NEsL: A Nested Data-Parallel Language

Guy E. Blelloch
January 1992
CMU-CS5-92-103

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. government.



Keywords: Data-parallel, parallel algorithms, supercomputers, nested parallelism,

parallel RAM model



Abstract

This report describes NESL, a strongly-typed, applicative, data-parallel language. NESL is
intended to be used as a portable interface for programming a variety of parallel and vector
supercomputers, and as a basis for teaching parallel algorithms. Parallelism is supplied
through a simple set of data-parallel constructs based on vectors, including a mechanism
for applying any function over the elements of a vector in parallel, and a broad set of parallel
functions that manipulate vectors.

NEesL fully supports nested vectors and nested parallelism—the ability to take a parallel
function and then apply it over multiple instances in parallel. Nested parallelism is impor-
tant for implementing algorithms with complex and dynamically changing data structures,
such as required in many graph or sparse matrix algorithms. NESL also provides a mecha-
nism for calculating the asymptotic running time for a program on various parallel machine
models, including the parallel random access machine (PRAM). This is useful for approxi-
mating running times of algorithms on actual machines, and when teaching algorithms to
supply a close correspondence between the code and the theoretical complexity.

This report defines NESL and describes several examples of algorithms coded in the lan-
guage. The examples include algorithms for median finding, sorting, string searching,
finding prime numbers, and finding a planar convex hull. NESL currently compiles to an
intermediate language called VCoDE, which runs on the Cray Y-MP, Connection Machine
CM-2, and Encore Multimax. For many algorithms, the current implementation gives per-
formance close to optimized machine-specific code for these machines. NESL is the first
data-parallel language whose implementation fully supports nested parallelism.



Contents

1 Introduction

1.1 Parallel Operations on Vectors . . . . .. . ... ... ... ... ....
1.2 Nested Parallelism . . . . .. ... .. o
1.3 Deriving Complexity . . . . . . . ... .
2 Examples
2.1 String Searching . . . . . ... L L
2.2 Primes . . . . .. e e e
2.3 Planar Convex-Hull using Quickhull . . . . ... ... .. ... ... ...,
3 Language Definition
3.1 Data . . . o e
3.1.1  Atomic Data Types . . . . . . ..
3.1.2 Vectors . . . . o o e e e
3.1.3 Tuples . . . oo
3.1.4 Defining New Types . . . . . . . .. oo oo
3.2 Functions . . . . . . ... e e e
3.2.1 Forms . . . . ..o
3.2.2 Defining New Functions . . . . . ... ... ... ... ... ...
3.2.3 Typing . . . ..o
4 List of Functions
4.1 Scalar Functions . . . . . ..o oo e
4.1.1 Logical Functions . . . . . . . . . ...
4.1.2 Comparison Functions . . . . . . .. ... Lo oo
4.1.3 Predicates . . . . . .o
4.1.4  Arithmetic Functions . . . . . . . .. ... oo oo
4.1.5 Conversion Functions . . . . . . .. ... oo
4.1.6  Other Scalar Functions . . . . . .. ... .. ... ... .. ...
4.2 Vector Functions . . . . . . . . . . e
4.2.1 Simple Vector Functions . . . . . . . ... ... 0oL
4.2.2 Scans and Reduces . . . . . .. ... oo
4.2.3 Vector Reordering Functions . . . . ... ... ... .. ... ... .
4.2.4  Vector Manipulation . . . . .. ... .. Lo o
4.2.5 Nesting Vectors . . . . . . . .. .. Lo

16
16
16
18
18
19
19
19
21
21



1 Introduction

This report describes and defines the data-parallel language, NESL. The language was
designed with the following goals:

1. To support parallelism by means of a set of data-parallel constructs based on vectors.
These constructs supply parallelism through (1) the ability to apply any function
concurrently over each element of a vector, and (2) a set of parallel functions that
operate on vectors, such as the permute function, which permutes the order of the
elements in a vector.

2. To support complete nested parallelism. NEsL fully supports nested vectors, and
the ability to apply any user defined function over the elements of a vector, even if
the function is itself parallel and the elements of the vector are themselves vectors.
Nested parallelism is critical for describing both divide-and-conquer algorithms and
algorithms with nested data structures.

3. To generate efficient code for a variety of architectures, including both SIMD and
MIMD machines, with both shared and distributed memory. NESL currently gener-
ates a portable intermediate code called VcoDE [5], which runs on the CRAY Y-MP,
the Connection Machine CM-2, and the Fncore Multimax. Various benchmarks al-
gorithms achieve very good running times on these machines [10, 4].

4. To be well suited for describing parallel algorithms, and to supply a mechanism to
derive the theoretical running time directly from the code. Fach function in NESL has
two complexity measures associated with it, the work and step complexities. These
can be composed with some simple rules to derive the complexity for any computation.
A simple equation maps these complexities to the running time on a PRAM.

NESL is an interactive, strongly typed, applicative language with no side effects and
a Lisp-like syntax.! The language is based on vectors (sequences) as a primitive parallel
data type, and parallelism is achieved exclusively through operations on these vectors [3].
The set of vector functions supplied by NESL was chosen based both on their usefulness
on a broad variety of algorithms, and on their efficiency when implemented on parallel
machines. To promote the use of parallelism, NESL supplies no serial looping constructs
(although serial looping can be simulated with recursion), and supplies no data-structures
that require serial access, such as lists in Lisp or ML.

NESL is the first data-parallel language whose implementation supports nested paral-
lelism. Nested parallelism is the ability to take a parallel function and then apply it over
multiple instances in parallel—for example, having a parallel sorting routine, and then us-
ing it to sort several sequences concurrently. The languages C* [20], *Lisp [17], and Fortran
90 [1] (the array extensions) support no form of nested-parallelism. The parallel collections
in these languages can only contain scalars or fixed sized records. There is also no means

Tt should not, however, be confused with Lisp or Scheme. In fact, we are currently working on a new
version of the language in which the syntax will be much closer to the syntax of the ML language [18].



in these languages to apply a user defined function over each element of a collection. This
prohibits the expression of any form of nested parallelism. The languages Connection Ma-
chine Lisp [24], and Paralation Lisp [21] both supply nested parallel constructs, but no
implementation ever supported nested parallelism. Blelloch and Sabot implemented an
experimental compiler that supported nested-parallelism for a small subset of Paralation
Lisp [7], but it was deemed near impossible to extend it to the full language.

Existing data-parallel languages almost all consist of a set of data-parallel constructs
added to a serial language (C and C*, Pascal and Parallel Pascal, Fortran 90 and its vector
extensions, Lisp and the three languages *Lisp [17], CM-Lisp [24] and Paralation-Lisp [21]).
This approach of adding extensions to an existing language has its clear advantages—it
allows the creation of a parallel language with only a small effort in language design. The
approach, however, can also have some severe disadvantages. In particular data-parallel
constructs often do not fit well with the existing serial languages, causing awkward semantic
and compiler problems. The interaction of the parallel constructs with the full features of
the language can also force severe limitations to be placed on the use of the constructs.
For these reasons, NESL is quite intentionally not built on top of any existing language,
although it clearly uses many ideas from existing languages. The author believes that there
is no possibility that NESL could fully support nested parallelism if it was built on top of
any of the standard languages.

A disadvantage of starting from the bottom is that NESL does not subsume all the fea-
tures of a full language. Because of this NESL currently does not support passing functions
as arguments, its typing system is somewhat ad-hoc, and it only supports minimum input
and output capabilities. We are currently working on a follow up on NEsL, which will
include some of the features that are lacking, and will be based on a more rigorous type
system.

A common complaint about high-level data-parallel languages, and more generally in
the class of Collection-Oriented languages [23], such as SETL [22] and APL [16], is that it
can be hard or impossible to determine approximate running times for a computation by
looking at the code. As an example, the § primitive in CM-Lisp (a general communication
primitive) is sufficiently powerful, that seemingly similar pieces of code could take very
different amounts of time depending on details of the implementation of the operation and
of the data structures. A similar complaint is often made about the language SETL—a
language with sets as a primitive data structure. The time taken by the set operations in
SETL is strongly effected by how the set is represented. This representation is chosen by
the compiler.

For this reason, NESL was designed so that the asymptotic complexity can always be
derived from the code as a function of the length of the vectors used in the code. In particu-
lar, each function in NESL has two complexities associated with it, and simple composition
rules are supplied to combine complexities across expressions. From these rules, both the
total work executed by the program (the running time if executed on a serial RAM), and
the parallel depth of the computation (the running time if executed with an unbounded
number of processors) can be calculated. These complexities can then be combined to de-
termine asymptotic running times on a parallel random access machine [11] (PRAM) for
any fixed number of processors. Since the complexities do not include constants, and real



machines do not fit the PRAM model, they can only be used to give approximate running
times on any real machines, but are very useful for analyzing asymptotic performance of
parallel algorithms.

The remainder of this section discusses the use of vectors and nested parallelism in NESL,
and how complexity can be derived from NESL code. Section 2 shows several examples of
code, Section 3 defines the language, and Section 4 lists all the available functions.

1.1 Parallel Operations on Vectors

NEsL supports parallelism through operations on vectors. This parallelism can be achieved
in two ways. First, any function can be applied over the elements of a vector. For example,
the expression

(over ((a #v(7 -2 5 4)))
(negate a))
= #v(-7 2 -5 -4) : v.int

negates each elements of the vector #v(7 -2 5 4). This construct can be read as “for each
element a in the vector #v(7 -2 5 4), negate a” (in the example, the symbol = points to
what is returned by the expression above it, and the v.int indicates that the result of the
expression is of type vector of integers). The over form can also be expressed shorthand
as,

(v.negate #v(7 -2 5 4))
= #v(-7 2 -5 -4) : v.int

This shorthand v. form is considered syntactic sugar for the over form (see Section 3.2
for a more precise definition).

In NEsL, any function, whether primitive or user defined, can be applied to each element
of a vector. So, for example, we could define a factorial function

(defop (factorial i) (int <- int)
Gf (=1 1)
1
(¥ i (factorial (- i 1)))))
= factorial : int <- int

and then apply it over the elements of a vector

(v.factorial #v(3 1 7))
= #v(6 1 5040) : v.int

In this example, the (defop (name arguments) type body) form is used to define factorial.
The type argument specifies the type of the function, which in this case is specified as (int
<- int), a function that maps integers to integers.

An over form applies a body to each element of a vector. We will call each such appli-
cation an instance. Since there are no side effects in NESL, there is no way to communicate



Operation Description Work
dist a 1 Distribute value a to vector of length 1. S(result)
length a Return length of vector a. 1

elt a i Return element at position i of a. S(result)
rep vali Replace element at position 1 of a with v. 1, S(a)
index 1 Generate an index vector of length 1. 1

iseq s d e Return integer sequence from s to e by d. (e - 8)/d
d-reduce a Return sum based on operator &. S(a)

* (-scan a Return scan based on operator &. S(a
count a Count number of true flags in a. a
permute a 1 Permute elements of a to positions i. a
put a i d Place elements a in d based on indices i. a), S(d)
const-put a i d | Place element a in d based on indices i. a), S(d)
cond-put a i £ d | Conditional put based on masks £f. a), S(d)
get a i Get values from vector a based on indices i. i
pack a f Pack vector a based on flags £. a

pack-index f
max-index a
min-index a

Packed indices of true positions in vector £.
Return index of the mazimum value.
Return index of the minimum value.

LN U U nnunununnniunn N N N UL LU U U
AAAAAAAAAAAA/-\/-\Q/-\/-\/-\/-\/-\/-\/-\/-\

append a b Append vectors a and b. + S(b)
cons a b Append element a to front of vector b. a) + S(b)
vtup a b Append elements a and b into a vector. a) + S(b)
vsep a Convert two-element vector a into a tuple. a
drop n a Drop first n elements of vector a. a
take n a Take first n elements of vector a. a
rotate n a Rotate vector a by n positions. a
subseq a s e Subsequence of a from indices s to e. a
flatten a Flatten nested vector a. a
partition a 1 Partition vector a into nested vector. a
split a f Split a into nested vector based on flags £. a
bottop a Split a into nested vector. a

Figure 1: List of the vector functions of NESL. In the work column, S(v) refers to the size
of the object v. The * before certain functions means that those functions are primitives. All
the other functions can be built out of the primitives with at most a constant overhead in both
work and number of steps. The @ for reduce and scan can be one of {+, max, min, or, and}.
All the vector functions are described in detail in Section 4.2.



among the instances of an over form. An implementation can therefore execute the in-
stances in any order it chooses without changing the result. In particular, the instances
can be implemented in parallel, therefore giving over its parallel semantics.

In addition to the over form, a second way to take advantage of parallelism in NESL is
through a set of vector functions. The vector functions operate on whole vectors and all
have relatively simple parallel implementations. For example the function +-reduce sums
the elements of a vector.

(+-reduce #v(2 1 -3 11 5))
= 16 : int

Since addition is associative, this can be implemented on a parallel machine in logarithmic
time using a tree. Another common vector function is the permute function, which permutes
a vector based on a second vector of indices. For example:

(permute "road" #v(2 1 3 0))
= '"dora" : v.char

In this case, the 4 characters of the string "road" (the term string is used to refer to a
vector of characters) are being permuted to the indices #v(2 1 3 0) (r — 2,0 — 1,a — 3,
and d — 0). The implementation of the permute function on a distributed-memory parallel
machine could use its communication network, and the implementation on a shared-memory
machine could use an indirect write into the memory.

Table 1 lists the vector functions available in NESL. A subset of the functions (the
stared ones) form a complete set of primitives. These primitives, along with the scalar
operations and the over form, are sufficient for implementing the other functions in the
table with at most a constant increase in both the step and work complexities. The table
also lists the work complexity of each function. This complexity is typically based on the
size of the function’s arguments. The size of an object should not be confused with the
length of a vector. The size is defined inductively: the size of a scalar value is 1, and the
size of a vector is the sum of the sizes of its elements plus 1. The size of a nested vector
could therefore be much greater than its length. The step complexity of each function in
the table is O(1).

We now consider an example of the use of vectors in NEsL. The algorithm we consider
solves the problem of finding the k' smallest element is a set s, using a parallel version
of the quickorder algorithm [14]. Quickorder is similar to quicksort, but only calls itself
recursively on either the elements lesser or greater than the pivot. The NESL code for the
algorithm is shown in Figure 2. The with form is used to bind local variables and is like
a let* in Common Lisp. The code first binds 1 to the length of the input vector s, and
then extracts the element half-way across the vector s as a pivot; the (elt s i) function
extracts the 1" element from a vector s. The algorithm then selects all the elements less
than the pivot, and places them in a vector that is bound to lesser. This is done by
comparing each element of s to the pivot, and packing the elements with a true flag. The
v.pivot means that the pivot is extended to the same length as s. The pack function,
which takes a vector of elements and a vector of flags of equal length, packs the elements
where the flag is true into a smaller vector. For example,



(defop (order s k) (int <- v.int int)
(with ((1 (length s))
(pivot (elt s (/ 1 2)))
(lesser (pack s (v.< s v.pivot))))
(if (< k (length lesser))
(order lesser k)
(with ((greater (pack s (v.> s v.pivot))))
(if (>= k (- 1 (length greater)))
(order greater (- k (- 1 (length greater))))

pivot)))))

Figure 2: An implementation of order statistics. The function order returns the kth smallest
element from the input vector s.

s = #v(4823172)
pivot = 3
(v.< s v.pivot) = #v(fftftft)

(pack s (v.< s v.pivot)) #v(2 1 2)

After the pack, if the number of elements in the set lesser is greater than k, then the k%"
smallest element must belong to that set. In this case, the algorithm calls order recursively
on lesser using the same k. Otherwise, the algorithm selects the elements that are greater
than the pivot, again using pack, and can similarly find if the k' element belongs in the
set greater. If it does belong in greater, the algorithm calls itself recursively, but must
now readjust k by subtracting off the number of elements lesser and equal to the pivot. If
the k' element belongs in neither lesser nor greater, then it must be the pivot, and the
algorithm returns this value.

1.2 Nested Parallelism

Nested parallelism is the ability to apply a parallel function multiple times in parallel. For
example, we could apply the parallel vector function +-reduce within the over form:

(over ((v #v(#v(2 1) #v(7 3 0) #v(4))))
(+-reduce v))
= #v(3 10 4) : v.int

In this expression there is parallelism both within each +-reduce, since the vector function
has a parallel implementation, and across the three instances of +-reduce, since over is
defined such that all instances can run in parallel.

Table 1 lists several examples of routines that could take advantage of nested parallelism.
Nested parallelism also appears in most divide-and-conquer algorithms. A divide-and-
conquer algorithm breaks the original data into smaller parts, applies the same algorithm
on the subparts, and then merges the results. If the subparts can be executed in parallel,



‘ Application ‘ Outer Parallelism ‘ Inner Parallelism ‘

Sum of Neighbors in Graph | For each vertex Sum neighbors
of graph of vertex
Figure Drawing For each line Draw pixels
of image of line
Compiling For each procedure | Compile code
of program of procedure
Text Formatting For each paragraph | Justify lines
of document of paragraph

Table 1: Routines with nested parallelism. Both the inner part and the outer part can be
executed in parallel.

‘ Algorithm ‘ Outer Parallelism ‘ Inner Parallelism ‘
Quicksort For lesser and greater | Quicksort
elements
Mergesort For first and second Mergesort
half
Closest Pair For each half of Closest Pair
space
Strassen’s For each of the 7 Strassen’s
Matrix Multiply sub multiplications Matrix Multiply
Fast For two sets of Fast
Fourier Transform | interleaved points Fourier Transform

Table 2: Some divide and conquer algorithms.

(defop (gsort a) (v.int <- v.int)
(if (< (length a) 2) a
(with ((pivot  (elt a (/ (length a) 2)))
(lesser (pack a (v.< a v.pivot)))
(equal (pack a (v.= a v.pivot)))
(greater (pack a (v.> a v.pivot)))
((rl rg) (vsep (v.gsort (vtup lesser greater)))))

(append rl (append equal rg)))))

Figure 3: An implementation of quicksort.



‘ Quicksort ‘

| |
‘ Quicksort ‘ ‘ Quicksort ‘
| | | |
‘ Quicksort ‘ ‘ Quicksort ‘ ‘ Qs ‘ ‘ Quicksort ‘
|
‘ Qs ‘ ‘ Qs ‘ ‘Quicksort‘ ‘Quicksort‘ ‘Quicksort‘ ‘ Qs ‘

[ R R 1
[Qs ] [Qs ] [Qs ] [Qs]

Figure 4: The quicksort algorithm. Just using parallelism within each block yields a parallel
running time at least as great as the number of blocks (O(n)). Just using parallelism from
running the blocks in parallel yields a parallel running time at least as great as the largest block
(O(n)). By using both forms of parallelism the parallel running time can be reduced to the
depth of the tree (expected O(lgn)).

as is usually the case, the application of the subparts involves nested parallelism. Table 2
shows several examples.

As an example, consider a parallel variation of quicksort [2] (see Figure 3). When applied
to a vector s, this version splits the values into three subsets (the elements lesser, equal and
greater than the pivot) and calls itself recursively on the lesser and greater subsets. The
selecting of each set is done using a pack, as used in the order function discussed in the
last section. To execute the two recursive calls, the vtup function is used to concatenate
two vectors into a nested vector. For example:

(vtup #v(5 2 4) #v(8 11 9 16))
= #v(#v(5 2 4) #v(8 11 9 16)) : v.v.int

The v.gsort then applies gsort in parallel over the two elements of the nested vector
(the lesser and greater elements). When the gsort returns, the vsep function separates
the resulting nested vector into a tuple (a pair), whose elements are then bound to rl (the
sorted lesser elements) and rg (the sorted greater elements). The final line appends rl,
equal, and rg together into sorted order.

The recursive invocation of gsort generates a tree of calls which would look something
like the tree shown in Figure 4. The step complexity of the algorithm is simply the depth of
this tree (expected O(lgn)) and the work is the size of the tree (expected O(nlgn)). If we
were to only take advantage of the parallelism within each quicksort to subselect the two
sets (the parallelism within each block), we would do well near the root and badly near the
leaves. Inversely, if we were to only take advantage of the parallelism available by running
the invocations of quicksort in parallel (the parallelism between blocks but not within a
block), we would do well at the leaves and badly at the root. In both cases the parallel
time complexity is O(n) rather than the ideal O(lgn) (the expected depth of the tree).

9



Without nested parallelism, there is no direct way of expressing both kinds of parallelism
used in quicksort.

1.3 Deriving Complexity

There are two complexities associated with all computations in NESL.

1. Work complexity: this represents the total work done by the computation, that
is to say, the amount of time that the expression would take if executed on a serial
random access machine. The work complexity for most of the vector functions is
simply the size of the vector being operated on. A complete list is given in Table 1.

2. Step complexity: this represents the parallel depth of the computation, that is to
say, the amount of time the program would take on a machine with an unbounded
number of processors. The step complexity of all the vector functions supplied by
NESL is one.

These two complexities are based on the vector random access machine (VRAM) model [3],
a strictly data-parallel abstraction of the parallel random access machine (PRAM) model [11].
Since the complexities are meant for determining asymptotic complexity, these complexi-
ties do not include constant factors. For all the NEsL functions, however, the constants are
small.

The complexities are combined using two simple combining rules. Expressions are
combined in the standard way—for both the work complexity and the step complexity,
the complexity of an expression is the sum of the complexities of the arguments plus the
complexity of the call itself. For example, the complexities of the computation:

(* (+-reduce (dist 7 n)) (length a))

can be calculated as:

Work  Step
dist n+1 1
+-reduce n+1 1
length 1 1
* 1 1
Total O(n) 0(1)

The over form is combined in the following way. The work complexity is the sum of the
work complexity of the instantiations, and the step complexity is the maximum over the
step complexities of the instantiations. For example, the complexities of the computation:

(over ((i (index n)))
(+-reduce (index 1))

can be calculated as:

10



Work Step

index n+1 1
Within Over

index SR+l maxiSpl
+-reduce Sri 41 maxiSp
Total O(n?) O(1)

Once the step (5) and work (W) complexities have been calculated, which are the
complexities for a VRAM, a simple formula gives the running time on a PRAM:

t = O(W/P+S8)

This formula can be derived from Brent’s scheduling principle [8] as shown in [3].

One can clearly argue that the PRAM model is not a particularly practical model
of parallel computation since it assumes that references to a shared memory take unit-
time. The model, however, gives a balpark prediction of the running times, and will never
grossly underestimate the time. The complexity also makes NESL well suited for teaching
parallel algorithms since the programming model very closely matches the description of
the algorithm used for determening the complexity.

2 Examples

This section illustrates several examples of NESL programs.

2.1 String Searching

The first example is a function that finds the occurrences of a word in a string (a vector
of characters). In particular, the function (string-search w s) (see Figure 5), takes a
search word w and a string s, and returns the starting position of all words in s that match
w. For example,

(string-search "foo" "fobarfoofboofoo")
= #v(56 12) : v.int

The algorithm works in a number of parallel steps proportional to the length of the
search string w. It starts at the first character of w and generates a set of candidate
matches. The algorithm then progresses through the search string, using recursive calls
to next-cands, narrowing the set of candidate matches on each step. The candidates are
stored as pointers (indices) into s of the beginning of each match. To determine the initial
set of candidates, string-search compares every element of the string s with the first
character of w, and uses the pack-index function to return the indices where there is a
match. The pack-index function takes a vector of booleans and returns the indices where
a flag is true. For example,

(pack-index #v(f t £ £ t t))
= #v(1 4 5) : v.int

11



(defop (next-cands cands w s i) (v.int <- v.int v.char v.char int)
(if (= 1 (length w))
cands
(with ((letter (elt w i))
(match-flags (v.= v.letter (get s (v.+ cands v.i)))))
(next-cands (pack cands match-flags) w s (+ 1 1)))))

(defop (string-search w s) (v.int <- v.char v.char)
(next-cands (pack-index (v.= s v.(elt w 0)))
ws 0))

Figure 5: Finding all occurrences of the word w in the string s.

the first, fourth and fifth flags are true.

Based on the current candidates, next-cands narrows the set of candidates by only
keeping the candidates that match on the next character of w. To do this, each candidate
checks whether the 1" character in w matches the i*" position past the candidate index.
All candidates that do match are packed and passed into the recursive call of next-cands.
The recursion completes when the algorithm reaches the end of w. The progression of cands
in the "foo" example would be:

i cands

0 #v(0 5 8 12)
1 #v(0 5 12)
2 #v(5 12)

If the word w has length [, the number of steps taken by the algorithm is some constant
times the number of recursive calls, which is simply O(l). The work complexity of the
algorithm is the sum over the calls of the number of candidates in each step. In practice,
this is usually linear in the length of the search string s (I{(s)), but in the worst case this
can be the product of the two lengths [(s)l/(w) (the worst case can only happen if most of
the characters in w are repeated). Algorithms for string searching are known [9, 25], that
give better bounds on the parallel time (step complexity), and that bound the worst case
work complexity to be linear in the length of the search string, but are somewhat more
complicated.

2.2 Primes

Our second example finds all the primes less than n. The algorithm is based on the sieve
of Eratosthenes. The basic idea of the sieve is to find all the primes less than y/n, and then
use multiples of these primes to sieve out all the composite numbers less than n. Since all
composite numbers less than n must have a multiple less than y/n, the only elements left
unsieved will be the primes. There are many parallel versions of the prime sieve, and several
naive versions require a total of O(n%/2) work and either O(n'/?) or O(n) parallel time. A

12



(defop (primes n) (v.int <- int)
(if (=n 1)
#v.int ()
(with ((sqr-primes (primes (isqrt n)))
(sieves (over ((p sqr-primes))
(iseq (* 2 p) p n)))

(flat-sieve (flatten sieves))
(flags (const-put f flat-sieve (dist t n))))

(drop 2 (pack-index flags)))))

Figure 6: Finding all the primes less than n.

well designed version should require no more work than the serial sieve (O(nlglgn)), and
polylogarithmic parallel time.

The version we use (see Figure 6) requires O(nlglg n) work and O(lglg n) steps. It works
by first recursively finding all the primes up to \/n, (sqr-primes). Then, for each prime
p in sqr-primes, the algorithm generates all the primes multiples of p up to n (sieves).
This is done with the (iseq s d e) function, which returns the integers starting at s,
increasing by d, and up to, but less than, e. For example,

(iseq 4 2 20)
= #v(4 6 8 10 12 14 16 18) : v.int

The vector sieves is therefore a nested vector with each subvector being the sieve for one
of the primes in sqr-primes. The function flatten, is now used to flatten this nested
vector by one level, therefore returning a vector containing all the sieves. For example,

(flatten #v(#v(4 6 8 10 12 14 16 18) #v(6 9 12 15 18)))
= #v(4 6 8 10 12 14 16 18 6 9 12 15 18) : v.int

This vector of sieves is now used by the const-put function to place a false flag in all
positions that belong to a sieve. The (const-put ¢ i d) function places a constant c (in
this case, the false flag) into a vector d (in this case a constant vector of true flags), at
positions i (in this case, the sieve positions). Finally the pack-index function returns a
vector of indices where the flags remain true (elements which were not sieved), and drop,
removes the first two elements (0 and 1), which are not considered primes.

The functions iseq, flatten, const-put, pack-index and drop all require a con-
stant number of steps. Since primes is called recursively on a problem of size v/n the total
number of steps require by the algorithm can be written as the recurrence:

B O(1) n=1 _
Sn) = {S(\/ﬁ)—I—O(l) n>1 - Olslen)

Almost all the work done by primes is done at the top level. At this top level, the work is
proportional to the length of the vector flat-sieve. Using the standard formula

13



C —~N
[ABCDEFGHIJKLMNO P
ABDFGHIJKMO|P[CEILN]

A[BF]J[O]PN[CE]

ABJOPNC

Figure 7:  An example of the quickhull algorithm. Each vector shows one step of the algorithm.
Since A and P are the two z extrema, the line AP is the original split line. J and N are the
farthest points in each subspace from AP and are, therefore, used for the next level of splits.
The values outside the brackets are hull points that have already been found.

Z 1/p=loglogaz + C + O(1/logx)

p<w
where p are the primes [13], the length of this vector is:
Y n/p = O(nloglog/n)

p<Vn
= O(nloglogn)

therefore giving a work complexity of O(nloglogn).

2.3 Planar Convex-Hull using Quickhull

Our next example solves the planar convex hull problem: given n points in the plane, find
which of these points lie on the perimeter of the smallest convex region that contains all
points. The planar convex hull problem has many applications ranging from computer
graphics [12] to statistics [15]. The algorithm we use to solve the problem is a parallel
version [6] of the quickhull algorithm [19]. The quickhull algorithm was given its name

14



(defrec point (x int) (y int))

(defop (cross-product o pl p2) (int <- point point point)
(- (x (- (xp1) (x0)) (- (y p2) (y 0)))
(*x (- (y p1) (y 0)) (= (x p2) (x 0)))))

(defop (hsplit points pl p2) (v.point <- v.point point point)
(if (< (length points) 2)
points
(with ((cross  (v.cross-product points v.pl v.p2))
(packed (pack points (v.plusp cross)))
(pm (elt points (max-index cross)))
((r1 r2) (vsep (v.hsplit (vtup packed packed)
(vtup pil pm)
(vtup pm p2)))))
(append r1 (cons pm r2)))))

(defop (convex-hull points) (v.point <- v.point)
(with ((min-x (elt points (min-index (v.x points))))
(max-x (elt points (max-index (v.x points)))))
(append (cons min-x (hsplit points min-x max-x))

(cons max-x (hsplit points max-x min-x)))))

Figure 8: Code for Quickhull. The defrec form defines a record with two slots, an x slot and
a y slot, which are both integers. The commands (x p) and (y p) are used to access the two
slots from the record p.

because of its similarity to the quicksort algorithm. As with quicksort, the algorithm picks
a “pivot” element, splits the data based on the pivot, and is recursively applied to each of
the split sets. Also, as with quicksort, the pivot element is not guaranteed to split the data
into equal sized sets, and in the worst case the algorithm will require O(n?) work.

Figure 7 shows an example of the quickhull algorithm, and Figure 8 shows the code.
The algorithm is based on the recursive routine hsplit. This function takes a set of points
in the plane ({z,y) coordinates) and two points p1 and p2 that are known to lie on the
convex hull, and returns all the points lie on the hull clockwise from p1 to p2. In the
figure, given all the points #v(A B C ... P),pl = A and p2 = P, hsplit would return
the vector #v(B J 0). In hsplit, the order of p1 and p2 matters, since if we switch A and
P, hsplit would return the hull along the other direction #v(N C)

The hsplit function works by first removing all the elements that cannot be on the hull
since they lie below or at the line between p1 and p2. This is done by removing elements
whose cross product are negative. In the case p1 = A and p2 = P, the points #v(B D F G
H J K M 0) would remain and be placed in the vector packed. The algorithm now finds
the point furthest from the line p1-p2. This point pm must be on the hull since as a line

15



parallel to p1-p2 moves toward p1-p2, it must first hit pm. The point pm (J in the running
example) is found by taking the point with the maximum cross-product. Once pm is found,
hsplit calls itself twice recursively using the points (p1, pm) and (pm, p2) ((4, J) and
(J, P) in the example). When the recursive calls return, hsplit appends ri (the hull
between p1 and pm), the point pm, and r2 (the hull between pm and p2). This gives the
desired result.

The overall convex-hull algorithm works by finding the points with minimum and
maximum x coordinates (these points must be on the hull) and then using hsplit to find
the upper and lower hull. Each recursive call has a step complexity of O(1) and a work
complexity of O(n). However, since many points might be deleted on each step, the work
complexity could be significantly less. For m hull points, the algorithm runs in O(lgm)
steps for well-distributed hull points, and has a worst case running time of O(m) steps.

3 Language Definition
NESL is a strongly typed language with the following data types:

e four primitive atomic data types, booleans (bool), integers (int), characters (char),
and reals (real);

e two primitive compound types, vectors and tuples;

e and a user type constructor, defrec, for defining new types.
And the following operations:

e a set of predefined functions on the primitive types;
o three primitive forms, a conditional if, a binding form with, and an iterator over;

e and a function constructor, defop, for defining new functions.

With the property that data is not mutable and functions cannot have side effects. This
section covers each of these topics. It is not meant as a formal semantics but along with
the list of functions in the next section it should serve as an adequate definition of the
language.

3.1 Data

3.1.1 Atomic Data Types

There are four primitive atomic data types: booleans, integers, characters and floats.

The boolean type bool can have one of two values T or F. The standard logical opera-
tions (ex. not, and, or, xor, nor, nand) are predefined and all require a fixed number
of arguments (this is unlike lisp where the and function can take any number of arguments).
Some examples:

16



(not (not t))
= t : bool

(xor t f)
= t : bool

The integer type int is the set of (positive and negative) integers that can be represented
in the fixed precision of a machine-sized word. The exact precision is machine dependent,
but will always be at least 32-bits worth. The standard functions on integers (+, -, *,

div, =, <, negate, ...) are predefined. Some examples:
(x 3 -11)
= -33 : int
(=7 8)
= F :bool

Overflow will return unpredictable results.

The character type char is the set of ascii characters. The characters have a fixed
order and all the comparison operations (ex. =, <, >=, ..) can be used on. Characters
are written by placing a #\ in front of the character. For example:

#\8
= #\8 : char

(= #\a #\d)
= F :bool

(< #\a #\d)
= T : bool

The type float is used to specify floating point numbers. The exact representation
of these numbers is machine specific, but NESL tries to use 64-bit IEEE when there is
a choice. Floats support most of the same functions as integers, and also have several
additional functions (ex. round, truncate, sqrt, log, ..). Floats must be written by
placing a decimal point in them so that they can be distinguished from integers.

(x 1.2 3.0)

= 3.6 : float
(round 2.1)

= 2 : int

A complete list of the functions available on scalar types can be found in Section 4.1.

17



3.1.2 Vectors

A vector is a sequence of values. A vector can contain any type, including other vectors,
but each element in a vector must be of the same type (vectors are homogeneous). The
type of a vector is specified by placing a v. in front of the element type. Some examples:

#v(6 2 4 5)
= #v(6 2 4 5) : v.int
#v(#v(2 1 7 3) #v(6 2) #v(22 9))
= #v(#v(2 17 3) #v(6 2) #v(22 9)) : v.v.int
Vectors of characters can be written between double quotes,
"a string"
= '"a string" : v.char

but can also be written as a vector of characters
#v(#\a #\Space #\s #\t #\r #\1i #\n #\g)
= '"a string" : v.char
NESL supplies many functions that operate on vectors. For example:
(append #v(1 2 3) #v(4 5))
= #v(1 23 4 5) : v.int
(extract #v(3 7 1 9 2) 3)
= 9 : int
(index 4)
= #v(0 1 2 3) : int
(length "a string")
= 8 : int

See Section 4.2 for a description of all the available vector functions.

3.1.3 Tuples

A tuple is a pair of elements. Tuples can be created with the tup function, and their
elements can be extracted with the first and second functions, or with patter matching
in a with form. Unlike vectors, the two elements can be of different types, and a tuple with
element types a and § has type (a (). For example:
(tup 3 t)
= (tup 3 t) : (int bool)
#v((tup 3 t) (tup 7 £) (tup 11 t))
= #v((tup 3 t) (tup 7 £) (tup 11 t)) : v.{(int bool)

(first (tup 3 t))

= 3 : 1int
(second (first (tup (tup 3 '"horse") t)))
= "horse" : v.char

Tuples are useful for returning a pair of values from a function. Because of the typing
scheme of NESL, it is not possible to use tuples to build lists, such as CONS is used in Lisp.

18



3.1.4 Defining New Types

Record types with a fixed number of slots can be defined with the defrec operation. For
example:

(defrec complex (float int) (imag int))
= complex : (int int)

defines a record with two slots, float and imag, both which must contain an integer. Once
a record type is define, a record can be created using its name.

(complex 7 11)
= (complex 7 11) : complex

An element of a record can be extracted by using the slot name.

(float (complex 7 11))
= 7 : int
3.2 Functions
3.2.1 Forms

NEsL has three primitive forms: if, with and over. These forms are different from func-
tions in that they either have a different syntax from functions or they do not always
evaluate all their arguments, which functions do. In NESL users can define new functions,
but not new forms.

If: The Conditional Form
The only primitive conditional form in NESL is the if form. The syntax is:
(if cond-exp then-exp else-exp)

If the cond-expressionis true, then the then-expressionis evaluated and its result is returned,
otherwise the else-expression is evaluated and its result is returned. The cond-expression
must be of type bool, and the other two expressions must be of matching types. Here is
an example:

(if (and t £) (+ 3 4) (x (- 6 2) 7))
= 28 : 1int

On the other hand (if x 3 2.6) is not a valid expression since the two branches return
different types.

19



With: The Binding Form
Local variables can be allocated with the with form. the syntax is:

(with ((variable-name value-exp) *)
body-exp)

The * signifies that the name value pairs can be repeated any number of times. A variable-
name appearing in an earlier pair can be used in the value-exp of a later pair (this is similar
to let* in Common Lisp). The body-exp can refer to any of the variable-names and its
result is the result of the body-exp. For example, in

(with ((a 7)
(b (+ a4)))
(* a b))
= 77 : int

the variable a is assigned the value 7 and then the variable b is assigned the value of a plus
4, which is 11. When these are multiplied in the body, the result is 77.

Over: The Apply to Each Form

As well as functions on vectors you can apply any function over the elements of a vector.
The over form is used to do this.
It has the following syntax:

(over ((wvariable-name value-exp)+)
body-exp)

The + signifies that the name value pairs can be repeated any number of times, but at
least once. This syntax is similar to the syntax of the with form, but in an over each of
the value-exps must evaluate to equal length vectors. The variable-name is then bound
to each element of the vectors, and the body-exp is applied for each of these bindings. For
example:

(over ((a #v(1 2 3))
(b #v(1 4 9)))
(+ a b))
= #v(2 6 12) : v.int

(over ((a #v(1 2 3))
(b #v(1 4 9)))
(dist b a))
= #v(#v(1l) #v(4 4) #v(9 9 9)) : v.v.int

There is also a shorthand way of applying an over by placing a v. in front of the
function name. For example:

(v.+ #v(1 2 3) #v(1 4 9))
= #v(2 6 12) : v.int

20



(v.+_reduce #v(#v(7 3) #v(6 2 8 -5)))
= #v(10 11) : v.int

The first example is equivalent to the first example of the over form.
Placing a v. in front of a function is called vector-extending the function. It is also
possible to vector-extend an argument. For example:

(v.+ #v(1 2 3) v.3)
= #v(4 5 6) : v.int

Which is semantically equivalent to:

(over ((a #v(1 2 3)))
(+ a 3))
= #v(4 5 6) : v.int

3.2.2 Defining New Functions
Functions can be defined using the defop form. The syntax is:

(defop (function-name variablex) (result-lype <- source-typex)
body-exp)

A function can have any number of variables. Its type list specifier contains a result-type
and a list of source-types. The number of source-types must be equal to the number of
variables and specifies the type of each of these input variables. The body-exp can only
refer to variables in the variable list. Consider the definitions:

(defop (square A) (int <- int)
(x A 4))
= square : (int <- int)

This defines a function that squares an integer by multiplying it by itself.

3.2.3 Typing

NESL is strongly typed, monomorphic language with overloading on the built-in functions.
All user defined functions must be defined on a single type, but many of the functions
supplied by NESL are overloaded. For example, (+ a b) can be used on either integers
or floating point numbers, although both numbers must be of the same type. As a more
interesting example, the function (append a b), can be applied to two vectors of any type,
as long as they are the same. The applications:

(append "dog" '"mouse")
(append #v(2 1 5) #v(3 8))
(append #v(#v(7 8)) #v(#v(1l 2 6) #v(9 7))

are all valid. The types permitted by each function are specified in the list of functions
given in the next section. The typing system in NESL is ad-hoc and will be improved in
the next version of the language.

21



4 List of Functions

This section lists the functions available in NESL. FEach function is listed in the following
way:

(function-name arguments) {result-type — source-types : type-bindings}

Definition of function.

In the type specifications, the following assignments are valid:

ordinal = bool, int, char
number = int, float
logical = bool, int

any = any valid type

4.1 Scalar Functions
4.1.1 Logical Functions

All the logical functions work on either integers or booleans. In the case of integers, they
work bitwise over the bit representation of the integer.

(not a) {alpha — alpha : alpha in logical}

Returns the logical inverse of the argument. For integers, this is the ones complement.

(or a b) {alpha — alpha alpha : alpha in logical}

Returns the inclusive or of the two arguments.

(and a b) {alpha — alpha alpha : alpha in logical}

Returns the logical and of the two arguments.

(xor a b) {alpha — alpha alpha : alpha in logical}

Returns the exclusive or of the two arguments.

(nor a b) {alpha — alpha alpha : alpha in logical}

Returns the inverse of the inclusive or of the two arguments.

(nand a b) {alpha — alpha alpha : alpha in logical}

Returns the inverse of the and of the two arguments.

4.1.2 Comparison Functions

All comparison functions work on integers, floats and characters.

(= ab) {alpha — alpha alpha : alpha in ordinal}

22



Returns T if the two arguments are equal.

(/= a b) {alpha — alpha alpha : alpha in

Returns T if the two arguments are not equal.

(< ab) {alpha — alpha alpha : alpha in

Returns T if the first argument is strictly less than the second argument.

(> ab) {alpha — alpha alpha : alpha in

Returns T if the first argument is strictly greater than the second argument.

(<= a b) {alpha — alpha alpha : alpha in

Returns T if the first argument is less than or equal to the second argument.

(>= a b) {alpha — alpha alpha : alpha in

Returns T if the first argument is greater or equal to the second argument.

ordinal}

ordinal}

ordinal}

ordinal}

ordinal}

(select flag a b) {alpha — bool alpha alpha : alpha in any}

Returns the second argument if the flag is T and the third argument if the flag is F.

4.1.3 Predicates

(plusp v) {bool — alpha : alpha in number}

Returns T if V is strictly greater than 0.

(minusp v) {bool — alpha : alpha in number}

Returns T if V is strictly less than 0.

(zerop v) {bool — alpha : alpha in number}

Returns T if V is equal to 0.

(oddp v) {bool — int}

Returns T if V is odd (not divisible by two).

(evenp v) {bool — int}

Returns T if V is even (divisible by two).

4.1.4 Arithmetic Functions

(+ a b) {alpha — alpha alpha : alpha in number}

Returns the sum of the two arguments.

23



(- ab) {alpha — alpha alpha : alpha in number}

Subtracts the second argument from the first.

(negate v) {alpha — alpha : alpha in number}

Negates a number.

(abs x) {alpha — alpha : alpha in number}

Returns the absolute value of the argument.

(diff x y) {alpha — alpha alpha : alpha in number}

Returns the absolute value of the difference of the two arguments.

(max a b) {alpha — alpha alpha : alpha in ordinal}

Returns the argument that is greatest (closest to positive infinity).

(min a b) {alpha — alpha alpha : alpha in ordinal}

Returns the argument that is least (closest to negative infinity).

(x v d) {alpha — alpha alpha : alpha in number}

Returns the product of the two arguments.

(/v d {alpha — alpha alpha : alpha in number}

Returns V divided by D. If the arguments are integers, the result is truncated towards 0.

(rem v d) {alpha — alpha alpha : alpha in number}
Returns the remainder after dividing V by D.

(1shift a b) {int — int int}
Returns the first argument logically shifted to the left by the integer contained in the second
argument. Shifting will fill with 0-bits.

(rshift a b) {int — int int}
Returns the first argument logically shifted to the right by the integer contained in the
second argument. Shifting will fill with 0-bits.

(sqrt v) {float — float}

Returns the square root of the argument. The argument must be nonnegative.

(isqrt v) {int — int int}
Returns the greatest integer less than or equal to the exact square root of the integer
argument.

(In v) {float — float}

24



Returns the natural log of the argument.

(log v b) {float — float float}
Returns the logarithm of V in the base B.

(exp v) {float — float}

Returns e raised to the power V.

(expt v p) {float — float float}
Returns V raised to the power P.

4.1.5 Conversion Functions

(btoi a) {int — bool}

Converts the boolean values T and F into 1 and 0, respectively.

(code-char a) {char — int}

Converts an integer to a character. The integer must be the code for a valid character.

(char-code a) {int — char}

Converts a character to its integer code.

(float v) {float — int}

Converts an integer to a floating-point number.

(ceil v) {int — float}

Converts a floating-point number to an integer by truncating toward positive infinity.

(floor v) {int — float}

Converts a floating-point number to an integer by truncating toward negative infinity.

(trunc v) {int — float}

Converts a floating-point number to an integer by truncating toward zero.

(round v) {int — float}

Converts a floating-point number to an integer by rounding to the nearest integer; if the
number is exactly halfway between two integers, then it is implementation specific to which
integer it is rounded.

4.1.6 Other Scalar Functions

(rand v) {int — int}

25



Returns a random integer value between 0 and V.

4.2 Vector Functions

4.2.1 Simple Vector Functions

(dist a 1) {v.alpha — v.alpha int : alpha in any}

Generates a vector of length L with the value A in each element. For example:

a = ap
1 = 5
(dist a 1) = J[ap ap ap ap dag)
(elt v 1) {alpha — v.alpha int : alpha in any}

Extracts the element specified by index i from the vector v.

(rep v a i) {v.alpha — v.alpha alpha int : alpha in any}

Replaces the ith value in the vector v with the value a. For example:

v = Jao a1 ay a3 a4
a = bo
i = 3

[ao a1 ay bo 614]

(rep v a i)

(length v) {int — v.alpha : alpha in any}

Returns the length of a vector.

(index 1) {int — int}

Given an integer, index returns a vector of that length with consecutive integers starting
at 0 in the elements. For example:

1 = 8
(index 1) = [0 1 2 3 4 5 6 7]

4.2.2 Scans and Reduces

(+-scan a) {v.alpha — v.alpha : alpha in number}

Given a vector of integers, +-scan returns to each position of a new equal-length vector,
the sum of all previous positions in the source. For example:

a = [1 3 5 7 9 11 13 15]
(#-scana) = [0 1 4 9 16 25 36 49]



(max-scan a) {v.alpha — v.alpha : alpha in ordinal}

Given a vector of integers, max-scan returns to each position of a new equal-length vector,
the maximum of all previous positions in the source. For example:

a - 3 2 1 6 5 4 8
(max-scana) = [-o0o 3 3 3 6 6 6]
(min-scan a) {v.alpha — v.alpha : alpha in ordinal}

Given a vector of integers, min-scan returns to each position of a new equal-length vector,
the minimum of all previous positions in the source.

(iseq start stride end) {v.int — int int int}

Returns a set of indices starting at start, increasing by stride, and finishing before end.
For example:

start = 4
stride = 3
end = 15
(iseq start stride end) = [4 7 10 13]
(+-reduce v) {alpha — v.alpha : alpha in number}

Given a vector of integers, +-reduce returns the sum of the integers. For example:

v = [r 2 9 11 3]

(+-reduce v) = 32

(max-reduce v) {alpha — v.alpha : alpha in ordinal}

Given a vector of integers, max-reduce returns the maximum of the integers.

(min-reduce v) {alpha — v.alpha : alpha in ordinal}

See max-reduce.

(or-reduce v) {alpha — wv.alpha : alpha in logical}

A reduce with logical or.

(and-reduce v) {alpha — wv.alpha : alpha in logical}

A reduce with logical and.

(count flags) {int — v.bool}

Counts the number of T flags in a boolean vector. For example:

27



flags T F T T F T F T

(count flags) = 5

(max-index v) {int — v.alpha : alpha in ordinal}

Given a vector of integers, max-index returns the index of the maximum value. If several
values are equal, it returns the leftmost index. For example:

v = 2 11 4 7 14 6 9 14]

(max-index v) = 4

(min-index v) {int — v.alpha : alpha in ordinal}

Given a vector of integers, min-index returns the index of the minimum value. If several
values are equal, it returns the leftmost index.

4.2.3 Vector Reordering Functions

(get values indices) {v.alpha — v.alpha v.int : alpha in any}

Given a vector of values and a vector of indices, which can be of different length, get
returns a vector which is the same length as the indices vector and the same type as the
values vector. For each position in the indices vector, it extracts the value at that index
of the values vector.

(cond-get values indices flags) {v.alpha — v.alpha v.int v.bool : alpha in any}

Similar to the get function, but the flags vector, which must be the same length as the
indices vector, masks out positions where the flag is I such that nothing is fetched in
those positions and the identity is returned. For example:

values = [ap a1 ay as a4 as ag ag]
indices = [3 15 2 5 6]
flags = [T F T T F T]
(cond-get values indices flags) = [as3 0 a5 ax 0 ag)
(permute values indices) {v.alpha — v.alpha v.int : alpha in any}

Given a vector of values and a vector of indices, which must be of the same length,
permute permutes the values to the given indices. The permutation must be 1-to-1.

(put values indices defaults) {v.alpha — v.alpha v.int v.alpha : alpha in any}

Given a vector of values and a vector of indices, which must be of the same length, put
places the values to the given indices in the defaults vector. For example:

28



values

[

indices [
defaults = [bo by by b by b5]

[

(put values indices defaults) bp ap ay az by ay]

(const-put value indices defaults) {wv.alpha — alpha v.int v.alpha : alpha in any}

Given a vector of indices, put places the constant value at each index in the defaults
vector.

(cond-put v i flags d) {v.alpha — v.alpha v.int v.bool v.alpha : alpha in any}

Similar to the put function, but the extra flags vector, which must be the same length as
the indices (i) vector, masks out positions where the flag is I such that nothing is placed
by those positions. For example:

v = Jao a1 a3y a3 a4 as ag ar
i - 1 5 4 6 2 3 T 0
flags - [T F F F F T F F
d = [bo by by b3

[

(cond-put v i flags d) =

(rotate a i) {v.alpha — v.alpha int : alpha in any}

Given a vector and an integer, rotate rotates the vector around by I positions to the right.
If the integer is negative, then the vector is rotated to the left. For example:

a = Jao a1 ay as aq4 as ag ag]
i = 3
(rotate a i) = J[as ag ar ay ay ay az Gy

4.2.4 Vector Manipulation

(pack v flags) {v.alpha — v.alpha v.bool : alpha in any}

Given a sequence of values, and an equal length boolean sequence of flags, pack packs all
the elements with a T in their Flag into consecutive elements, deleting elements with an F
in their flag. For example:

v = [ap a1 ay a3 ay as ag ag
flags - [T F T F F T T T
(pack v flags) = Jag az as ag af]
(pack-index flags) {v.int — v.bool}

Given a boolean sequence of flags, pack-index returns a vector containing the indices of
each of the true flags. For example:

29



flags - T F T F F T T T
(pack-index flags) = [0 2 5 6 7]
(append v1 v2) {v.alpha — v.alpha v.alpha : alpha in any}

Given two sequences, append appends them. For example:

vl = Jao a1 a3
v2 = [bo bl]
(append vl v2) = J[ag a1 ay by by]
(cons a v) {v.alpha — alpha v.alpha : alpha in any}

Given a value a and a sequence of values v, cons concatenates the value onto the front of
the sequence. For example:

a = ap
v = [bo bl bg bg]
(cons a v) = J[ap bp by by b3
(vtup a b) {v.alpha — alpha alpha : alpha in any}

Given two values of the same type, vtup puts them together into a sequence of length 2.
For example:

a = ap
b = ay
(vtup a b) = J[ap @]
(vsep a) {(alpha alpha) — v.alpha : alpha in any}

Given a vector of length 2, vsep returns a tuple with the first vector element in the first
position and the second vector element in the second position.

(subseq v start end) {v.alpha — v.alpha int int : alpha in any}

Given a sequence, subseq returns the subsequence starting at position start and ending
one before position end. For example:

v = Jao a1 a3y a3 a4 as ag ar
start = 2

end = 6

(subseq v start end) = J[ay a3 a4 a3

30



(drop n v) {v.alpha — int v.alpha : alpha in any}

Given a sequence, drop drops the first n items from the sequence. For example:

n = 3
v = Jao a1 ay a3 ay as ag ar)
(dropnv) = J[a3 a4 as ag ag
(take n v) {v.alpha — int v.alpha : alpha in any}

Given a sequence, take takes the first n items from the sequence. For example:

n = 3
v

[ap a1 ay a3 ay as ag ag

(take n v) = J[ag a1 ag]

4.2.5 Nesting Vectors

The two functions partition and flatten are the primitives for moving between levels of
nesting. All other functions for moving between levels of nesting can be built out of these.
The functions split and bottop are often useful for divide-and-conquer routines.

(partition values counts) {v.v.alpha — v.alpha v.int : alpha in any}

Given a sequence of values and another sequence of counts, partition returns a nested
sequence with each subsequence being of a length specified by the counts. The sum of the
counts must equal the length of the sequence of values. For example:

values = [ap a1 ay a3z ay as ag  ar

counts = [4 1 3]

(partition values counts) = [[ap a1 ag as] J[aq J[as ag a7l
(flatten values) {v.alpha — v.v.alpha : alpha in any}

Given a nested sequence of values, flatten flattens the sequence. For example:

values = Jlao a1 a3] Jas a4] [as as a7]]
(flatten values) = J[ag @y a3 a3 aq as ag ag)
(split v flags) {v.v.alpha — v.alpha v.bool}

Given a sequence of values A and a boolean sequence of flags, split creates a nested
sequence of length 2 with all the elements with an F in their flag in the first element and
elements with a T in their flag in the second element. For example:

v = [ap a1 ay a3 ag as ag arg
flags - [T F T F F T T T
(split v flags) = [lax a3 a4] J[ap ay a5 as a7

31



(bottop values) {v.v.alpha — v.alpha}

Given a sequence of values values, bottop creates a nested sequence of length 2 with all
the elements from the bottom half of the sequence in the first element and elements from
the top half of the sequence in the second element. For example:

values = Jap a1 ay a3 ayg a5 ag)

(bottop values) = [[ap a1 ay as] J[ag as agl]

32



Acknowledgments

I would like to thank Marco Zagha, Tim Freeman, Jay Sipelstein, Margaret Reid-Miller, and
John Greiner, Jonathan Hardwick, and Siddhartha Chatterjee for many helpful comments
on this manual. Tim Freeman implemented much of the NESL/VCODE interface.

References

[1] ANSIL. ANSI Fortran Draft S8, Version 111. ANSIL

[2] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Com-
puters, C-38(11):1526-1538, November 1989.

[3] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge,
MA. 1990.

[4] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and
Marco Zagha. Portable data-parallel algorithms. In Preparation, 1992.

[5] Guy E. Blelloch, Siddhartha Chatterjee, Fritz Knabe, Jay Sipelstein, and Marco Zagha.
VCODE reference manual (version 1.1). Technical Report CMU-CS-90-146, School of
Computer Science, Carnegie Mellon University, July 1990.

[6] Guy E. Blelloch and James J. Little. Parallel solutions to geometric problems on
the scan model of computation. In Proceedings International Conference on Parallel
Processing, pages Vol 3: 218-222, August 1988.

[7] Guy E. Blelloch and Gary W. Sabot. Compiling collection-oriented languages onto
massively parallel computers. Journal of Parallel and Distributed Computing, 8(2),
February 1990.

[8] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
Association for Computing Machinery, 21(2):201-206, 1974.

[9] D. Breslauer and Z. Galil. An optimal o(log log n) time parallel string matching
algorithm. SIAM Journal on Computing, 19(6):1051-1058, December 1990.

[10] Siddhartha Chatterjee. Compiling Data-Parallel Programs for Efficient Execution on
Shared-Memory Multiprocessors. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, October 1991.

[11] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceed-
ings ACM Symposium on Theory of Computing, pages 114-118, 1978.

[12] H. Freeman. Computer processing of line-drawing images. Computer Surveys, 6:57-97,
1974.

13] Godfrey Harold Hardey and Edward Maitland Wright. An Introduction to the Theory

g

of Numbers, 5th ed. Oxford at the Carendon Press, Oxford, New York, 1983.

33



[14] C. A. R. Hoare. Algorith 63 (partition) and algorithm 65 (find). Communications of
the ACM, 4(7):321-322, 1961.

[15] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, Reading, MA, 1961.
[16] Kenneth E. Iverson. A Programming Language. Wiley, New York, 1962.

[17] Clifford Lasser. The essential *Lisp manual. Technical report, Thinking Machines
Corporation, Cambridge, MA, July 1986.

[18] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, Mass., 1990.

[19] Franco P. Preparata and Michael 1. Shamos. Computational Geometry—An Introduc-
tion. Springer-Verlag, New York, 1985.

[20] John Rose and Guy L. Steele Jr. C*: An extended C language for data parallel
programming. Technical Report PL87-5, Thinking Machines Corporation, April 1987.

[21] Gary Sabot. Paralation Lisp Reference Manual, May 1988.

[22] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with
Sets: An Introduction to SETL. Springer-Verlag, New York, 1986.

[23] Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proceedings of
the IEEFE, 79(4):504-523, April 1991.

[24] Guy L. Steele Jr. CM-Lisp. Technical report, Thinking Machines Corporation, 1986.

[25] U. Vishkin. Deterministic sampling-a new technique for fast pattern matching. STAM
Journal on Computing, 20(1):22-40, February 1991.

34



