
Nesl: A Nested Data-Parallel LanguageGuy E. BlellochJanuary 1992CMU-CS-92-103School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213
This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 underContract F33615-90-C-1465, ARPA Order No. 7597.The views and conclusions contained in this document are those of the author and should not beinterpreted as representing the o�cial policies, either expressed or implied, of the U.S. government.

Keywords: Data-parallel, parallel algorithms, supercomputers, nested parallelism,parallel RAM model

AbstractThis report describes Nesl, a strongly-typed, applicative, data-parallel language. Nesl isintended to be used as a portable interface for programming a variety of parallel and vectorsupercomputers, and as a basis for teaching parallel algorithms. Parallelism is suppliedthrough a simple set of data-parallel constructs based on vectors, including a mechanismfor applying any function over the elements of a vector in parallel, and a broad set of parallelfunctions that manipulate vectors.Nesl fully supports nested vectors and nested parallelism|the ability to take a parallelfunction and then apply it over multiple instances in parallel. Nested parallelism is impor-tant for implementing algorithms with complex and dynamically changing data structures,such as required in many graph or sparse matrix algorithms. Nesl also provides a mecha-nism for calculating the asymptotic running time for a program on various parallel machinemodels, including the parallel random access machine (PRAM). This is useful for approxi-mating running times of algorithms on actual machines, and when teaching algorithms tosupply a close correspondence between the code and the theoretical complexity.This report de�nes Nesl and describes several examples of algorithms coded in the lan-guage. The examples include algorithms for median �nding, sorting, string searching,�nding prime numbers, and �nding a planar convex hull. Nesl currently compiles to anintermediate language called Vcode, which runs on the Cray Y-MP, Connection MachineCM-2, and Encore Multimax. For many algorithms, the current implementation gives per-formance close to optimized machine-speci�c code for these machines. Nesl is the �rstdata-parallel language whose implementation fully supports nested parallelism.

Contents1 Introduction 21.1 Parallel Operations on Vectors : 41.2 Nested Parallelism : 71.3 Deriving Complexity : 102 Examples 112.1 String Searching : 112.2 Primes : 122.3 Planar Convex-Hull using Quickhull : 143 Language De�nition 163.1 Data : 163.1.1 Atomic Data Types : 163.1.2 Vectors : 183.1.3 Tuples : 183.1.4 De�ning New Types : 193.2 Functions : 193.2.1 Forms : 193.2.2 De�ning New Functions : 213.2.3 Typing : 214 List of Functions 224.1 Scalar Functions : 224.1.1 Logical Functions : 224.1.2 Comparison Functions : 224.1.3 Predicates : 234.1.4 Arithmetic Functions : 234.1.5 Conversion Functions : 254.1.6 Other Scalar Functions : 254.2 Vector Functions : 264.2.1 Simple Vector Functions : 264.2.2 Scans and Reduces : 264.2.3 Vector Reordering Functions : 284.2.4 Vector Manipulation : 294.2.5 Nesting Vectors : 31
1

1 IntroductionThis report describes and de�nes the data-parallel language, Nesl. The language wasdesigned with the following goals:1. To support parallelism by means of a set of data-parallel constructs based on vectors.These constructs supply parallelism through (1) the ability to apply any functionconcurrently over each element of a vector, and (2) a set of parallel functions thatoperate on vectors, such as the permute function, which permutes the order of theelements in a vector.2. To support complete nested parallelism. Nesl fully supports nested vectors, andthe ability to apply any user de�ned function over the elements of a vector, even ifthe function is itself parallel and the elements of the vector are themselves vectors.Nested parallelism is critical for describing both divide-and-conquer algorithms andalgorithms with nested data structures.3. To generate e�cient code for a variety of architectures, including both SIMD andMIMD machines, with both shared and distributed memory. Nesl currently gener-ates a portable intermediate code called Vcode [5], which runs on the CRAY Y-MP,the Connection Machine CM-2, and the Encore Multimax. Various benchmarks al-gorithms achieve very good running times on these machines [10, 4].4. To be well suited for describing parallel algorithms, and to supply a mechanism toderive the theoretical running time directly from the code. Each function in Nesl hastwo complexity measures associated with it, the work and step complexities. Thesecan be composed with some simple rules to derive the complexity for any computation.A simple equation maps these complexities to the running time on a PRAM.Nesl is an interactive, strongly typed, applicative language with no side e�ects anda Lisp-like syntax.1 The language is based on vectors (sequences) as a primitive paralleldata type, and parallelism is achieved exclusively through operations on these vectors [3].The set of vector functions supplied by Nesl was chosen based both on their usefulnesson a broad variety of algorithms, and on their e�ciency when implemented on parallelmachines. To promote the use of parallelism, Nesl supplies no serial looping constructs(although serial looping can be simulated with recursion), and supplies no data-structuresthat require serial access, such as lists in Lisp or ML.Nesl is the �rst data-parallel language whose implementation supports nested paral-lelism. Nested parallelism is the ability to take a parallel function and then apply it overmultiple instances in parallel|for example, having a parallel sorting routine, and then us-ing it to sort several sequences concurrently. The languages C* [20], *Lisp [17], and Fortran90 [1] (the array extensions) support no form of nested-parallelism. The parallel collectionsin these languages can only contain scalars or �xed sized records. There is also no means1It should not, however, be confused with Lisp or Scheme. In fact, we are currently working on a newversion of the language in which the syntax will be much closer to the syntax of the ML language [18].2

in these languages to apply a user de�ned function over each element of a collection. Thisprohibits the expression of any form of nested parallelism. The languages Connection Ma-chine Lisp [24], and Paralation Lisp [21] both supply nested parallel constructs, but noimplementation ever supported nested parallelism. Blelloch and Sabot implemented anexperimental compiler that supported nested-parallelism for a small subset of ParalationLisp [7], but it was deemed near impossible to extend it to the full language.Existing data-parallel languages almost all consist of a set of data-parallel constructsadded to a serial language (C and C*, Pascal and Parallel Pascal, Fortran 90 and its vectorextensions, Lisp and the three languages *Lisp [17], CM-Lisp [24] and Paralation-Lisp [21]).This approach of adding extensions to an existing language has its clear advantages|itallows the creation of a parallel language with only a small e�ort in language design. Theapproach, however, can also have some severe disadvantages. In particular data-parallelconstructs often do not �t well with the existing serial languages, causing awkward semanticand compiler problems. The interaction of the parallel constructs with the full features ofthe language can also force severe limitations to be placed on the use of the constructs.For these reasons, Nesl is quite intentionally not built on top of any existing language,although it clearly uses many ideas from existing languages. The author believes that thereis no possibility that Nesl could fully support nested parallelism if it was built on top ofany of the standard languages.A disadvantage of starting from the bottom is that Nesl does not subsume all the fea-tures of a full language. Because of this Nesl currently does not support passing functionsas arguments, its typing system is somewhat ad-hoc, and it only supports minimum inputand output capabilities. We are currently working on a follow up on Nesl, which willinclude some of the features that are lacking, and will be based on a more rigorous typesystem.A common complaint about high-level data-parallel languages, and more generally inthe class of Collection-Oriented languages [23], such as SETL [22] and APL [16], is that itcan be hard or impossible to determine approximate running times for a computation bylooking at the code. As an example, the � primitive in CM-Lisp (a general communicationprimitive) is su�ciently powerful, that seemingly similar pieces of code could take verydi�erent amounts of time depending on details of the implementation of the operation andof the data structures. A similar complaint is often made about the language SETL|alanguage with sets as a primitive data structure. The time taken by the set operations inSETL is strongly e�ected by how the set is represented. This representation is chosen bythe compiler.For this reason, Nesl was designed so that the asymptotic complexity can always bederived from the code as a function of the length of the vectors used in the code. In particu-lar, each function in Nesl has two complexities associated with it, and simple compositionrules are supplied to combine complexities across expressions. From these rules, both thetotal work executed by the program (the running time if executed on a serial RAM), andthe parallel depth of the computation (the running time if executed with an unboundednumber of processors) can be calculated. These complexities can then be combined to de-termine asymptotic running times on a parallel random access machine [11] (PRAM) forany �xed number of processors. Since the complexities do not include constants, and real3

machines do not �t the PRAM model, they can only be used to give approximate runningtimes on any real machines, but are very useful for analyzing asymptotic performance ofparallel algorithms.The remainder of this section discusses the use of vectors and nested parallelism in Nesl,and how complexity can be derived from Nesl code. Section 2 shows several examples ofcode, Section 3 de�nes the language, and Section 4 lists all the available functions.1.1 Parallel Operations on VectorsNesl supports parallelism through operations on vectors. This parallelism can be achievedin two ways. First, any function can be applied over the elements of a vector. For example,the expression(over ((a #v(7 -2 5 4)))(negate a))) #v(-7 2 -5 -4) : v.intnegates each elements of the vector #v(7 -2 5 4). This construct can be read as \for eachelement a in the vector #v(7 -2 5 4), negate a" (in the example, the symbol) points towhat is returned by the expression above it, and the v.int indicates that the result of theexpression is of type vector of integers). The over form can also be expressed shorthandas, (v.negate #v(7 -2 5 4))) #v(-7 2 -5 -4) : v.intThis shorthand v. form is considered syntactic sugar for the over form (see Section 3.2for a more precise de�nition).In Nesl, any function, whether primitive or user de�ned, can be applied to each elementof a vector. So, for example, we could de�ne a factorial function(defop (factorial i) (int <- int)(if (= i 1)1(* i (factorial (- i 1)))))) factorial : int <- intand then apply it over the elements of a vector(v.factorial #v(3 1 7))) #v(6 1 5040) : v.intIn this example, the (defop (name arguments) type body) form is used to de�ne factorial.The type argument speci�es the type of the function, which in this case is speci�ed as (int<- int), a function that maps integers to integers.An over form applies a body to each element of a vector. We will call each such appli-cation an instance. Since there are no side e�ects in Nesl, there is no way to communicate4

Operation Description Work* dist a l Distribute value a to vector of length l. S(result)* length a Return length of vector a. 1elt a i Return element at position i of a. S(result)rep v a i Replace element at position i of a with v. 1, S(a)index l Generate an index vector of length l. liseq s d e Return integer sequence from s to e by d. (e - s)/d�-reduce a Return sum based on operator �. S(a)* �-scan a Return scan based on operator �. S(a)count a Count number of true
ags in a. S(a)permute a i Permute elements of a to positions i. S(a)put a i d Place elements a in d based on indices i. S(a), S(d)const-put a i d Place element a in d based on indices i. S(a), S(d)* cond-put a i f d Conditional put based on masks f. S(a), S(d)* get a i Get values from vector a based on indices i. S(i)pack a f Pack vector a based on
ags f. S(a)pack-index f Packed indices of true positions in vector f. S(f)max-index a Return index of the maximum value. S(a)min-index a Return index of the minimum value. S(a)append a b Append vectors a and b. S(a) + S(b)cons a b Append element a to front of vector b. S(a) + S(b)vtup a b Append elements a and b into a vector. S(a) + S(b)vsep a Convert two-element vector a into a tuple. S(a)drop n a Drop �rst n elements of vector a. S(a)take n a Take �rst n elements of vector a. S(a)rotate n a Rotate vector a by n positions. S(a)subseq a s e Subsequence of a from indices s to e. S(a)* flatten a Flatten nested vector a. S(a)* partition a l Partition vector a into nested vector. S(a)split a f Split a into nested vector based on
ags f. S(a)bottop a Split a into nested vector. S(a)Figure 1: List of the vector functions of Nesl. In the work column, S(v) refers to the sizeof the object v. The * before certain functions means that those functions are primitives. Allthe other functions can be built out of the primitives with at most a constant overhead in bothwork and number of steps. The � for reduce and scan can be one of f+, max, min, or, andg.All the vector functions are described in detail in Section 4.2.5

among the instances of an over form. An implementation can therefore execute the in-stances in any order it chooses without changing the result. In particular, the instancescan be implemented in parallel, therefore giving over its parallel semantics.In addition to the over form, a second way to take advantage of parallelism in Nesl isthrough a set of vector functions. The vector functions operate on whole vectors and allhave relatively simple parallel implementations. For example the function +-reduce sumsthe elements of a vector.(+-reduce #v(2 1 -3 11 5))) 16 : intSince addition is associative, this can be implemented on a parallel machine in logarithmictime using a tree. Another common vector function is the permute function, which permutesa vector based on a second vector of indices. For example:(permute "road" #v(2 1 3 0))) "dora" : v.charIn this case, the 4 characters of the string "road" (the term string is used to refer to avector of characters) are being permuted to the indices #v(2 1 3 0) (r! 2, o! 1, a! 3,and d! 0). The implementation of the permute function on a distributed-memory parallelmachine could use its communication network, and the implementation on a shared-memorymachine could use an indirect write into the memory.Table 1 lists the vector functions available in Nesl. A subset of the functions (thestared ones) form a complete set of primitives. These primitives, along with the scalaroperations and the over form, are su�cient for implementing the other functions in thetable with at most a constant increase in both the step and work complexities. The tablealso lists the work complexity of each function. This complexity is typically based on thesize of the function's arguments. The size of an object should not be confused with thelength of a vector. The size is de�ned inductively: the size of a scalar value is 1, and thesize of a vector is the sum of the sizes of its elements plus 1. The size of a nested vectorcould therefore be much greater than its length. The step complexity of each function inthe table is O(1).We now consider an example of the use of vectors in Nesl. The algorithm we considersolves the problem of �nding the kth smallest element is a set s, using a parallel versionof the quickorder algorithm [14]. Quickorder is similar to quicksort, but only calls itselfrecursively on either the elements lesser or greater than the pivot. The Nesl code for thealgorithm is shown in Figure 2. The with form is used to bind local variables and is likea let* in Common Lisp. The code �rst binds l to the length of the input vector s, andthen extracts the element half-way across the vector s as a pivot; the (elt s i) functionextracts the ith element from a vector s. The algorithm then selects all the elements lessthan the pivot, and places them in a vector that is bound to lesser. This is done bycomparing each element of s to the pivot, and packing the elements with a true
ag. Thev.pivot means that the pivot is extended to the same length as s. The pack function,which takes a vector of elements and a vector of
ags of equal length, packs the elementswhere the
ag is true into a smaller vector. For example,6

(defop (order s k) (int <- v.int int)(with ((l (length s))(pivot (elt s (/ l 2)))(lesser (pack s (v.< s v.pivot))))(if (< k (length lesser))(order lesser k)(with ((greater (pack s (v.> s v.pivot))))(if (>= k (- l (length greater)))(order greater (- k (- l (length greater))))pivot)))))Figure 2: An implementation of order statistics. The function order returns the kth smallestelement from the input vector s.s = #v(4 8 2 3 1 7 2)pivot = 3(v.< s v.pivot) = #v(f f t f t f t)(pack s (v.< s v.pivot)) = #v(2 1 2)After the pack, if the number of elements in the set lesser is greater than k, then the kthsmallest element must belong to that set. In this case, the algorithm calls order recursivelyon lesser using the same k. Otherwise, the algorithm selects the elements that are greaterthan the pivot, again using pack, and can similarly �nd if the kth element belongs in theset greater. If it does belong in greater, the algorithm calls itself recursively, but mustnow readjust k by subtracting o� the number of elements lesser and equal to the pivot. Ifthe kth element belongs in neither lesser nor greater, then it must be the pivot, and thealgorithm returns this value.1.2 Nested ParallelismNested parallelism is the ability to apply a parallel function multiple times in parallel. Forexample, we could apply the parallel vector function +-reduce within the over form:(over ((v #v(#v(2 1) #v(7 3 0) #v(4))))(+-reduce v))) #v(3 10 4) : v.intIn this expression there is parallelism both within each +-reduce, since the vector functionhas a parallel implementation, and across the three instances of +-reduce, since over isde�ned such that all instances can run in parallel.Table 1 lists several examples of routines that could take advantage of nested parallelism.Nested parallelism also appears in most divide-and-conquer algorithms. A divide-and-conquer algorithm breaks the original data into smaller parts, applies the same algorithmon the subparts, and then merges the results. If the subparts can be executed in parallel,7

Application Outer Parallelism Inner ParallelismSum of Neighbors in Graph For each vertex Sum neighborsof graph of vertexFigure Drawing For each line Draw pixelsof image of lineCompiling For each procedure Compile codeof program of procedureText Formatting For each paragraph Justify linesof document of paragraphTable 1: Routines with nested parallelism. Both the inner part and the outer part can beexecuted in parallel.Algorithm Outer Parallelism Inner ParallelismQuicksort For lesser and greater QuicksortelementsMergesort For �rst and second MergesorthalfClosest Pair For each half of Closest PairspaceStrassen's For each of the 7 Strassen'sMatrix Multiply sub multiplications Matrix MultiplyFast For two sets of FastFourier Transform interleaved points Fourier TransformTable 2: Some divide and conquer algorithms.(defop (qsort a) (v.int <- v.int)(if (< (length a) 2) a(with ((pivot (elt a (/ (length a) 2)))(lesser (pack a (v.< a v.pivot)))(equal (pack a (v.= a v.pivot)))(greater (pack a (v.> a v.pivot)))((rl rg) (vsep (v.qsort (vtup lesser greater)))))(append rl (append equal rg)))))Figure 3: An implementation of quicksort.8

Quicksort# #Quicksort Quicksort# # # #Quicksort Quicksort Qs Quicksort# # # # # #Qs Qs Quicksort Quicksort Quicksort Qs# # # # # #Qs Qs Qs Qs Qs QsFigure 4: The quicksort algorithm. Just using parallelism within each block yields a parallelrunning time at least as great as the number of blocks (O(n)). Just using parallelism fromrunning the blocks in parallel yields a parallel running time at least as great as the largest block(O(n)). By using both forms of parallelism the parallel running time can be reduced to thedepth of the tree (expected O(lgn)).as is usually the case, the application of the subparts involves nested parallelism. Table 2shows several examples.As an example, consider a parallel variation of quicksort [2] (see Figure 3). When appliedto a vector s, this version splits the values into three subsets (the elements lesser, equal andgreater than the pivot) and calls itself recursively on the lesser and greater subsets. Theselecting of each set is done using a pack, as used in the order function discussed in thelast section. To execute the two recursive calls, the vtup function is used to concatenatetwo vectors into a nested vector. For example:(vtup #v(5 2 4) #v(8 11 9 16))) #v(#v(5 2 4) #v(8 11 9 16)) : v.v.intThe v.qsort then applies qsort in parallel over the two elements of the nested vector(the lesser and greater elements). When the qsort returns, the vsep function separatesthe resulting nested vector into a tuple (a pair), whose elements are then bound to rl (thesorted lesser elements) and rg (the sorted greater elements). The �nal line appends rl,equal, and rg together into sorted order.The recursive invocation of qsort generates a tree of calls which would look somethinglike the tree shown in Figure 4. The step complexity of the algorithm is simply the depth ofthis tree (expected O(lgn)) and the work is the size of the tree (expected O(n lgn)). If wewere to only take advantage of the parallelism within each quicksort to subselect the twosets (the parallelism within each block), we would do well near the root and badly near theleaves. Inversely, if we were to only take advantage of the parallelism available by runningthe invocations of quicksort in parallel (the parallelism between blocks but not within ablock), we would do well at the leaves and badly at the root. In both cases the paralleltime complexity is O(n) rather than the ideal O(lgn) (the expected depth of the tree).9

Without nested parallelism, there is no direct way of expressing both kinds of parallelismused in quicksort.1.3 Deriving ComplexityThere are two complexities associated with all computations in Nesl.1. Work complexity: this represents the total work done by the computation, thatis to say, the amount of time that the expression would take if executed on a serialrandom access machine. The work complexity for most of the vector functions issimply the size of the vector being operated on. A complete list is given in Table 1.2. Step complexity: this represents the parallel depth of the computation, that is tosay, the amount of time the program would take on a machine with an unboundednumber of processors. The step complexity of all the vector functions supplied byNesl is one.These two complexities are based on the vector random access machine (VRAM)model [3],a strictly data-parallel abstraction of the parallel random access machine (PRAM)model [11].Since the complexities are meant for determining asymptotic complexity, these complexi-ties do not include constant factors. For all the Nesl functions, however, the constants aresmall.The complexities are combined using two simple combining rules. Expressions arecombined in the standard way|for both the work complexity and the step complexity,the complexity of an expression is the sum of the complexities of the arguments plus thecomplexity of the call itself. For example, the complexities of the computation:(* (+-reduce (dist 7 n)) (length a))can be calculated as:Work Stepdist n + 1 1+-reduce n + 1 1length 1 1* 1 1Total O(n) O(1)The over form is combined in the following way. The work complexity is the sum of thework complexity of the instantiations, and the step complexity is the maximum over thestep complexities of the instantiations. For example, the complexities of the computation:(over ((i (index n)))(+-reduce (index i))can be calculated as: 10

Work Stepindex n+ 1 1Within Overindex Pi<ni=0 i+ 1 maxi<ni=0 1+-reduce Pi<ni=0 i+ 1 maxi<ni=0 1Total O(n2) O(1)Once the step (S) and work (W) complexities have been calculated, which are thecomplexities for a VRAM, a simple formula gives the running time on a PRAM:t = O(W=P + S)This formula can be derived from Brent's scheduling principle [8] as shown in [3].One can clearly argue that the PRAM model is not a particularly practical modelof parallel computation since it assumes that references to a shared memory take unit-time. The model, however, gives a balpark prediction of the running times, and will nevergrossly underestimate the time. The complexity also makes Nesl well suited for teachingparallel algorithms since the programming model very closely matches the description ofthe algorithm used for determening the complexity.2 ExamplesThis section illustrates several examples of Nesl programs.2.1 String SearchingThe �rst example is a function that �nds the occurrences of a word in a string (a vectorof characters). In particular, the function (string-search w s) (see Figure 5), takes asearch word w and a string s, and returns the starting position of all words in s that matchw. For example,(string-search "foo" "fobarfoofboofoo")) #v(5 12) : v.intThe algorithm works in a number of parallel steps proportional to the length of thesearch string w. It starts at the �rst character of w and generates a set of candidatematches. The algorithm then progresses through the search string, using recursive callsto next-cands, narrowing the set of candidate matches on each step. The candidates arestored as pointers (indices) into s of the beginning of each match. To determine the initialset of candidates, string-search compares every element of the string s with the �rstcharacter of w, and uses the pack-index function to return the indices where there is amatch. The pack-index function takes a vector of booleans and returns the indices wherea
ag is true. For example,(pack-index #v(f t f f t t))) #v(1 4 5) : v.int 11

(defop (next-cands cands w s i) (v.int <- v.int v.char v.char int)(if (= i (length w))cands(with ((letter (elt w i))(match-flags (v.= v.letter (get s (v.+ cands v.i)))))(next-cands (pack cands match-flags) w s (+ i 1)))))(defop (string-search w s) (v.int <- v.char v.char)(next-cands (pack-index (v.= s v.(elt w 0)))w s 0))Figure 5: Finding all occurrences of the word w in the string s.the �rst, fourth and �fth
ags are true.Based on the current candidates, next-cands narrows the set of candidates by onlykeeping the candidates that match on the next character of w. To do this, each candidatechecks whether the ith character in w matches the ith position past the candidate index.All candidates that do match are packed and passed into the recursive call of next-cands.The recursion completes when the algorithm reaches the end of w. The progression of candsin the "foo" example would be:i cands0 #v(0 5 8 12)1 #v(0 5 12)2 #v(5 12)If the word w has length l, the number of steps taken by the algorithm is some constanttimes the number of recursive calls, which is simply O(l). The work complexity of thealgorithm is the sum over the calls of the number of candidates in each step. In practice,this is usually linear in the length of the search string s (l(s)), but in the worst case thiscan be the product of the two lengths l(s)l(w) (the worst case can only happen if most ofthe characters in w are repeated). Algorithms for string searching are known [9, 25], thatgive better bounds on the parallel time (step complexity), and that bound the worst casework complexity to be linear in the length of the search string, but are somewhat morecomplicated.2.2 PrimesOur second example �nds all the primes less than n. The algorithm is based on the sieveof Eratosthenes. The basic idea of the sieve is to �nd all the primes less than pn, and thenuse multiples of these primes to sieve out all the composite numbers less than n. Since allcomposite numbers less than n must have a multiple less than pn, the only elements leftunsieved will be the primes. There are many parallel versions of the prime sieve, and severalnaive versions require a total of O(n3=2) work and either O(n1=2) or O(n) parallel time. A12

(defop (primes n) (v.int <- int)(if (= n 1)#v.int()(with ((sqr-primes (primes (isqrt n)))(sieves (over ((p sqr-primes))(iseq (* 2 p) p n)))(flat-sieve (flatten sieves))(flags (const-put f flat-sieve (dist t n))))(drop 2 (pack-index flags)))))Figure 6: Finding all the primes less than n.well designed version should require no more work than the serial sieve (O(n lg lg n)), andpolylogarithmic parallel time.The version we use (see Figure 6) requires O(n lg lg n) work and O(lg lg n) steps. It worksby �rst recursively �nding all the primes up to pn, (sqr-primes). Then, for each primep in sqr-primes, the algorithm generates all the primes multiples of p up to n (sieves).This is done with the (iseq s d e) function, which returns the integers starting at s,increasing by d, and up to, but less than, e. For example,(iseq 4 2 20)) #v(4 6 8 10 12 14 16 18) : v.intThe vector sieves is therefore a nested vector with each subvector being the sieve for oneof the primes in sqr-primes. The function flatten, is now used to
atten this nestedvector by one level, therefore returning a vector containing all the sieves. For example,(flatten #v(#v(4 6 8 10 12 14 16 18) #v(6 9 12 15 18)))) #v(4 6 8 10 12 14 16 18 6 9 12 15 18) : v.intThis vector of sieves is now used by the const-put function to place a false
ag in allpositions that belong to a sieve. The (const-put c i d) function places a constant c (inthis case, the false
ag) into a vector d (in this case a constant vector of true
ags), atpositions i (in this case, the sieve positions). Finally the pack-index function returns avector of indices where the
ags remain true (elements which were not sieved), and drop,removes the �rst two elements (0 and 1), which are not considered primes.The functions iseq, flatten, const-put, pack-index and drop all require a con-stant number of steps. Since primes is called recursively on a problem of size pn the totalnumber of steps require by the algorithm can be written as the recurrence:S(n) = (O(1) n = 1S(pn) + O(1) n > 1 = O(lg lgn)Almost all the work done by primes is done at the top level. At this top level, the work isproportional to the length of the vector flat-sieve. Using the standard formula13

Figure 7: An example of the quickhull algorithm. Each vector shows one step of the algorithm.Since A and P are the two x extrema, the line AP is the original split line. J and N are thefarthest points in each subspace from AP and are, therefore, used for the next level of splits.The values outside the brackets are hull points that have already been found.Xp�x 1=p = log log x+ C + O(1= log x)where p are the primes [13], the length of this vector is:Xp�pnn=p = O(n log logpn)= O(n log logn)therefore giving a work complexity of O(n log log n).2.3 Planar Convex-Hull using QuickhullOur next example solves the planar convex hull problem: given n points in the plane, �ndwhich of these points lie on the perimeter of the smallest convex region that contains allpoints. The planar convex hull problem has many applications ranging from computergraphics [12] to statistics [15]. The algorithm we use to solve the problem is a parallelversion [6] of the quickhull algorithm [19]. The quickhull algorithm was given its name14

(defrec point (x int) (y int))(defop (cross-product o p1 p2) (int <- point point point)(- (* (- (x p1) (x o)) (- (y p2) (y o)))(* (- (y p1) (y o)) (- (x p2) (x o)))))(defop (hsplit points p1 p2) (v.point <- v.point point point)(if (< (length points) 2)points(with ((cross (v.cross-product points v.p1 v.p2))(packed (pack points (v.plusp cross)))(pm (elt points (max-index cross)))((r1 r2) (vsep (v.hsplit (vtup packed packed)(vtup p1 pm)(vtup pm p2)))))(append r1 (cons pm r2)))))(defop (convex-hull points) (v.point <- v.point)(with ((min-x (elt points (min-index (v.x points))))(max-x (elt points (max-index (v.x points)))))(append (cons min-x (hsplit points min-x max-x))(cons max-x (hsplit points max-x min-x)))))Figure 8: Code for Quickhull. The defrec form de�nes a record with two slots, an x slot anda y slot, which are both integers. The commands (x p) and (y p) are used to access the twoslots from the record p.because of its similarity to the quicksort algorithm. As with quicksort, the algorithm picksa \pivot" element, splits the data based on the pivot, and is recursively applied to each ofthe split sets. Also, as with quicksort, the pivot element is not guaranteed to split the datainto equal sized sets, and in the worst case the algorithm will require O(n2) work.Figure 7 shows an example of the quickhull algorithm, and Figure 8 shows the code.The algorithm is based on the recursive routine hsplit. This function takes a set of pointsin the plane (hx; yi coordinates) and two points p1 and p2 that are known to lie on theconvex hull, and returns all the points lie on the hull clockwise from p1 to p2. In the�gure, given all the points #v(A B C ... P), p1 = A and p2 = P, hsplit would returnthe vector #v(B J O). In hsplit, the order of p1 and p2 matters, since if we switch A andP, hsplit would return the hull along the other direction #v(N C)The hsplit function works by �rst removing all the elements that cannot be on the hullsince they lie below or at the line between p1 and p2. This is done by removing elementswhose cross product are negative. In the case p1 = A and p2 = P, the points #v(B D F GH J K M O) would remain and be placed in the vector packed. The algorithm now �ndsthe point furthest from the line p1-p2. This point pm must be on the hull since as a line15

parallel to p1-p2 moves toward p1-p2, it must �rst hit pm. The point pm (J in the runningexample) is found by taking the point with the maximum cross-product. Once pm is found,hsplit calls itself twice recursively using the points (p1, pm) and (pm, p2) ((A, J) and(J, P) in the example). When the recursive calls return, hsplit appends r1 (the hullbetween p1 and pm), the point pm, and r2 (the hull between pm and p2). This gives thedesired result.The overall convex-hull algorithm works by �nding the points with minimum andmaximum x coordinates (these points must be on the hull) and then using hsplit to �ndthe upper and lower hull. Each recursive call has a step complexity of O(1) and a workcomplexity of O(n). However, since many points might be deleted on each step, the workcomplexity could be signi�cantly less. For m hull points, the algorithm runs in O(lgm)steps for well-distributed hull points, and has a worst case running time of O(m) steps.3 Language De�nitionNesl is a strongly typed language with the following data types:� four primitive atomic data types, booleans (bool), integers (int), characters (char),and reals (real);� two primitive compound types, vectors and tuples;� and a user type constructor, defrec, for de�ning new types.And the following operations:� a set of prede�ned functions on the primitive types;� three primitive forms, a conditional if, a binding form with, and an iterator over;� and a function constructor, defop, for de�ning new functions.With the property that data is not mutable and functions cannot have side e�ects. Thissection covers each of these topics. It is not meant as a formal semantics but along withthe list of functions in the next section it should serve as an adequate de�nition of thelanguage.3.1 Data3.1.1 Atomic Data TypesThere are four primitive atomic data types: booleans, integers, characters and
oats.The boolean type bool can have one of two values T or F. The standard logical opera-tions (ex. not, and, or, xor, nor, nand) are prede�ned and all require a �xed numberof arguments (this is unlike lisp where the and function can take any number of arguments).Some examples: 16

(not (not t))) t : bool(xor t f)) t : boolThe integer type int is the set of (positive and negative) integers that can be representedin the �xed precision of a machine-sized word. The exact precision is machine dependent,but will always be at least 32-bits worth. The standard functions on integers (+, -, *,div, =, <, negate, ...) are prede�ned. Some examples:(* 3 -11)) -33 : int(= 7 8)) F : boolOver
ow will return unpredictable results.The character type char is the set of ascii characters. The characters have a �xedorder and all the comparison operations (ex. =, <, >=, ..) can be used on. Charactersare written by placing a #n in front of the character. For example:#n8) #n8 : char(= #na #nd)) F : bool(< #na #nd)) T : boolThe type float is used to specify
oating point numbers. The exact representationof these numbers is machine speci�c, but Nesl tries to use 64-bit IEEE when there isa choice. Floats support most of the same functions as integers, and also have severaladditional functions (ex. round, truncate, sqrt, log, ..). Floats must be written byplacing a decimal point in them so that they can be distinguished from integers.(* 1.2 3.0)) 3.6 : float(round 2.1)) 2 : intA complete list of the functions available on scalar types can be found in Section 4.1.17

3.1.2 VectorsA vector is a sequence of values. A vector can contain any type, including other vectors,but each element in a vector must be of the same type (vectors are homogeneous). Thetype of a vector is speci�ed by placing a v. in front of the element type. Some examples:#v(6 2 4 5)) #v(6 2 4 5) : v.int#v(#v(2 1 7 3) #v(6 2) #v(22 9))) #v(#v(2 1 7 3) #v(6 2) #v(22 9)) : v.v.intVectors of characters can be written between double quotes,"a string") "a string" : v.charbut can also be written as a vector of characters:#v(#na #nSpace #ns #nt #nr #ni #nn #ng)) "a string" : v.charNesl supplies many functions that operate on vectors. For example:(append #v(1 2 3) #v(4 5))) #v(1 2 3 4 5) : v.int(extract #v(3 7 1 9 2) 3)) 9 : int(index 4)) #v(0 1 2 3) : int(length "a string")) 8 : intSee Section 4.2 for a description of all the available vector functions.3.1.3 TuplesA tuple is a pair of elements. Tuples can be created with the tup function, and theirelements can be extracted with the first and second functions, or with patter matchingin a with form. Unlike vectors, the two elements can be of di�erent types, and a tuple withelement types � and � has type (� �). For example:(tup 3 t)) (tup 3 t) : (int bool)#v((tup 3 t) (tup 7 f) (tup 11 t))) #v((tup 3 t) (tup 7 f) (tup 11 t)) : v.(int bool)(first (tup 3 t))) 3 : int(second (first (tup (tup 3 "horse") t)))) "horse" : v.charTuples are useful for returning a pair of values from a function. Because of the typingscheme of Nesl, it is not possible to use tuples to build lists, such as CONS is used in Lisp.18

3.1.4 De�ning New TypesRecord types with a �xed number of slots can be de�ned with the defrec operation. Forexample:(defrec complex (float int) (imag int))) complex : (int int)de�nes a record with two slots, float and imag, both which must contain an integer. Oncea record type is de�ne, a record can be created using its name.(complex 7 11)) (complex 7 11) : complexAn element of a record can be extracted by using the slot name.(float (complex 7 11))) 7 : int3.2 Functions3.2.1 FormsNesl has three primitive forms: if, with and over. These forms are di�erent from func-tions in that they either have a di�erent syntax from functions or they do not alwaysevaluate all their arguments, which functions do. In Nesl users can de�ne new functions,but not new forms.If: The Conditional FormThe only primitive conditional form in Nesl is the if form. The syntax is:(if cond-exp then-exp else-exp)If the cond-expression is true, then the then-expression is evaluated and its result is returned,otherwise the else-expression is evaluated and its result is returned. The cond-expressionmust be of type bool, and the other two expressions must be of matching types. Here isan example:(if (and t f) (+ 3 4) (* (- 6 2) 7))) 28 : intOn the other hand (if x 3 2.6) is not a valid expression since the two branches returndi�erent types. 19

With: The Binding FormLocal variables can be allocated with the with form. the syntax is:(with ((variable-name value-exp)*)body-exp)The * signi�es that the name value pairs can be repeated any number of times. A variable-name appearing in an earlier pair can be used in the value-exp of a later pair (this is similarto let* in Common Lisp). The body-exp can refer to any of the variable-names and itsresult is the result of the body-exp. For example, in(with ((a 7)(b (+ a 4)))(* a b))) 77 : intthe variable a is assigned the value 7 and then the variable b is assigned the value of a plus4, which is 11. When these are multiplied in the body, the result is 77.Over: The Apply to Each FormAs well as functions on vectors you can apply any function over the elements of a vector.The over form is used to do this.It has the following syntax:(over ((variable-name value-exp)+)body-exp)The + signi�es that the name value pairs can be repeated any number of times, but atleast once. This syntax is similar to the syntax of the with form, but in an over each ofthe value-exps must evaluate to equal length vectors. The variable-name is then boundto each element of the vectors, and the body-exp is applied for each of these bindings. Forexample:(over ((a #v(1 2 3))(b #v(1 4 9)))(+ a b))) #v(2 6 12) : v.int(over ((a #v(1 2 3))(b #v(1 4 9)))(dist b a))) #v(#v(1) #v(4 4) #v(9 9 9)) : v.v.intThere is also a shorthand way of applying an over by placing a v. in front of thefunction name. For example:(v.+ #v(1 2 3) #v(1 4 9))) #v(2 6 12) : v.int 20

(v.+ reduce #v(#v(7 3) #v(6 2 8 -5)))) #v(10 11) : v.intThe �rst example is equivalent to the �rst example of the over form.Placing a v. in front of a function is called vector-extending the function. It is alsopossible to vector-extend an argument. For example:(v.+ #v(1 2 3) v.3)) #v(4 5 6) : v.intWhich is semantically equivalent to:(over ((a #v(1 2 3)))(+ a 3))) #v(4 5 6) : v.int3.2.2 De�ning New FunctionsFunctions can be de�ned using the defop form. The syntax is:(defop (function-name variable*) (result-type <- source-type*)body-exp)A function can have any number of variables. Its type list speci�er contains a result-typeand a list of source-types. The number of source-types must be equal to the number ofvariables and speci�es the type of each of these input variables. The body-exp can onlyrefer to variables in the variable list. Consider the de�nitions:(defop (square A) (int <- int)(* A A))) square : (int <- int)This de�nes a function that squares an integer by multiplying it by itself.3.2.3 TypingNesl is strongly typed, monomorphic language with overloading on the built-in functions.All user de�ned functions must be de�ned on a single type, but many of the functionssupplied by Nesl are overloaded. For example, (+ a b) can be used on either integersor
oating point numbers, although both numbers must be of the same type. As a moreinteresting example, the function (append a b), can be applied to two vectors of any type,as long as they are the same. The applications:(append "dog" "mouse")(append #v(2 1 5) #v(3 8))(append #v(#v(7 8)) #v(#v(1 2 6) #v(9 7)))are all valid. The types permitted by each function are speci�ed in the list of functionsgiven in the next section. The typing system in Nesl is ad-hoc and will be improved inthe next version of the language. 21

4 List of FunctionsThis section lists the functions available in Nesl. Each function is listed in the followingway:(function-name arguments) fresult-type source-types : type-bindingsgDe�nition of function.In the type speci�cations, the following assignments are valid:ordinal = bool, int, charnumber = int, floatlogical = bool, intany = any valid type4.1 Scalar Functions4.1.1 Logical FunctionsAll the logical functions work on either integers or booleans. In the case of integers, theywork bitwise over the bit representation of the integer.(not a) falpha alpha : alpha in logicalgReturns the logical inverse of the argument. For integers, this is the ones complement.(or a b) falpha alpha alpha : alpha in logicalgReturns the inclusive or of the two arguments.(and a b) falpha alpha alpha : alpha in logicalgReturns the logical and of the two arguments.(xor a b) falpha alpha alpha : alpha in logicalgReturns the exclusive or of the two arguments.(nor a b) falpha alpha alpha : alpha in logicalgReturns the inverse of the inclusive or of the two arguments.(nand a b) falpha alpha alpha : alpha in logicalgReturns the inverse of the and of the two arguments.4.1.2 Comparison FunctionsAll comparison functions work on integers,
oats and characters.(= a b) falpha alpha alpha : alpha in ordinalg22

Returns T if the two arguments are equal.(/= a b) falpha alpha alpha : alpha in ordinalgReturns T if the two arguments are not equal.(< a b) falpha alpha alpha : alpha in ordinalgReturns T if the �rst argument is strictly less than the second argument.(> a b) falpha alpha alpha : alpha in ordinalgReturns T if the �rst argument is strictly greater than the second argument.(<= a b) falpha alpha alpha : alpha in ordinalgReturns T if the �rst argument is less than or equal to the second argument.(>= a b) falpha alpha alpha : alpha in ordinalgReturns T if the �rst argument is greater or equal to the second argument.(select flag a b) falpha bool alpha alpha : alpha in anygReturns the second argument if the
ag is T and the third argument if the
ag is F.4.1.3 Predicates(plusp v) fbool alpha : alpha in numbergReturns T if V is strictly greater than 0.(minusp v) fbool alpha : alpha in numbergReturns T if V is strictly less than 0.(zerop v) fbool alpha : alpha in numbergReturns T if V is equal to 0.(oddp v) fbool intgReturns T if V is odd (not divisible by two).(evenp v) fbool intgReturns T if V is even (divisible by two).4.1.4 Arithmetic Functions(+ a b) falpha alpha alpha : alpha in numbergReturns the sum of the two arguments. 23

(- a b) falpha alpha alpha : alpha in numbergSubtracts the second argument from the �rst.(negate v) falpha alpha : alpha in numbergNegates a number.(abs x) falpha alpha : alpha in numbergReturns the absolute value of the argument.(diff x y) falpha alpha alpha : alpha in numbergReturns the absolute value of the di�erence of the two arguments.(max a b) falpha alpha alpha : alpha in ordinalgReturns the argument that is greatest (closest to positive in�nity).(min a b) falpha alpha alpha : alpha in ordinalgReturns the argument that is least (closest to negative in�nity).(* v d) falpha alpha alpha : alpha in numbergReturns the product of the two arguments.(/ v d) falpha alpha alpha : alpha in numbergReturns V divided by D. If the arguments are integers, the result is truncated towards 0.(rem v d) falpha alpha alpha : alpha in numbergReturns the remainder after dividing V by D.(lshift a b) fint int intgReturns the �rst argument logically shifted to the left by the integer contained in the secondargument. Shifting will �ll with 0-bits.(rshift a b) fint int intgReturns the �rst argument logically shifted to the right by the integer contained in thesecond argument. Shifting will �ll with 0-bits.(sqrt v) f
oat
oatgReturns the square root of the argument. The argument must be nonnegative.(isqrt v) fint int intgReturns the greatest integer less than or equal to the exact square root of the integerargument.(ln v) f
oat
oatg24

Returns the natural log of the argument.(log v b) f
oat
oat
oatgReturns the logarithm of V in the base B.(exp v) f
oat
oatgReturns e raised to the power V.(expt v p) f
oat
oat
oatgReturns V raised to the power P.4.1.5 Conversion Functions(btoi a) fint boolgConverts the boolean values T and F into 1 and 0, respectively.(code-char a) fchar intgConverts an integer to a character. The integer must be the code for a valid character.(char-code a) fint chargConverts a character to its integer code.(float v) f
oat intgConverts an integer to a
oating-point number.(ceil v) fint
oatgConverts a
oating-point number to an integer by truncating toward positive in�nity.(floor v) fint
oatgConverts a
oating-point number to an integer by truncating toward negative in�nity.(trunc v) fint
oatgConverts a
oating-point number to an integer by truncating toward zero.(round v) fint
oatgConverts a
oating-point number to an integer by rounding to the nearest integer; if thenumber is exactly halfway between two integers, then it is implementation speci�c to whichinteger it is rounded.4.1.6 Other Scalar Functions(rand v) fint intg25

Returns a random integer value between 0 and V.4.2 Vector Functions4.2.1 Simple Vector Functions(dist a l) fv.alpha v.alpha int : alpha in anygGenerates a vector of length L with the value A in each element. For example:a = a0l = 5(dist a l) = [a0 a0 a0 a0 a0](elt v i) falpha v.alpha int : alpha in anygExtracts the element speci�ed by index i from the vector v.(rep v a i) fv.alpha v.alpha alpha int : alpha in anygReplaces the ith value in the vector v with the value a. For example:v = [a0 a1 a2 a3 a4]a = b0i = 3(rep v a i) = [a0 a1 a2 b0 a4](length v) fint v.alpha : alpha in anygReturns the length of a vector.(index l) fint intgGiven an integer, index returns a vector of that length with consecutive integers startingat 0 in the elements. For example:l = 8(index l) = [0 1 2 3 4 5 6 7]4.2.2 Scans and Reduces(+-scan a) fv.alpha v.alpha : alpha in numbergGiven a vector of integers, +-scan returns to each position of a new equal-length vector,the sum of all previous positions in the source. For example:a = [1 3 5 7 9 11 13 15](+-scan a) = [0 1 4 9 16 25 36 49]26

(max-scan a) fv.alpha v.alpha : alpha in ordinalgGiven a vector of integers, max-scan returns to each position of a new equal-length vector,the maximum of all previous positions in the source. For example:a = [3 2 1 6 5 4 8](max-scan a) = [�1 3 3 3 6 6 6](min-scan a) fv.alpha v.alpha : alpha in ordinalgGiven a vector of integers, min-scan returns to each position of a new equal-length vector,the minimum of all previous positions in the source.(iseq start stride end) fv.int int int intgReturns a set of indices starting at start, increasing by stride, and �nishing before end.For example: start = 4stride = 3end = 15(iseq start stride end) = [4 7 10 13](+-reduce v) falpha v.alpha : alpha in numbergGiven a vector of integers, +-reduce returns the sum of the integers. For example:v = [7 2 9 11 3](+-reduce v) = 32(max-reduce v) falpha v.alpha : alpha in ordinalgGiven a vector of integers, max-reduce returns the maximum of the integers.(min-reduce v) falpha v.alpha : alpha in ordinalgSee max-reduce.(or-reduce v) falpha v.alpha : alpha in logicalgA reduce with logical or.(and-reduce v) falpha v.alpha : alpha in logicalgA reduce with logical and.(count flags) fint v.boolgCounts the number of T
ags in a boolean vector. For example:27

flags = [T F T T F T F T](count flags) = 5(max-index v) fint v.alpha : alpha in ordinalgGiven a vector of integers, max-index returns the index of the maximum value. If severalvalues are equal, it returns the leftmost index. For example:v = [2 11 4 7 14 6 9 14](max-index v) = 4(min-index v) fint v.alpha : alpha in ordinalgGiven a vector of integers, min-index returns the index of the minimum value. If severalvalues are equal, it returns the leftmost index.4.2.3 Vector Reordering Functions(get values indices) fv.alpha v.alpha v.int : alpha in anygGiven a vector of values and a vector of indices, which can be of di�erent length, getreturns a vector which is the same length as the indices vector and the same type as thevalues vector. For each position in the indices vector, it extracts the value at that indexof the values vector.(cond-get values indices flags) fv.alpha v.alpha v.int v.bool : alpha in anygSimilar to the get function, but the flags vector, which must be the same length as theindices vector, masks out positions where the
ag is F such that nothing is fetched inthose positions and the identity is returned. For example:values = [a0 a1 a2 a3 a4 a5 a6 a7]indices = [3 1 5 2 5 6]flags = [T F T T F T](cond-get values indices flags) = [a3 0 a5 a2 0 a6](permute values indices) fv.alpha v.alpha v.int : alpha in anygGiven a vector of values and a vector of indices, which must be of the same length,permute permutes the values to the given indices. The permutation must be 1-to-1.(put values indices defaults) fv.alpha v.alpha v.int v.alpha : alpha in anygGiven a vector of values and a vector of indices, which must be of the same length, putplaces the values to the given indices in the defaults vector. For example:28

values = [a0 a1 a2 a3]indices = [1 5 2 3]defaults = [b0 b1 b2 b3 b4 b5](put values indices defaults) = [b0 a0 a2 a3 b4 a1](const-put value indices defaults) fv.alpha alpha v.int v.alpha : alpha in anygGiven a vector of indices, put places the constant value at each index in the defaultsvector.(cond-put v i flags d) fv.alpha v.alpha v.int v.bool v.alpha : alpha in anygSimilar to the put function, but the extra flags vector, which must be the same length asthe indices (i) vector, masks out positions where the
ag is F such that nothing is placedby those positions. For example:v = [a0 a1 a2 a3 a4 a5 a6 a7]i = [1 5 4 6 2 3 7 0]flags = [T F F F F T F F]d = [b0 b1 b2 b3](cond-put v i flags d) = [b0 a0 b2 a5](rotate a i) fv.alpha v.alpha int : alpha in anygGiven a vector and an integer, rotate rotates the vector around by I positions to the right.If the integer is negative, then the vector is rotated to the left. For example:a = [a0 a1 a2 a3 a4 a5 a6 a7]i = 3(rotate a i) = [a5 a6 a7 a0 a1 a2 a3 a4]4.2.4 Vector Manipulation(pack v flags) fv.alpha v.alpha v.bool : alpha in anygGiven a sequence of values, and an equal length boolean sequence of
ags, pack packs allthe elements with a T in their Flag into consecutive elements, deleting elements with an Fin their
ag. For example:v = [a0 a1 a2 a3 a4 a5 a6 a7]flags = [T F T F F T T T](pack v flags) = [a0 a2 a5 a6 a7](pack-index flags) fv.int v.boolgGiven a boolean sequence of
ags, pack-index returns a vector containing the indices ofeach of the true
ags. For example: 29

flags = [T F T F F T T T](pack-index flags) = [0 2 5 6 7](append v1 v2) fv.alpha v.alpha v.alpha : alpha in anygGiven two sequences, append appends them. For example:v1 = [a0 a1 a2]v2 = [b0 b1](append v1 v2) = [a0 a1 a2 b0 b1](cons a v) fv.alpha alpha v.alpha : alpha in anygGiven a value a and a sequence of values v, cons concatenates the value onto the front ofthe sequence. For example:a = a0v = [b0 b1 b2 b3](cons a v) = [a0 b0 b1 b2 b3](vtup a b) fv.alpha alpha alpha : alpha in anygGiven two values of the same type, vtup puts them together into a sequence of length 2.For example: a = a0b = a1(vtup a b) = [a0 a1](vsep a) f(alpha alpha) v.alpha : alpha in anygGiven a vector of length 2, vsep returns a tuple with the �rst vector element in the �rstposition and the second vector element in the second position.(subseq v start end) fv.alpha v.alpha int int : alpha in anygGiven a sequence, subseq returns the subsequence starting at position start and endingone before position end. For example:v = [a0 a1 a2 a3 a4 a5 a6 a7]start = 2end = 6(subseq v start end) = [a2 a3 a4 a5]30

(drop n v) fv.alpha int v.alpha : alpha in anygGiven a sequence, drop drops the �rst n items from the sequence. For example:n = 3v = [a0 a1 a2 a3 a4 a5 a6 a7](drop n v) = [a3 a4 a5 a6 a7](take n v) fv.alpha int v.alpha : alpha in anygGiven a sequence, take takes the �rst n items from the sequence. For example:n = 3v = [a0 a1 a2 a3 a4 a5 a6 a7](take n v) = [a0 a1 a2]4.2.5 Nesting VectorsThe two functions partition and flatten are the primitives for moving between levels ofnesting. All other functions for moving between levels of nesting can be built out of these.The functions split and bottop are often useful for divide-and-conquer routines.(partition values counts) fv.v.alpha v.alpha v.int : alpha in anygGiven a sequence of values and another sequence of counts, partition returns a nestedsequence with each subsequence being of a length speci�ed by the counts. The sum of thecounts must equal the length of the sequence of values. For example:values = [a0 a1 a2 a3 a4 a5 a6 a7]counts = [4 1 3](partition values counts) = [[a0 a1 a2 a3] [a4] [a5 a6 a7]](flatten values) fv.alpha v.v.alpha : alpha in anygGiven a nested sequence of values, flatten
attens the sequence. For example:values = [[a0 a1 a2] [a3 a4] [a5 a6 a7]](flatten values) = [a0 a1 a2 a3 a4 a5 a6 a7](split v flags) fv.v.alpha v.alpha v.boolgGiven a sequence of values A and a boolean sequence of flags, split creates a nestedsequence of length 2 with all the elements with an F in their
ag in the �rst element andelements with a T in their
ag in the second element. For example:v = [a0 a1 a2 a3 a4 a5 a6 a7]flags = [T F T F F T T T](split v flags) = [[a1 a3 a4] [a0 a2 a5 a6 a7]]31

(bottop values) fv.v.alpha v.alphagGiven a sequence of values values, bottop creates a nested sequence of length 2 with allthe elements from the bottom half of the sequence in the �rst element and elements fromthe top half of the sequence in the second element. For example:values = [a0 a1 a2 a3 a4 a5 a6](bottop values) = [[a0 a1 a2 a3] [a4 a5 a6]]

32

AcknowledgmentsI would like to thank Marco Zagha, Tim Freeman, Jay Sipelstein, Margaret Reid-Miller, andJohn Greiner, Jonathan Hardwick, and Siddhartha Chatterjee for many helpful commentson this manual. Tim Freeman implemented much of the Nesl/Vcode interface.References[1] ANSI. ANSI Fortran Draft S8, Version 111. ANSI.[2] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Com-puters, C-38(11):1526{1538, November 1989.[3] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge,MA, 1990.[4] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, andMarco Zagha. Portable data-parallel algorithms. In Preparation, 1992.[5] Guy E. Blelloch, Siddhartha Chatterjee, Fritz Knabe, Jay Sipelstein, and Marco Zagha.VCODE reference manual (version 1.1). Technical Report CMU-CS-90-146, School ofComputer Science, Carnegie Mellon University, July 1990.[6] Guy E. Blelloch and James J. Little. Parallel solutions to geometric problems onthe scan model of computation. In Proceedings International Conference on ParallelProcessing, pages Vol 3: 218{222, August 1988.[7] Guy E. Blelloch and Gary W. Sabot. Compiling collection-oriented languages ontomassively parallel computers. Journal of Parallel and Distributed Computing, 8(2),February 1990.[8] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of theAssociation for Computing Machinery, 21(2):201{206, 1974.[9] D. Breslauer and Z. Galil. An optimal o(log log n) time parallel string matchingalgorithm. SIAM Journal on Computing, 19(6):1051{1058, December 1990.[10] Siddhartha Chatterjee. Compiling Data-Parallel Programs for E�cient Execution onShared-Memory Multiprocessors. PhD thesis, School of Computer Science, CarnegieMellon University, Pittsburgh, PA, October 1991.[11] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceed-ings ACM Symposium on Theory of Computing, pages 114{118, 1978.[12] H. Freeman. Computer processing of line-drawing images. Computer Surveys, 6:57{97,1974.[13] Godfrey Harold Hardey and Edward Maitland Wright. An Introduction to the Theoryof Numbers, 5th ed. Oxford at the Carendon Press, Oxford, New York, 1983.33

[14] C. A. R. Hoare. Algorith 63 (partition) and algorithm 65 (�nd). Communications ofthe ACM, 4(7):321{322, 1961.[15] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, Reading, MA, 1961.[16] Kenneth E. Iverson. A Programming Language. Wiley, New York, 1962.[17] Cli�ord Lasser. The essential *Lisp manual. Technical report, Thinking MachinesCorporation, Cambridge, MA, July 1986.[18] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MITPress, Cambridge, Mass., 1990.[19] Franco P. Preparata and Michael I. Shamos. Computational Geometry|An Introduc-tion. Springer-Verlag, New York, 1985.[20] John Rose and Guy L. Steele Jr. C*: An extended C language for data parallelprogramming. Technical Report PL87-5, Thinking Machines Corporation, April 1987.[21] Gary Sabot. Paralation Lisp Reference Manual, May 1988.[22] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming withSets: An Introduction to SETL. Springer-Verlag, New York, 1986.[23] Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proceedings ofthe IEEE, 79(4):504{523, April 1991.[24] Guy L. Steele Jr. CM-Lisp. Technical report, Thinking Machines Corporation, 1986.[25] U. Vishkin. Deterministic sampling-a new technique for fast pattern matching. SIAMJournal on Computing, 20(1):22{40, February 1991.
34

