/.(n->n-1), f],

n2∑
n=n1

f (n− 1) =
n2−1∑
n=n1−1

f (n)

sum[f_, {n_, n1_, n2_}] :>
sum[f/.(n->n+1), {n, n1-1, n2-1}] /; simpler[f/.(n->n+1),f]

3. Rules that simplify summation bounds. Note that the lower bound of a sum-
mation can be bigger than the higher bound. We interpret these so that the
equation

∑b
a+

∑c
b+1 =

∑c
a always holds.

n2∑
n=n1

f (n) = −
n1−1∑
n=n2+1

f (n) if n1 > n2

sum[f_, {n_, n1_, n2_}] :>
-sum[f, {n, n2+1, n1-1}] /; simplify[n1 > n2]

n2+N∑
n=n1

f (n) =
(

n2∑
n=n1

f (n)

)
+ f (n2+ 1)+ · · · + f (n2+N)

n2−N∑
n=n1

f (n) =
(

n2∑
n=n1

f (n)

)
− f (n2)− · · · − f (n2−N + 1)

sum[f_, {n_, n1_, n2_ + n_Integer}] :>
sum[f, {n, n1, n2}] + sum[f, {n, n2 + 1, n2 + n}].

JADKSP04.tex; 23/09/1998; 9:37; p.13

308 ANDREJ BAUER ET AL.

5.1. A SUMMATION EXAMPLE

The following example comes from a lemma used in the proof of the existence of
a continuous, nowhere differentiable function given by Weierstrass [10, 22].

∞∑
n=0

bn cos(πanx) − (−1)α
(∞∑
n=m

bn
(
1+ cos(πa−m+nξ(m))

))−
−
∞∑
n=0

bn cos(πa−m+n(1+ α))+

+
−1+m∑
n=0

bn
(− cos(πanx)+ cos(πa−m+n(1+ α))) = 0

simplify summations

−
(
(−1)α

(∞∑
n=m

bn
(
1+ cos(πa−m+nξ(m))

)))+
+
∞∑
n=0

bn
(

cos(πanx)− cos(πa−m+n(1+ α)))+
+
−1+m∑
n=0

bn
(− cos(πanx)+ cos(πa−m+n(1+ α))) = 0

simplify summations

−
(
(−1)α

(∞∑
n=m

bn
(
1+ cos(πa−m+nξ(m))

)))+
+
∞∑
n=m

bn
(

cos(πanx)− cos(πa−m+n(1+ α))) = 0

simplify summations

∞∑
n=m

(− (−1)αbn
(
1+ cos(πa−m+nξ(m))

)+
+bn(cos(πanx)− cos(πa−m+n(1+ α)))) = 0

reduces to

∞∑
n=m

(
bn(− cos(πanx)+ (−1)α

(
1+ cos(πa−m+nξ(m))

)+
+ cos(πa−m+n(1+ α)))) = 0

JADKSP04.tex; 23/09/1998; 9:37; p.14

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 309

Using trigonometric rules and the available assumptions, the prover simplifies
this expression toTrue.

5.2. GOSPER’ S ALGORITHM

We integratedGosper’s algorithm[16] for finding closed forms of indefinite hy-
pergeometric summations into the theorem prover. A functiong(n) is hypergeo-
metric if g(n + 1)/g(n) is a rational function ofn. Gosper’s algorithm computes
a hypergeometric closed form of an indefinite summation

∑
g(n), whereg(n) is

hypergeometric, if such a closed form exists. This covers a relatively large class of
summations that appear in practice.

The following example illustrates how Gosper’s algorithm is used in Analytica.

THEOREM.(
|x| > 1⇒ lim

n→∞

(
n∑
k=1

1

k2+ (2x2 + 1)k + x2(x2 + 1)

)
<

1

2

)
Proof.

|x| > 1H⇒ lim
n→∞

(
n∑
k=1

1

k2+ x2(1+ x2)+ k(1+ 2x2)

)
<

1

2

reduces to

1− |x| < 0H⇒ −1

2
+ lim

n→∞

(
n∑
k=1

1

(k + x2)(1+ k + x2)

)
< 0

calculate summation with Gosper’s Algorithm

1− |x| < 0

H⇒ −1

2
+ lim

n→∞

(
1

2+ x2
+ 1

(1+ x2)(2+ x2)
− 1

1+ n+ x2

)
< 0

simplify limits

1− |x| < 0H⇒ −1

2
+ 1

2+ x2
+ 1

(1+ x2)(2+ x2)
< 0

reduces to

1− |x| < 0H⇒ 1− x2

2+ 2x2
< 0

reduces to

1− |x| < 0H⇒ 1− x2 < 0

JADKSP04.tex; 23/09/1998; 9:37; p.15

310 ANDREJ BAUER ET AL.

replace expression with its lower or upper bounds

True
2

6. Inequalities

Inequalities play a key role in all areas of analysis. Since Mathematica does not
provide any facility for handling inequalities, we have built several techniques into
Analytica for reasoning about them.

6.1. SIMPLIFICATION OF INEQUALITIES

Many rules simplify atomic formulas involving inequalities. Here are four exam-
ples.

1. Simplify(0≤ an, C) = True if Simplify (0≤ a,C) = True.
2. Simplify(0< an,C) = True if Simplify (0< a,C) = True.
3. Simplify(an ≤ 0, C) = Falseif Simplify (0< a,C) = True.
4. Simplify(an < 0, C) = Falseif Simplify (0< a,C) = True.

Other rules use upper- and lower-bound information to simplify inequalities. If
a has a negative upper bound, thena < 0 is true, whilea > 0 anda = 0 are
both false. The functionLower(Upper) gives a set of lower (upper) bounds for its
argument and will be discussed in Section 6.3. The set of lower (upper) bounds is
calculated in the current context.

1. Simplify(f1 ≤ f2, C) = Falseif ∃x[x ∈ Lower(f1− f2, C) ∧ x > 0].
2. Simplify(f1 ≤ f2, C) = True if ∃x[x ∈ Lower(f2− f1, C) ∧ x ≥ 0].
3. Simplify(f1 < f2, C) = True if ∃x[x ∈ Lower(f2− f1, C) ∧ x > 0].
4. Simplify(f1 < f2, C) = Falseif ∃x[x ∈ Lower(f1− f2, C) ∧ x ≥ 0].

6.2. PROOF STRATEGY FOR INEQUALITIES

Although many inequality formulas can be handled in the simplification phase,
some valid inequality formulas cannot be reduced to true in this phase. For ex-
ample,(a ≤ 0 ∧ b ≤ a) → b ≤ 0 cannot be proved by the technique used in
simplification phase alone. Other more powerful techniques for deciding satisfia-
bility of inequality formulas must be used in addition. If the inequalitya ≤ b is not
directly provable using the techniques in the simplification phase, then Analytica
will try to find a termc such thata ≤ c andc ≤ b are both provable in the current
context. To find such a termc, we compute a set of upper bounds fora and a set
of lower bounds forb by using information provided by the current context. The
sets computed are denoted byUpper(a) andLower(b), respectively. A termx will

JADKSP04.tex; 23/09/1998; 9:37; p.16

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 311

be inUpper(a) only if a ≤ x is true in the current context. Likewise,x will be in
Lower(b) only if x ≤ b is true in the current context. To provea ≤ b, Analytica
automatically computes the setsLower(b) andUpper(a). Then it attempts to prove
that there is somec ∈ Upper(a) such thatc ≤ b is true or that there is some
c ∈ Lower(b) such thata ≤ c is true.

In order to deal with strict inequalities, we introduce a new symbolS such that
bothSL(a) ≤ b anda ≤ SU(b) are equivalent toa < b. Hence,SU(x) ∈ Upper(a)
only if a < x is true in the current context, andSL(x) ∈ Lower(a) only if x < a

is true in the current context.SU(a) + b = SU(a + b) becausec ≤ SU(a + b)
iff c < a + b iff c − b < a iff c − b ≤ SU(a) iff c ≤ SU(a) + b. Similarly,
SL(a)+ b = SL(a + b),−SL(a) = SU(−a) and−SU(a) = SL(−a), etc.

When Analytica attempts to provea < b, it first computesUpper(a) and
Lower(b). All terms inUpper(a) andLower(b) are linear combinations ofSU and
SL terms. The above rules are used to rewrite the terms inUpper(a). Each of the
resulting terms either has the formSU(c) or has the formc wherec does not contain
SU or SL. If the term has the formSU(c), it is sufficient to provec ≤ b. Otherwise
it is sufficient to provec < b. Similarly, terms inLower(b) can be rewritten into
either the formSL(c) or the formc wherec does not containSU orSL. If the term is
rewritten intoSL(c), it is sufficient to provea ≤ c. Otherwise it is sufficient to prove
a < c. This convention permits both strict inequalities and nonstrict inequalities to
be handled by the same method.

The technique is complete for linear inequalities, and it can also prove many of
the nonlinear inequalities that arise in practice. The technique is not complete for
nonlinear inequalities, however.

6.3. CALCULATING UPPER AND LOWER BOUNDS FOR EXPRESSIONS

There are three main ways of obtaining upper and lower bounds for expressions.

1. Obtain bounds from context information:
Upper and lower bounds for an expression are calculated in the current context.
For example, when proving(a ≤ b) ∨ c, the upper bounds ofa and the lower
bounds ofb are calculated under the context of¬c. In general, Ifa ≤ b is a
conjunct of the current context, we have

a ∈ Lower(b), b ∈ Upper(a),
and ifa < b is a conjunct of the current context, we have

SL(a) ∈ Lower(b), SU(b) ∈ Upper(a).
2. Obtain bounds from the monotonicity of some function:

If f is a monotonically increasing function, anda′ is an upper (lower) bound of
a, f (a′) is an upper (lower) bound off (a); if f is a monotonically decreasing
function anda′ is an upper (lower) bound ofa, f (a′) is a lower (upper) bound
of f (a), for example,
{cx | x ∈ Upper(a)} ⊆ Lower(ca), if c ≤ 0.

3. Use some known bound on the value of a function:

JADKSP04.tex; 23/09/1998; 9:37; p.17

312 ANDREJ BAUER ET AL.

If f is bounded, i.e., for all x,f (x) ≤ M, or f (x) ≥ M ′,M is an upper bound
for f (x) andM ′ a lower bound forf (x), for example,

x + 1

2
∈ Upper(round(x)),

x − 1

2
∈ Lower(round(x)).

6.4. AN EXAMPLE TO ILLUSTRATE INEQUALITY PROOFS

The following example also comes from the proof of the Weierstrass theorem
mentioned earlier. Assume thatb > 0.

2bm − 3(
∑∞

n=m b
n(1+ cos(πa−m+n(am − round(am)))))

1− (am − round(am))
≤ 0

replace expression with its lower or upper bounds

2bm − 3bm(1+ cos(π(am − round(am))))

1− (am − round(am))
≤ 0

reduces to

2− 3(1+ cos(π(am − round(am))))

1− (am − round(am))
≤ 0

replace expression with its lower or upper bounds

−2 cos
(
π(am − round(am))) ≤ 0

reduces to

0≤ cos
(
π(am − round(am)))

The last inequality will be reduced to True in the rewriting phase by using the tactic
for trigonometric identities.

7. The Bernstein Approximation Theorem

In this section we show how a nontrivial theorem from real analysis can be proved
with Analytica. The proof needs to be broken down into several lemmas. First we
state the theorem and provide a manual proof. Then we look at how Analytica
proves pieces of the same theorem.

THEOREM. Let I = [0,1] be the closed unit interval andf a real continuous
function onI . Define then-th Bernstein polynomial forf as

Bn(x, f) =
n∑
k=0

(
n

k

)
f (k/n) xk (1− x)n−k.

JADKSP04.tex; 23/09/1998; 9:37; p.18

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 313

On the intervalI , the sequence of Bernstein polynomials forf converges uniformly
to f .

Proof. It follows from the binomial theorem that

f (x) =
n∑
k=0

(
n

k

)
f (x) xk(1− x)n−k;

hence∣∣f (x)− Bn(x, f)∣∣ ≤ n∑
k=0

(
n

k

) ∣∣f (x)− f (k/n)∣∣ xk(1− x)n−k. (1)

Sincef is continuous on a closed interval, it is uniformly continuous and bounded.
LetM = sup{|f (x)|; x ∈ I }.

For everyε > 0, there isδ(ε) > 0 such that|x − y| < δ(ε) implies |f (x) −
f (y)| < ε for all x, y ∈ I .

Let ε > 0 be arbitrary. Choosen larger thanδ(ε/2)−4 and(M/ε)2. We show
that the sum on the right side of (1) is less thanε. To do this, we split the sum into
two parts:

• Near is the sum of those terms in (1) for which|x − k/n| < n−1/4, namely,

Near=
∑

0≤k≤n
|x−k/n|<n−1/4

(
n

k

)
|f (x)− f (k/n)| xk(1− x)n−k .

• Far is the sum of those terms in (1) for which|x − k/n| ≥ n−1/4, namely,

Far =
∑

0≤k≤n
|x−k/n|≥n−1/4

(
n

k

)
|f (x)− f (k/n)| xk(1− x)n−k .

We boundNearandFar above byε/2. Then the result follows.
For showing thatNear≤ ε/2, we note that since the sum involves those terms

for which |x−k/n| < n−1/4 ≤ δ(ε/2), we have|f (x)−f (k/n)| ≤ ε/2, and hence

Near≤ ε
2

∑
0≤k≤n

|x−k/n|<n−1/4

(
n

k

)
xk(1− x)n−k ≤ ε

2

n∑
k=0

(
n

k

)
xk(1− x)n−k = ε

2
.

To show thatFar ≤ ε/2, bound|f (x) − f (y)| ≤ 2M and note that inFar we
have
√
n (x − k/n)2 ≥ 1. Hence, inFar, the inequality

|f (x)− f (y)| ≤ 2M
√
n(x − k/n)2

JADKSP04.tex; 23/09/1998; 9:37; p.19

314 ANDREJ BAUER ET AL.

is valid. We also need the identity

n∑
k=0

(
n

k

)(
x − k

n

)2

xk(1− x)n−k = x(1− x)
n

. (2)

Now we can boundFar:

Far ≤ 2M
√
n

∑
0≤k≤n

|x−k/n|<n−1/4

(
x − k

n

)2(
n

k

)
xk(1− x)n−k

≤ 2M
√
n

n∑
k=0

(
x − k

n

)2(
n

k

)
xk(1− x)n−k

= 2M
√
n
x(1− x)

n
≤ M

2
√
n
≤ ε/2.

This completes the proof. 2

We help Analytica by specifying the following facts as “given”.

0 < ε

0 < m

0< x ∧ x < 1

m ≤ δ(ε/2)

m2 ≤ ε

M

Herem is the quantityn−1/4 from the above proof. We considered only the cases
in whichx 6= 0 andx 6= 1 in the proof. SinceB(n,0) ≡ f (0) andB(n,1) ≡ f (1),
the other two cases are trivial.

We also provide the definitions ofB(n, x), the sumsNear and Far, which
are callednear(x, n) andf ar(x, n), and the intermediate sumf ar1(x, n) that
appears in the proof ofFar ≤ ε

2. The proof is broken down into five lemmas.

1. near(x, n) ≤ ε/2.
2. f ar1(x, n) ≤ ε/2.
3. f ar(x, n) ≤ f ar1(x, n).
4. |f (x)− B(n, x)| ≤ f ar(x, n)+ near(x, n).
5. |f (x)− B(n, x)| ≤ ε.
It is clear that Analytica has no magical powers. All of the really difficult guess-
work, namely, the definition off ar andnear and the connection betweenε andδ,
has to be specified by a human. Still, this is not an easy theorem, and the amount
of work that can be done by Analytica automatically is impressive.

JADKSP04.tex; 23/09/1998; 9:37; p.20

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 315

In the appendix we provide the complete input and machine-generated output
for the proof of Bernstein’s theorem. Below, we follow Analytica’s proof of the
first lemma, commenting on what Analytica is doing.

THEOREM.

near(x, n) ≤ ε
2
.

Proof. (Skolemization does not change the sequent, since it is quantifier free.)

near(x, n) ≤ ε
2
.

(Simplification causes all terms in the inequality to be moved to the left-hand side.)

−ε
2
+ near(x, n) ≤ 0.

(Rewriting finds the common denominator2 for the sum.)

−ε + 2near(x, n)

2
≤ 0.

(Simplification removes the common denominator2.)

−ε + 2near(x, n) ≤ 0.

(Rewriting expands the definition of the functionnear.)

−ε + 2(1− x)n
∣∣ k
n
−x
∣∣<m∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k ≤ 0.

(Simplification moves all terms in the summation condition to left-hand side.)

−ε + 2(1− x)n
−m+

∣∣ k
n−x
∣∣<0∑

0≤k≤n

xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k ≤ 0.

(Inequality reasoning in the inference phase determines that| k
n
− x| < m < δf (

ε
2).

Sincef is a uniformly continuous function, it follows that|f (k
n
)− f (x)| ≤ ε

2.)

ε

(
− 1+ (1− x)n

−m+
∣∣ k
n−x
∣∣<0∑

0≤k≤n

xk
(
n

k

)
(1− x)k

)
≤ 0.

(Simplification removesε from the inequality sinceε is greater than0.)

−1+ (1− x)n
−m+

∣∣ k
n−x
∣∣<0∑

0≤k≤n

xk
(
n

k

)
(1− x)k ≤ 0.

JADKSP04.tex; 23/09/1998; 9:37; p.21

316 ANDREJ BAUER ET AL.

(Since each term of the summation is non-negative, adding more terms makes the
summation bigger. The inequality reasoning tactic in the inference phase is used in
this step.)

−1+ (1− x)n
(

n∑
k=0

xk
(
n

k

)
(1− x)k

)
≤ 0.

(The summation tactic in the rewriting phase finds a closed form for the summa-
tion.)

−1+ (−1)n (1− x)n
(−1+ x)n ≤ 0.

(Simplification reduces the left-hand side to0.)

True
2

8. Conclusion

In a related project, we have managed to prove all of the theorems and examples in
Chapter 2 of Ramanujan’s Collected Works [3, 9] completely automatically. The
techniques that we use are similar to those described in this paper. We believe that
the examples that we have been able to prove provide convincing justification for
combining powerful symbolic computation techniques with theorem provers.

Nevertheless, there are many ways to improve Analytica. One direction is to
add powerful algorithmic techniques for simplifying particular classes of formulas
(like extensions of Gosper’s algorithm for summations). The problem with adding
such techniques is that a proof obtained in this manner may be difficult for a human
to follow.

Another direction is to strengthen the ability of Analytica to do inductive proofs.
The technique that Analytica currently uses for generating induction schemes is
quite simple. More research is needed on the generation of complex induction
schemes and identification of sufficiently general hypotheses for inductive proofs.
There has been a fair amount of research on this problem [7, 8], but more work
should be done in the context of inductive proofs in analysis.

Most proofs in modern analysis are based on set theory, and many use topolog-
ical concepts. Clearly, the extension of Analytica to handle such proofs is critical.
Although theorem proving in set theory has been an important problem for a long
time, there is no generally accepted technique for constructing such proofs. The
most successful work on set theory so far is probably that of Quaife [19]. His work,
however, uses a theorem prover based on hyperresolution and may not produce
proofs that are readable.

JADKSP04.tex; 23/09/1998; 9:37; p.22

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 317

Better methods for managing hypotheses and previously proved lemmas and
theorems are also needed. Techniques developed for proof checking systems like
LCF [15] and HOL [14] may be adequate in the short run. In general, deciding
when to use a hypothesis or a previous result is a very difficult problem. Every
student of elementary calculus learns the mean value theorem by heart, but it is not
easy to give a good set of rules for determining when to apply this theorem in order
to obtain a simpler bound on some complicated expression. For some work in this
area see, for example, Baker-Plummer [1].

Perhaps, the most serious problem in building a theorem prover like Analytica
is the soundness of the underlying symbolic computation system. Mathematica, as
well as Macsyma, Reduce, Maple, etc., has rules that are not always correct, and
some of them are simply wrong. There is no easy way for a theorem prover to check
correctness of everything that the symbolic computation system is doing, because
some steps are very involved. We did not address this issue in a satisfactory manner
in Analytica, and it is not clear how it could be done on an existing symbolic
computation system. In Analytica we check divisions by zero, but that requires the
user to type every fraction asover[a,b] instead ofa/b; otherwise Mathematica
evaluates it even before it gets to Analytica. We do not try to detect Mathematica’s
cancelling out two potentially divergent sums, such assum[a[n],n,1,Infinity]
- sum[a[n],n,1,Infinity] == 0. Other such examples are expressions involv-
ing potentially divergent integrals and limits, and inequalities involving expressions
that could attain complex values. We believe the solution to the soundness problem
is to develop the theorem prover and symbolic computation system together so that
each simplification step can be rigorously justified.

Appendix: A. Input to Analytica

(* Bernstein Approximation Theorem *)

integer[n] = True;
integer[k] = True;

sum1[f_] := sum[f, {k,0,n,Abs[k/n-x]<n^(-1/4)}];
sum2[f_] := sum[f, {k,0,n,n^(-1/4)<=Abs[k/n-x]}];

(* the bernstein polynomial for "f" *)
AddDefinition[B[n_,x_] ==

sum[f[k/n] Binomial[n, k] x^k (1-x)^(n-k), {k, 0, n}]];

(* Several auxiliary functions *)
AddDefinition[near[x_, n_] ==
sum1[Abs[f[x]-f[k/n]] Binomial[n,k] x^k (1-x)^(n-k)]];

AddDefinition[far[x_, n_] ==

JADKSP04.tex; 23/09/1998; 9:37; p.23

318 ANDREJ BAUER ET AL.

sum2[Abs[f[x]-f[k/n]] Binomial[n,k] x^k (1-x)^(n-k)]];
AddDefinition[far1[x_, n_] ==
2 M Sqrt[n] sum2[(x-k/n)^2 Binomial[n,k] x^k (1-x)^(n-k)]];

(* f is a continuous function on [0, 1] and therefore bounded *)
ContinuousFunction[f] := True;
Domain[f] := ClosedInterval[0, 1];
M=Bound[f];

(* n >= max(delta[f][epsilon/2]^(-4), (M/epsilon)^2) *)
n = m^(-4);
Given[m<= delta[f][epsilon/2]];
Given[m^2 <= epsilon/M];

Given[m>0, epsilon>0, x>0, x<1];

(* Lemmas *)
ProveAndSave[near[x, n]<=epsilon/2];
ProveAndSave[far1[x, n]<=epsilon/2];
ProveAndSave[far[x, n]<=far1[x, n]];
ProveAndSave[Abs[f[x]-B[n,x]]<=far[x, n]+near[x, n]];

(* Theorem *)
Prove[Abs[f[x]-B[n,x]] <= epsilon];

B. A Proof of the Bernstein Approximation Theorem

This proof was machine generated from the input above. We inserted only a couple
of line breaks because some of the lines were too long to fit on a page.

Definitions used in proof:

B(n, x) = (1− x)n
(

n∑
k=0

xk
(
n

k

)
f
(
k
n
)

(1− x)k
)
,

near(x, n) = (1− x)n
∣∣ k
n−x
∣∣<m∑

0≤k≤n

xk
∣∣− f (kn)+ f (x)∣∣ (n

k

)
(1− x)k ,

far(x, n) = (1− x)n
m≤
∣∣ k
n−x
∣∣∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k ,

JADKSP04.tex; 23/09/1998; 9:37; p.24

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 319

far1(x, n) = 2(1− x)n M ∑m≤
∣∣ k
n−x
∣∣

0≤k≤n
xk
(
−
(
k
n

)
+x
)2
(nk)

(1−x)k
m2

.

Theorems proved:

near(x, n) ≤ ε
2
,

far1(x, n) ≤ ε
2
,

far(x, n) ≤ far1(x, n),∣∣f (x)− B(n, x)∣∣ ≤ far(x, n)+ near(x, n),∣∣f (x)− B(n, x)∣∣ ≤ ε.
THEOREM.

near(x, n) ≤ ε
2
.

Proof.

near(x, n) ≤ ε
2

reduces to
−ε
2
+ near(x, n) ≤ 0

rewrite as

−ε + 2near(x, n)

2
≤ 0

reduces to

−ε + 2near(x, n) ≤ 0

open definition

−ε + 2(1− x)n
∣∣ k
n
−x
∣∣<m∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k ≤ 0

reduces to

−ε + 2(1− x)n
−m+

∣∣ k
n−x
∣∣<0∑

0≤k≤n

xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k ≤ 0

JADKSP04.tex; 23/09/1998; 9:37; p.25

320 ANDREJ BAUER ET AL.

replace expression with its lower or upper bounds

ε

(
− 1+ (1− x)n

−m+
∣∣ k
n
−x
∣∣<0∑

0≤k≤n

xk
(
n

k

)
(1− x)k

)
≤ 0

reduces to

−1+ (1− x)n
−m+

∣∣ k
n−x
∣∣<0∑

0≤k≤n

xk
(
n

k

)
(1− x)k ≤ 0

replace expression with its lower or upper bounds

−1+ (1− x)n
(

n∑
k=0

xk
(
n

k

)
(1− x)k

)
≤ 0

calculate summations

−1+ (−1)n
(1− x)n
(−1+ x)n ≤ 0

reduces to

True 2

THEOREM.

far1(x, n) ≤ ε
2
.

Proof.

far1(x, n) ≤ ε
2

reduces to

−ε
2
+ far1(x, n) ≤ 0

rewrite as

−ε + 2 far1(x, n)

2
≤ 0

reduces to

−ε + 2 far1(x, n) ≤ 0

JADKSP04.tex; 23/09/1998; 9:37; p.26

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 321

open definition

−ε + 4(1− x)nM∑m≤
∣∣ k
n−x
∣∣

0≤k≤n
xk
(
−
(
k
n

)
+x
)2
(nk)

(1−x)k
m2

≤ 0

reduces to

−ε + 4(1− x)nM∑m−
∣∣ k
n
−x
∣∣≤0

0≤k≤n

(
k
n−x
)2
xk(nk)

(1−x)k
m2

≤ 0

replace expression with its lower or upper bounds

−ε +
4(1− x)nM

(∑n
k=0

(
k
n−x
)2
xk(nk)

(1−x)k
)

m2
≤ 0

calculate summations

−ε + 4m2(1− x)xM ≤ 0

replace expression with its lower or upper bounds

−(ε(−1+ 2x)2
) ≤ 0

reduces to

True 2

THEOREM.

far(x, n) ≤ far1(x, n).

Proof.

far(x, n) ≤ far1(x, n)

reduces to

far(x, n)− far1(x, n) ≤ 0

open definition

−2(1− x)nM∑m≤
∣∣ k
n
−x
∣∣

0≤k≤n
xk
(
−
(
k
n

)
+x
)2
(nk)

(1−x)k
m2

+

+(1− x)n
m≤
∣∣ k
n−x
∣∣∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k ≤ 0

JADKSP04.tex; 23/09/1998; 9:37; p.27

322 ANDREJ BAUER ET AL.

reduces to

−2M
∑m−

∣∣ k
n
−x
∣∣≤0

0≤k≤n

(
k
n−x
)2
xk(nk)

(1−x)k
m2

+
m−
∣∣ k
n
−x
∣∣≤0∑

0≤k≤n

xk
∣∣f (k

n

)− f (x)∣∣(n
k

)
(1− x)k ≤ 0

simplify summations

m−
∣∣ k
n
−x
∣∣≤0∑

0≤k≤n

(
xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k − 2

(
k
n
− x)2

xk
(
n

k

)
M

m2(1− x)k
)
≤ 0

reduces to

m−
∣∣ k
n
−x
∣∣≤0∑

0≤k≤n

xk
(
n

k

)(∣∣f (k
n

)− f (x)∣∣− 2
(
k
n−x
)2
M

m2

)
(1− x)k ≤ 0

matching lemma

∀k∀low∀up∀f∀cond[

((−k + low≤ 0∧ k − up≤ 0∧ cond⇒ f ≤ 0)⇒
cond∑

low≤k≤up

f ≤ 0)]

back chaining

−k ≤ 0∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0

H⇒
xk
(
n

k

)(∣∣f (k
n

)− f (x)∣∣− 2
(
k
n
−x
)2
M

m2

)
(1− x)k ≤ 0

reduces to

0≤ k ∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0

H⇒ −
∣∣∣∣f(kn

)
− f (x)

∣∣∣∣+ 2
(
k
n
− x

)2
M

m2
≤ 0∧ (k < 0∨−k + n < 0)∨

∣∣∣∣f(kn
)
− f (x)

∣∣∣∣− 2
(
k
n
− x

)2
M

m2
≤ 0

simplify formula using local context

0≤ k ∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0

H⇒
∣∣∣∣f(kn

)
− f (x)

∣∣∣∣− 2
(
k
n
− x)2

M

m2
≤ 0

JADKSP04.tex; 23/09/1998; 9:37; p.28

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 323

replace expression with its lower or upper bounds

0≤ k ∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0H⇒
∣∣∣∣f(kn

)
− f (x)

∣∣∣∣− 2M ≤ 0

replace expression with its lower or upper bounds

0≤ k ∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0H⇒
∣∣∣∣f(kn

)∣∣∣∣+ |f (x)| − 2M ≤ 0

replace expression with its lower or upper bounds

0≤ k ∧ k − n ≤ 0∧m−
∣∣∣∣kn − x

∣∣∣∣ ≤ 0H⇒
∣∣∣∣f(kn

)∣∣∣∣−M ≤ 0

reduces to

True 2

THEOREM.

|f (x)− B(n, x)| ≤ far(x, n)+ near(x, n).

Proof.

| − B(n, x)+ f (x)| ≤ far(x, n)+ near(x, n)

reduces to

|B(n, x)− f (x)| − far(x, n)− near(x, n) ≤ 0

open definition∣∣∣∣∣− f (x)+ (1− x)n
(

n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

)∣∣∣∣∣−
−
(
(1− x)n

∣∣ k
n−x
∣∣<m∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k

)
−

−
(
(1− x)n

m≤
∣∣ k
n−x
∣∣∑

0≤k≤n

xk
∣∣− f (k

n

)+ f (x)∣∣ (n
k

)
(1− x)k

)
≤ 0

reduces to∣∣∣∣∣f (x)− (1− x)n
(

n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

)∣∣∣∣∣−
−(1− x)n

(−m+∣∣ kn−x∣∣<0∑
0≤k≤n

xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k +

+
m−
∣∣ k
n−x
∣∣≤0∑

0≤k≤n

xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k

)
≤ 0

JADKSP04.tex; 23/09/1998; 9:37; p.29

324 ANDREJ BAUER ET AL.

simplify summations∣∣∣∣∣f (x)− (1− x)n
(

n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

)∣∣∣∣∣−
−
(
(1− x)n

(
n∑
k=0

xk
∣∣f (k

n

)− f (x)∣∣ (n
k

)
(1− x)k

))
≤ 0

replace expression with its lower or upper bounds∣∣∣∣∣f (x)− (1− x)n
(

n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

)∣∣∣∣∣−
−
(
(1− x)n

∣∣∣∣∣
n∑
k=0

xk
(
n

k

) (
f
(
k
n

)− f (x))
(1− x)k

∣∣∣∣∣
)
≤ 0

calculate summations

−(1− x)n
∣∣∣∣∣− (−1)nf (x)

(−1+ x)n +
n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

∣∣∣∣∣+
+
∣∣∣∣∣f (x)− (1− x)n

(
n∑
k=0

xk
(
n

k

)
f
(
k
n

)
(1− x)k

)∣∣∣∣∣ ≤ 0

reduces to

True 2

References

1. Baker-Plummer, D.: Gazing: An approach to the problem of definition and lemma use,J.
Automated Reasoning8 (1992), 311–344.

2. Ballarin, C., Homann, K., and Calmet, J.: Theorems and algorithms: An interface between
Isabelle and Maple, inProceedings of the 1995 International Symposium on Symbolic and
Algebraic Computation, July 1995, Montreal, Canada.

3. Berndt, B. C.:Ramanujan’s Notebooks, Part I, Springer-Verlag, 1985.
4. Bledsoe, W. W.: The UT natural deduction prover, Technical Report ATP-17B, Mathematical

Dept., University of Texas at Austin, 1983.
5. Bledsoe, W. W.: Some automatic proofs in analysis, inAutomated Theorem Proving: After 25

Years, American Mathematical Society, 1984.
6. Bledsoe, W. W., Bruell, P., and Shostak, R.: A prover for general inequalities, Technical Report

ATP-40A, Mathematical Dept., University of Texas at Austin, 1979.
7. Boyer, R. S. and Moore, J S.:A Computational Logic, Academic Press, 1979.
8. Bundy, A., van Harmelen, F., Hesketh, J., and Smaill, A.: Experiments with proof plans for in-

duction, Technical report, Department of Artificial Intelligence, University of Edinburgh, 1988.

JADKSP04.tex; 23/09/1998; 9:37; p.30

COMBINING THEOREM PROVING AND SYMBOLIC COMPUTATION 325

9. Clarke, E. M. and Zhao, X.: Combining symbolic computation and theorem proving: Some
problems of Ramanujan, inProceedings of 11th International Conference on Automated
Deduction, 1992.

10. Clarke, E. M. and Zhao, X.: Analytica: A theorem prover for Mathematica,J. Math.3(1) (1993).
11. Farmer, W. M., Guttman, J. D., and Thayer, F. J.: IMPS: An interactive mathematical proof

system, Technical Report, The MITRE Corporation, 1990.
12. Fitting, M.:First-Order Logic and Automated Theorem Proving, Springer-Verlag, 1990.
13. Gallier, J. H.:Logic for Computer Science: Foundations of Automatic Theorem Proving,

Harper & Row, 1986.
14. Gordon, M.: HOL: A machine oriented formulation of higher order logic, Technical Report,

Computer Laboratory, University of Cambridge, 1985.
15. Gordon, M., Milner, R., and Wadsworth, C.: Edinburgh LCF: A mechanised logic of

computation, inLecture Notes in Comput. Sci.78, Springer-Verlag, 1979.
16. Gosper, R. W.: Indefinite hypergeometric sums in MACSYMA, inProceedings of the

MACSYMA Users Conference, 1977, pp. 237–252.
17. Harrison, J. and Théry, L.: Extending HOL theorem prover with a computer algebra system to

reason about the reals, in J. J. Joyce and C. Seger (eds),Proceedings of Higher Order Logic The-
orem Proving and Its Applications, Lecture Notes in Comput. Sci. 780, Springer-Verlag, 1994.

18. London, R. L. and Musser, D. R.: The application of a symbolic mathematical system to
program verification, Technical Report, Information Science Institute, University of Southern
California, 1975.

19. Quaife, A.: Automated deduction in von Neumann–Bernays–Gödel set theory, Technical
Report, Dept. of Mathematics, University of California at Berkeley, 1989.

20. Sacks, E.: Hierarchical inequality reasoning, Technical Report, MIT Laboratory for Computer
Science, 1987.

21. Suppes, P. and Takahashi, S.: An interactive calculus theorem-prover for continuity properties,
J. Symbolic Comput.7 (1989), 573–590.

22. Titchmarsh, E. C.:The Theory of Functions, Oxford University Press, 1932.
23. Wolfram, S.:Mathematica: A System for Doing Mathematics by Computer, Wolfram Research

Inc., 1988.

JADKSP04.tex; 23/09/1998; 9:37; p.31

