
1

1. Introduction
A challenging problem for Artificial Intelligence (AI) is the modeling and application of

abstract, open-textured rules that derive from real-world domains. An abstract, open-textured

rule focuses on the essential qualities of a situation but must be interpreted in order for it to be

directly applied to specific facts, objects, or instances. In domains that use these abstract rules,

there are typically no available intermediate rules or concepts to connect the abstract rules to

specific fact situations. Thus, there is an abstraction gap between the abstract rules and the

concrete fact situations to which they apply. To bridge this gap – that is, to apply the abstract

rules to the facts – one must draw upon additional knowledge and reasoning processes that are not

specified in the domain rules. This dissertation focuses on a set of reasoning techniques, which I

call operationalization techniques, that were observed to bridge the abstraction gap in one

domain.

A number of real-world domains exhibit the abstraction gap between rules and specific facts,

including legal reasoning and ethical reasoning. Consider, for instance, the following problem

that confronted professional aerospace engineer Roger Boisjoly in 1986.

On January 28, 1986, the Space Shuttle Challenger was scheduled for lift-off. The evening

before the launch, Roger Boisjoly recommended that the mission be postponed. He believed that

the O-rings, part of the sealing mechanism in the booster rockets, were suspect and could possibly

fail in the cold 26-degree temperature predicted for lift-off. Technical evidence was inconclusive,

but there appeared to be a correlation between temperature and the capability of the O-rings to

properly seal. As a professional engineer, Boisjoly believed that his duty was clear, as expressed

in the National Society of Professional Engineers (NSPE) Code I.1., “Engineers shall hold

paramount the safety, health, and welfare of the public in the performance of their professional

duties.” [NSPE, 1996] The public, in this case, was the Challenger astronauts and the

schoolteacher Christa McAuliffe, and Boisjoly believed their lives could be in danger. On the

other hand, NASA needed to impress the public with a successful mission. The space program

had run into lean times in the 1980s. In addition, Boisjoly’s employer, Morton Thiokol, was

competing for a new contract with NASA. Thus, Boisjoly was also obligated to consider his

client’s and employer’s interests, as expressed in NSPE Code I.4., “Engineers shall act in

professional matters for each employer or client as faithful agents or trustees.” Given the

inconclusive nature of the evidence, Boisjoly could have given preference to his obligation to his

client and his employer and given his approval for lift-off. However, Boisjoly stuck to his guns

and vehemently and vocally opposed the launch. His recommendation was overruled by his

2

employer, and Boisjoly, now obligated by NSPE Code II.1.a. “ … If their professional judgment

is overruled under circumstances where the safety, health, property or welfare of the public are

endangered, they shall notify their employer or client and such other authority as may be

appropriate,” continued to try to persuade management to abide by his recommendation. The next

day, Challenger was launched as scheduled but exploded just over a minute into its flight, killing

the six astronauts and McAuliffe [Paraphrased from Harris et al., 1999, p. 4-6].

In retrospect, Boisjoly seems to have fulfilled his professional obligations as an engineer,

although the crew of the Challenger, sadly, did not benefit from it. It may even appear that

Boisjoly did the only thing that he could or should have done under the circumstances.

In general, the resolution of this type of engineering ethics dilemma, before the fact, is by no

means clear or straightforward. To address such dilemmas the engineer must apply abstract,

open-textured rules, i.e., ethical codes, to very specific fact situations. Doing this cannot involve

a deductive process of applying the rules to the facts. The facts and rules are too disparate in

specificity and the rules too imprecise for this to be possible. Rather, the engineer must employ

heuristic techniques to address such situations. For instance, Boisjoly needed to interpret code

I.1., the rule obligating him to protect public safety, within the context of the specific facts in

order to determine whether it truly applied. Was the O-ring evidence strong enough to conclude

that the “safety, health, and welfare” of the public was in danger? And could the astronauts and

schoolteacher be considered the “public,” given the fact that they had voluntarily accepted a

professional role in which danger was inherent? Boisjoly’s duty to his employer and client, as

expressed in code I.4., was also uncertain. Was it clear that Boisjoly’s duty to act as a “faithful

agent or trustee” extended to a situation, such as this one, in which his technical judgment was

compromised? And it could easily be argued (although in hindsight) that Boisjoly was acting as a

faithful agent; the resulting disaster surely did more to harm his employer’s and client’s interests

than canceling the launch would have done. Code II.1.a. is also subject to interpretation in these

circumstances. Although Boisjoly clearly disputed his employer’s position when his judgment

was overruled, did he “notify … other authority as may be appropriate”? One might claim that he

had an ethical obligation to escalate the situation to authorities that were independent of his

company and client.

Even if Boisjoly had recognized that the situation caused a conflict between his obligation to

the public and his obligation to his employer and client, his dilemma was not any easier to

resolve. He would then have needed to decide whether one rule overrides another in the specific

circumstances. Although the obligation to the public is “paramount” for engineers, meaning that

it takes precedence over all other obligations, Boisjoly would have needed to conclude that the O-

3

ring evidence strongly supported his belief the public was in danger. In this sense, Boisjoly had

to infer or hypothesize unknown or unclear facts.

In contrast to this decision-making process, consider the following hypothetical syllogism of

medical facts and rules:

1. Lab-Test-X is positive. (Facts of a case)

2. If Lab-Test-X is positive then Organism-Y is present. (Axiom-1)

3. Organism-Y is present. (Modus ponens, 1, 2)

4. If Organism-Y is present then Patient has Condition-Z. (Axiom-2)

5. Patient has Condition-Z. (Modus ponens, 3, 4)

Given the above axioms, or “rules,” together with the facts of the case, i.e., that Lab-Test-X is

positive, it is straightforward to chain the axioms together and arrive at the conclusion that the

Patient has Condition-Z. All that is required are two applications of the inference rule modus

ponens. The key is that an intermediate axiom exists (i.e., Axiom-1) that operates directly on the

base facts to reach an intermediate conclusion. Given the intermediate conclusion, it is then

possible to apply a more-abstract rule (i.e. Axiom-2) to reach a final conclusion. In essence, the

problem is simplified because, in this as in many domains, axioms exist that support a process of

deductive inference from specific facts to intermediate conclusions to final conclusions.

Of course, this particular syllogism is simple. Logic problems and AI problem solvers are

usually far more complex than this. On the other hand, an assumption underlying many AI

systems is that intermediate rules or concepts, perhaps based on uncertainty or probability, are

available in the domain of interest.

Many AI systems reason by using formal deduction or rule chaining in which specific facts

lead to conclusions through a series of intermediate hypotheses, conclusions, and rules. For

instance, the landmark medical expert system, Mycin [Davis et al., 1977], employs rules that use

symptoms, test results, and observations – all relatively specific, concrete forms of knowledge –

as the conditions for asserting intermediate states and conclusions. The intermediate states can

then be acted upon by more-abstract rules that lead to final diagnoses and suggested therapies.

Although the degree of certainty regarding medical facts and diagnoses is imprecise in Mycin, as

in many expert systems, the medical domain lends itself to a rule-chaining process in which a

series of increasingly more-abstract rules are applied to specific facts and intermediate

conclusions. PRODIGY [Minton et al., 1990; Veloso, 1992], a domain-independent problem

solver that employs machine learning and case-based reasoning among other AI techniques, is

4

another example of an AI system that assumes a domain of application in which a form of

deduction is possible [Minton, 1988, p. 69]. Although the program employs general problem

solving techniques in performing its planning tasks, the operators, goals, subgoals, and state

descriptions of PRODIGY are built (or induced) from specific, well-defined domain knowledge

and deduction underlies PRODIGY’s operation.

CLASP [Yen et al., 1991], an AI programming environment that applies term subsumption to

rule-based programming, is another example of a system that stresses formal deduction. Term

subsumption refers to the process of deducing whether one term (or concept) subsumes, or is

more general than, another. Such a formal process can only be successful in a domain in which

the most abstractly defined concepts are connected to the basic facts via intermediate concepts or

rules1.

In summary, one of the key underpinnings of AI systems such as Mycin, PRODIGY, and

CLASP is that they all operate in and depend on domains in which intermediate concepts or rules

connect concrete facts to abstract or strategic rules or concepts. Furthermore, for these systems to

be successful, the requisite intermediate knowledge must be directly provided or derivable from

knowledge about the domains of interest. In other words, the domains addressed by these

systems exhibit a strongly deductive or rule-chaining flavor.

On the other hand, there are many real-world domains, for instance the law, ethics, and

political decision making, in which deduction or rule chaining is not possible because

intermediate-level domain rules and concepts are not available. In these domains, rules are

available almost exclusively at an abstract level, in the form of principles, policies, or laws. The

difficulty in addressing and forming arguments in such domains using formal logic has long been

recognized [Toulmin, 1958], and some practitioners in AI, particularly those interested in the

legal domain, have also grappled with this issue. As pointed out by Ashley, “The legal domain is

harder to model than mathematical or scientific domains because deductive logic, one of the

computer scientist’s primary tools, does not work in it.” [1990, p. 2]

These weak analytic domains are typically characterized by the following attributes. First,

the given “rules” (i.e., laws, codes, or principles) are available almost exclusively at a highly

conceptual, abstract level. This means that the rules may contain open-textured terms [Twining

and Miers, 1976; Gardner, 1987]. That is, conditions, premises, or clauses that are not precise or

that cover a wide range of specific facts, or are highly subject to interpretation and may even have

different meanings in different contexts. This contrasts with more-specific knowledge, such as

1 Unless, of course, the domain is so shallow that all concepts may be formally and directly defined in terms of
instances. Such a domain would certainly not be very interesting.

5

explicit goals, physical states, visual observables, and test results, modeled in the intermediate

knowledge and rules of systems such as Mycin, PRODIGY, and CLASP. A second characteristic

of weak analytic domains, closely related to the first characteristic, yet distinct, is that the actions

prescribed by the given rules, i.e., the rules’ conclusions, may also be abstract. Thus, even if one

is able to determine that a particular rule applies to a given fact situation, the rule’s consequent

recommendation may be difficult to execute because it is highly conceptual or vague. For

instance, how does one determine the action prescribed by NSPE code I.1., in which professional

engineers are urged to “hold paramount” the safety, health, and welfare of the public? The

prescribed action is clearly tied to the specific circumstances of a case to which it is applied.

Third, abstract rules often conflict with one another in particular situations with no deductive or

formal means of arbitrating such conflicts. That is, more than one rule may appear to apply to a

given fact situation, but neither the abstract rules nor the general knowledge of the domain

provide clear resolution.

1.1. Problem Solving and Analysis in Weak Analytic Domains

A problem solving approach that is often used to address problems in the weak analytic

domains is case-based reasoning (CBR), the use of precedents, or past cases, in guiding decision

making, constructing arguments, or suggesting actions in a new dilemma or problem. For

instance, reasoning or arguing from precedents is an established technique in Anglo-American

law, formalized by the rule of stare decisis (“let stand what has been settled”). This doctrine

specifies that a conclusion reached by a court is “binding on the same court (or an inferior court)

in a similar case” [Berman and Greiner, 1980]. AI researchers have followed this evidence and

have developed a number of approaches that utilize, at least in part, case-based reasoning

[Ashley, 1990; Branting, 1991; Rissland and Skalak, 1991; Rissland et al., 1996].

Problem solving and analysis in engineering ethics also rely heavily on case-based reasoning.

After performing an empirical analysis of hundreds of ethics cases published by a professional

engineering society and decided by an ethical review board, I concluded that case-based

reasoning plays a prominent role in analyzing ethics problems and justifying decisions [McLaren

and Ashley, 1998]. Experienced ethical reasoners in engineering ethics appear to employ

precedence as a tool to focus and guide their thinking in the analysis of new cases. More

generally, my study revealed that the review board systematically applied operationalization

techniques to bridge the gap between abstract principles and specific fact situations. The

operationalization techniques involve the application of structured yet largely implicit heuristic

techniques to the task of analyzing and justifying decisions in new cases, in particular,

6

instantiating principles and past cases by connecting them to clusters of questioned and critical

facts, hypothesizing unstated facts, updating principles over time, arbitrating between competing

principles, grouping principles or past cases, defining or elaborating issues and principles from

past cases, and reusing specific applications of these techniques from previous analyses. My

analysis also indicated that temporal knowledge plays a role in the retrieval and analysis of cases.

For example, in many instances the knowledge that one event occurred before, during, or after

another event clearly influenced the board’s analysis of a present case and the analogies it made

to past cases.

1.2. Operationalizing Principles and Cases: An Overview of the
Techniques

The techniques uncovered by my empirical analysis are listed in Figure 1-1. The application

of a subset of these techniques can be identified in the analysis of every case. I call the

techniques operationalization techniques because each serves to make a code or a case an

operational component of an argument put forth by the ethical review board. This dissertation

presents a computational model for implementing and reusing these techniques.

The gap between the abstract ethics codes and the cases' detailed factual circumstances

presents difficulties for both ethical reasoners and modelers of ethical reasoning. With these

techniques, the board justifies and explains the applicability and significance of relevant code

provisions and past case decisions to the analysis of the current problem. These

operationalizations provide constraints on and a context for the future use of codes and cases in

analyzing new cases. In effect, the operationalizations make up for the lack of intermediate

domain rules.

Mostow was the first to propose the notion of operationalization [1983]. His use of

operationalization, however, focused on the comparatively well-defined domain of card playing.

The engineering ethics domain is far less structured and much more complex.

7

Code Operationalizations

• Code Instantiation. In the context of a case, a code's conditions may be implicitly interpreted and
connected to selected facts of a case. In essence, the board instantiates the code when interpreting
it by linking its more-abstract formulation to the selected specific facts of the case. To facilitate
instantiation the board may employ one of the following techniques:
o Rephrase the Code. The board may rephrase or reword a code in order to more clearly

align and link it with the specific circumstances of the case in question.
o Define the Terms of the Code. Specific terms or the language of a code may be ambiguous

or ill-defined. The board may first define such terms before linking the code to the case facts.
o Make the Code More Specific. A typical tactic employed by the board is to narrow the

conditions of a code. Instantiation is directly supportive of this technique, as each set of links to
case facts provides a single, specific example of an application of the code.

• Apply a Hypothetical to a Code. The board proposes hypotheticals to help establish the range of
application of a principle. Hypotheticals are also used to provide unknown, yet likely, facts.

• Rewrite a Code. A controversial or ill-defined principle may explicitly change or be reinterpreted
over time by the board. For instance, the wording of a code may conflict with changing cultural
norms and the board may recommend that it be formally changed.

• Define the Superior Code. Sometimes two (or more) principles conflict with one another in the
context of a particular case. The board identifies such an event and explains the underlying reasons
for the "superiority" of one principle over others.

• Group Codes. The board occasionally cites related codes as a group because they may all apply, at
least abstractly, to the case in question and thus provide greater force to a particular conclusion. In
effect, the set of codes becomes a "single code" in the context of the case.

Case Operationalizations

• Case Instantiation. The board frequently cites previous cases that may be instrumental in deciding
the case in question. In effect, the board instantiates a case when it cites the case as a precedent.
The cited case is linked to the selected facts of the current case that indicate similarity between the
cases. Two types of Case Instantiations are employed:
o Cite an Analogous Precedent. The board cites an analogous precedent to argue that its

conclusion should be followed in the case in question. That is, the precedent case
"rules" the present case.

o Cite a Distinguishing Precedent. The board sometimes cites a precedent to argue that, although
it has similarities to the present case, its conclusion should not be followed because of relevant
differences between the precedent and the present case.

• Define or Elaborate a General Issue or Principle. A previous case is sometimes cited because it
discusses a relevant general issue or principle. In other words, the previous case may not be
factually or relevantly similar, but the analysis of the case raises issues relevant to the present case.

• Group Cases. Cases are sometimes cited in tandem for a single illustrative purpose or to apply
greater force to a conclusion. In effect, the set of cases acts as a "single case" in the context of a
specific case.

• Reuse an Operationalization. A past case may be cited in order to reuse a previous
operationalization. For instance, a past case (or cases) may define terms of a code that are relevant
to a new case. In effect, this technique reuses pieces of operational reasoning employed in analyses
of past cases.

Figure 1-1: The Operationalization Techniques employed by the NSPE BER

8

1.3. The Dissertation Project in a Nutshell

My primary goal in this dissertation project was to explore and analyze the relationship

between abstract rules and concrete facts in the domain of engineering ethics and to implement

the above-mentioned problem solving techniques in a computational model. The program that

resulted, SIROCCO (System for Intelligent Retrieval of Operationalized Cases and COdes), is

designed to retrieve decided cases and previously applied principles in order to frame analyses of

new engineering ethics cases. SIROCCO is not intended to reach conclusions for the new cases

but, rather, to identify relevant information for the analysis of the cases. The ultimate goal (but

not part of the dissertation project) is to deliver SIROCCO to engineers as a tool for improving

access to an on-line resource of decisions in engineering ethics cases. Another long-term goal is

to incorporate SIROCCO as a retrieval component in an intelligent tutoring system for

engineering students.

Essentially, SIROCCO operationalizes principles and cases in the domain of engineering

ethics. By "operationalizing" I mean that SIROCCO embodies a representation of the

operationalizing information assigned by experts to a principle or case. SIROCCO makes this

information computationally available for purposes of relevance assessment and explanation.

Given an engineering scenario that raises an ethical question (or questions), SIROCCO predicts

the facts, principles ,and past cases that the board of ethical review would regard as important in

the analysis of the ethical problem. The model’s predictions are based on the board's code-based

analyses of past cases. All of the operationalization techniques found in Figure 1-1 are

implemented, in some form in SIROCCO’s architecture. SIROCCO is also capable of revealing

the reasons underlying its predictions, both in terms of the program’s internal structures and in

terms more relevant to an end user.

SIROCCO's approach is based on an empirical study, briefly introduced above, of how

experienced professional engineers use principles and specific fact situations to resolve ethical

issues and to justify their decisions. In particular, I have studied published opinions of the

National Society of Professional Engineers' Board of Ethical Review (NSPE BER) and its code of

ethics [1958-1998]. Over a period of just over 40 years, the NSPE BER, composed of five to

seven professional engineers annually, has written extensive explanations of how and why codes

apply or do not apply to approximately 400 particular fact situations. The NSPE BER’s analyses

are published in hardcopy and on the Internet as an educational service to the entire engineering

community. The NSPE’s code of ethics, consisting of 75 individual codes, provides engineers

with guidance on issues such as public safety, misrepresentation in advertising, conflicts of

9

interest, and confidentiality. The NSPE BER database provides a valuable record of how

engineering ethics experts believe engineering ethics codes apply to practical situations.

As part of the project, I also performed a controlled experiment with SIROCCO. The

experiment compared the retrieval performance of SIROCCO with that of five other

computational models, including an information retrieval system that uses a vector space model

of the case and code texts and a version of SIROCCO that only partially (and in only a very weak

sense) employs operationalization techniques. The experimental results show that SIROCCO

outperformed all of the baseline measures in the retrieval task. Although some of the

operationalization techniques were not tested in the experiment, in particular the ones that did not

seem to support retrieval and that produced qualitative linguistic suggestions that were not easily

verifiable, the techniques Code Instantiation, Group Codes, Case Instantiation, Reuse an

Operationalization, and Group Cases are shown to improve the retrieval performance of the

system. On the other hand, the experimental results also show that SIROCCO’s temporal

knowledge did not improve performance in an objectively verifiable way. I provide both

qualitative and quantitative analysis of these results in the dissertation.

This research is related to AI and Law research, but it pioneers work in a domain with a less-

explicit model of argumentation, and it addresses a wider breadth of domain coverage than

predecessor AI and Law systems. This project makes a contribution to the literature of

interpretive case-based reasoning [Kolodner, 1993, p. 86-92] by investigating the connection

between abstract rules and concrete facts, by introducing and cataloging a set of techniques for

case-based retrieval and analysis, and by testing the feasibility of using detailed, chronological

facts to represent cases.

1.3.1. Statement of the Primary Thesis

SIROCCO’s operationalization techniques allow it to make accurate predictions of the facts,

principles, and past cases that are relevant to the analysis of new cases. Although all of the

operationalization techniques have been implemented within SIROCCO, only a subset of the

techniques is directly verifiable in an objective experiment. Therefore, the primary claim of the

thesis is somewhat narrower than the general claim. In particular:

Past decisions in engineering ethics cases use the following techniques to

operationalize ethical principles and cases:

1. Instantiating and interpreting principles by linking them to clusters of
questioned and critical facts

10

2. Hypothesizing unstated facts

3. Updating the principles over time

4. Arbitrating between competing principles

5. Grouping principles

6. Instantiating cases as precedents by linking them to clusters of questioned and
critical facts

7. Defining or elaborating issues and principles from past cases

8. Grouping cases

9. Reusing specific applications of any of the above techniques from previous
analyses

A computational model of a critical subset of these operationalizations, in particular

numbers 1, 5, 6, 8, and 9, can make accurate predictions of the principles and past cases

that are likely to be important in the analysis of new cases.

The subset of operationalizations tested in the dissertation, especially the Code Instantiations

and Case Instantiations, are critical because they are ubiquitous (yet implicit) in the review

board’s analyses.

1.3.2. Statement of the Secondary Thesis

The secondary claim of this dissertation is that SIROCCO’s temporal knowledge assists it in

making accurate predictions of the principles and past cases that are relevant to the analysis of

new cases. More specifically:

Temporal knowledge is integral in the retrieval and analysis of principles and past

cases. A computational model incorporating temporal knowledge will improve the

accuracy of the model’s predictions and analysis.

1.3.3. An Introduction to the Computational Model: SIROCCO

SIROCCO’s goal, given a new case to analyze, is to provide the basic information with which

a human reasoner could answer the question posed in the case and then build an argument or

rationale for that conclusion. The program utilizes the operationalization techniques in various

ways in the service of this goal, including supporting the retrieval of codes and past cases,

focusing the analysis portion of the program on the most fruitful codes and cases cited by the past

cases, and providing additional suggestions not directly reflected in the suggested codes and cases

produced by the program.

11

An example of SIROCCO’s output is shown in Figure 1-2. The facts of the input case2 and

the question raised by that case are first displayed. The case involves an engineer who discovers

serious safety problems in a building but does not report the safety problems to anyone except the

client, because his client, the building owner, requests confidentiality. The question raised is

whether it was ethical for the engineer to give preference to the client’s confidentiality over the

public’s safety.

SIROCCO’s output consists of various pieces of information, derived by the application of

operationalization techniques, that could support a human in reasoning about and arguing this

case: (1) a list of possibly relevant codes, (2) a list of possibly relevant cases, and (3) a list of

additional suggestions. Although not illustrated in Figure 1-2, SIROCCO is also capable of

displaying its reasons for selecting the suggested codes and cases; this capability is briefly

discussed later in this section, and an excerpt is shown in Figure 1-3. An extended and detailed

discussion of its operation is provided in Chapter 3.

SIROCCO accepts new cases in a detailed case-representation language, designed as part of

the dissertation project and called the Ethics Transcription Language (ETL) (see Appendix

Section A.1). The language represents the actions and events of a scenario as an ordered list

(i.e., a Fact Chronology) of individual sentences (i.e., Facts), each consisting of (1) Actors and

objects, instances of general actors and objects which appear in the scenario, (2) a Fact Primitive,

the action or event in which the actor and/or object instances participated, and (3) a Time

Qualifier, a temporal relation that specifies how a Fact relates to other Facts in time. A

predefined set of general Actor, Object, Fact Primitive, and Time Qualifier types are used in the

representation. At least one Fact in the Fact Chronology is designated as the Questioned Fact;

this is the action or event corresponding to the ethical question raised in the scenario.

2 Cases are named using a three part number: YY-Cn-Qn where YY is a two-digit representation of the year the case
was decided, Cn is the case number within that year, and Qn is the question number of that case. Thus, 90-5-1 is a case
corresponding to the first question of the fifth case decided in 1990 by the review board. Cases also have mnemonic
titles; these will occasionally be used in the dissertation as well.

12

*** SIROCCO is analyzing Case 90-5-1

Facts:
Tenants of an apartment building sue the owner to force him to repair many defects in the building that affect
the quality of use. The owner's attorney hires Engineer A to inspect the building and give expert testimony in
support of the owner. Engineer A discovers serious structural defects in the building, which he believes
constitute an immediate threat to the safety of the tenants. The tenants' suit has not mentioned these safety-
related defects. Upon reporting the findings to the attorney, Engineer A is told he must maintain this
information as confidential as it is part of a lawsuit. Engineer A complies with the request of the attorney.

Question:
Was it ethical for Engineer A to conceal his knowledge of the safety-related defects in view of the fact that it
was an attorney who told him he was legally bound to maintain confidentiality?

**
*** SIROCCO has the following suggestions for evaluating
*** '90-5-1: Failure To Report Information Affecting Public Safety'
**

*** Possibly Relevant Codes:
 I-4: Act as a Faithful Agent or Trustee
 III-4: Do not Disclose Confidential Information Without Consent
 I-1: Safety, Health, and Welfare of Public is Paramount
 II-1-A: Primary Obligation is to Protect Public (Notify Authority if Judgment is Overruled).
 III-1-B: Advise Client or Employer When a Project Will Not Be Successful
 III-1: Be Guided by Highest Standards of Integrity
 II-1-C: Do not Reveal Confidential Information Without Consent
 III-2-B: Do not Complete or Sign Documents that are not Safe for Public
 II-1-E: Report Alleged Code Violations
 II-5-A: Do not Falsify or Misrepresent Qualifications

*** Possibly Relevant Cases:
 76-4-1: Public Welfare - Knowledge of Information Damaging to Client's Interest
 89-7-1: Duty To Report Safety Violations
 84-5-1: Engineer's Recommendation For Full-Time, On-Site Project Representative

*** Additional Suggestions:
 o The codes II-1-A ('Primary Obligation is to Protect Public (Notify Authority if
 Judgment is Overruled).') and I-1 ('Safety, Health, and Welfare of Public is Paramount')
 may override codes III-4 ('Do not Disclose Confidential Information Without Consent'),
 I-4 ('Act as a Faithful Agent or Trustee'), and III-1 ('Be Guided by Highest Standards
 of Integrity') in this case. See case 76-4-1 for an example of this type of code
 conflict and resolution.

 …
 o The case 67-10-1 was cited by 76-4-1 to highlight or elaborate a general principle
 or common scenario. Since 76-4-1 has been suggested as possibly relevant to the present
 case, its cited case may also be relevant. Check whether the general scenario of
 the cited case is relevant to the present case:

 'Engineer is involved in a professional situation in which the public welfare is
 at stake'

Figure 1-2: An Excerpt of SIROCCO’s Output for Case 90-5-1

13

Cases stored in SIROCCO’s case base are represented in the Extended Ethics Transcription

Language (EETL) (see Appendix Section A.2), of which ETL is a subset. EETL provides all of

the scenario representation elements described above but, in addition, provides a template and

standard components for representing the analysis of a case, including its conclusion (i.e., ethical,

unethical, or undecided), the protagonist whose action is questioned, the ethical review board’s

general argument structure, a linking of the critical facts of the case to the citations support by

those facts, and a series of other details, such as which citations are more important and which

citations are grouped together. In essence, EETL models arguments as a series of code and case

operationalizations, some of which support the conclusion reached in the scenario, some of which

conflict with the conclusion, and some of which simply provide relevant background information.

SIROCCO’s case base consists of a subset of the NSPE BER cases that were analyzed during

the empirical study. A total of 184 foundational cases, covering 135 fact situations3 and culled

from the grand total of 475 cases decided by the NSPE BER between 1958 and 1992, are

included in SIROCCO’s case base and were used to design, implement, and refine the program.

All 75 of the NSPE BER ethics code provisions are encoded in SIROCCO. The goal was to

include all of the cases covering a reasonable number of important ethics topics or codes (e.g.,

public safety) but also to provide some (minimal) coverage of cases outside of those topics. As

such, the foundational case base includes all 135 of the transcribable cases that cite at least one

code related to at least one of the following Selected Topics:4 public safety, confidential

information, duty to employer, credit for engineering work, proprietary interests, and honesty in

reports and public statements. The foundational case base also includes 49 cases which do not

cite any codes from the Selected Topics. Ethical topics and issues outside the scope of the

Selected Topics group will be referred to as the Non-Selected Topics. A full listing of the

Selected Topics and a partial listing of the Non-Selected Topics represented in the NSPE BER

cases and in SIROCCO’s case base are shown in Table 1-1.

SIROCCO’s relatively broad domain coverage represents an important distinction and

advancement in comparison to previous interpretive CBR systems such as HYPO [Ashley, 1990]

and CATO [Aleven, 1997], which handled trade secrets cases exclusively; GREBE [Branting,

1991], which reasoned only about workers’ compensation cases; CABARET [Rissland and

3 A fact situation is defined by a single Fact Chronology . A case is defined as a Fact Chronology together with a
chosen Questioned Fact from that chronology. Thus, if the fact situation raises multiple ethical questions, one fact
situation can contain multiple cases.
4 There are actually more than 135 cases out of the total of 475 that cite at least one code from the Selected Topics .
However, some cases were excluded because they could not be accurately encoded into the Ethics Transcription
Language.

14

Skalak, 1991], which processed only home-office tax deduction cases; and BankXX [Rissland et

al., 1996], which handled only Chapter 13 personal bankruptcy cases5.

Table 1-1: Topics Addressed within the NSPE BER Cases and Represented in SIROCCO’s Case Base

Category Types of Ethical Topics in the Category

Selected Topics Public safety, confidential information, duty to employer, credit for engineering
work, proprietary interests, and honesty in reports and public statements.

Non-Selected Topics Conflicts of interest, honesty in advertising, misrepresentation and omission of
facts, criticizing other engineers, competence and qualifications, …

The foundational cases were represented with the support of a case-acquisition web site and

were transcribed into EETL by a total of 12 independent case enterers. The web site contains a

Participant's Guide with instructions on how to transcribe ethics cases into EETL, a reference

shelf of useful materials, including the full vocabulary of EETL, and an example set of 47

transcribed fact situations. The case enterers submit each case as a structured set of tables; those

tables are subsequently translated into SIROCCO knowledge structures by a PERL program.

Virtually all of the foundational cases provided by the case enterers were at least slightly

amended, to correct such things as poorly constructed Facts and incorrect usage of Fact

Primitives. However, in most instances, the critical aspects of the representations provided by the

case enterers were not altered.

SIROCCO takes the following approach. Given a case base of engineering ethics dilemmas,

transcribed into EETL, the program:

1. Accepts a new fact situation and a question raised by that fact situation (together the

fact situation and question are known as the target case), transcribed into ETL.

2. Retrieves and matches cases in the case base (i.e., the source cases) using a two-

stage algorithm. Stage 1 is a fast and efficient, but somewhat coarse, retrieval based

on matching, at various levels of abstraction, the Fact Primitives of the target case to

the Fact Primitives of all of the source cases. Stage 2 is a more-expensive structural

mapping that employs A* search and focuses on the most critical facts and on the

chronology of facts.

5 Note that Aleven claims that CATO “is not specific to trade secrets law” [1997, p. 41]. This claim might also be
made about all of the other systems listed here. However, it is certainly true that none of these other systems actually
demonstrated a wider domain coverage, as is done with SIROCCO in this dissertation.

15

3. Frames an analysis of the target case by suggesting codes, past cases, and

operationalizations that may be relevant to the new case. To harvest its suggestions,

the program applies various selection heuristics, strongly influenced by the

operationalization techniques, to the results of the retrieval step.

The program begins, in step 1, by accepting a target case that has been transcribed into ETL.

All of the cases in SIROCCO’s case base (i.e., the source cases) are defined in EETL; these cases

contain the analysis and operationalization information that could potentially be useful in the

context of the target case.

The retrieval portion of the method (i.e., step 2) consists of a two-stage algorithm in which a

computationally inexpensive initial stage retrieves a set of candidate source cases, followed by a

more-expensive graph-mapping stage which evaluates the candidates in greater detail and selects

a set of cases – and codes cited by those cases – that are most likely to be relevant to the input

case. The first stage matches the Fact Primitives of the target case, and abstractions of those

primitives at various predefined levels, to all of the cases in the case base by treating each case as

a content vector and performing a weighted dot product calculation between the target and all of

the source cases. Weights are applied to matches at the varying abstraction levels and to matches

of a source case’s critical and questioned facts. After the top N candidate source cases have been

retrieved, with N being a user-specified parameter and the candidates have been sorted by

descending dot product scores, the second stage employs a heuristic A* search for each target

case/candidate source case pair, in order to find a structural mapping between the two. The case

pairs are essentially treated as two sets of nodes and vertices, i.e., as graphs, and the program

attempts to find a mapping of the Actors, Objects, Fact Primitives, internal fact phrases, and Time

Qualifiers between the cases that satisfies structural consistency constraints (i.e., one-to-one

mapping and parallel connectivity) [Gentner, 1983].

Both the accuracy and efficiency of the retrieval algorithm benefit from the use of Code

Instantiation and Case Instantiation operationalizations defined by the case enterers, based on

their interpretation of the board's rationale in citing a code provision or a case. An Instantiation

relates a questioned fact, certain critical facts, and the temporal sequence of those facts to a

citation. Instantiations help SIROCCO focus attention on the most important facts of a case.

Instantiations improve the accuracy of Stage 1 by giving more weight to critical Fact Primitives.

The Instantiations increase the match score (i.e., the dot product) of those source cases in which

the most critical Fact Primitives were matched. Stage 2 is made both more efficient and more

accurate because its structural mapping routine is focused on a subset of each source case’s Fact

16

Chronology, meaning that search is reduced and the algorithm is able to focus on those facts that

are most critical to the ethical evaluation, as defined by the Instantiations.

SIROCCO’s retrieval algorithm is a novel amalgam of existing methods and new concepts.

The two-stage algorithm and use of content vectors resembles MAC/FAC [Forbus et al., 1994].

However, SIROCCO extends this approach by employing operationalizations (i.e., Code

Instantiations and Case Instantiations) to focus the search, by matching at multiple levels of

abstraction, and by considering temporal relations in the structural mapping process. The idea for

using A* search comes from GREBE [Branting, 1991].

The codes and cases chosen during the retrieval phase are passed to the Analysis phase (i.e.,

step 3) so that the final codes, cases, and suggestions can be selected and shown to the user.

Three separate categories of heuristics are employed during this phase: code-selection heuristics,

case-selection heuristics, and additional suggestion heuristics. For the code and case selection

categories, SIROCCO accumulates evidence for each candidate code or case by trying to apply

all of its heuristics for that category to the candidate. Example code-selection heuristics include:

selecting codes that are cited with a frequency over a user-specified threshold in the top N cases

and selecting codes that have Instantiations with a structural mapping score above a given

threshold with at least a minimal number of critical facts. Example case-selection heuristics

include: selecting cases that contain Code Instantiations that satisfied the code-selection

heuristics and selecting cases that are grouped with other cases that have already been selected.

Candidates are then sorted by the number of heuristics that applied to each. A filtering

mechanism identifies those candidates that appear to be the most promising. For codes, the filter

is implemented by using code-collocation statistics6; a code is deleted from the candidate list if it

has a lower number of applied heuristics than another code and if it does not collocate with that

code above a certain threshold. For cases, several criteria are used, most importantly, a citation

overlap function that deletes a candidate case if its code citations do not sufficiently overlap with

SIROCCO’s candidate codes for the target case. The codes that remain, after filtering, are those

selected by SIROCCO for display to the user, as in the portion of SIROCCO’s output in Figure

1-2 with the heading “Possibly Relevant Codes.”

In the last stage of SIROCCO’s analysis, the program attempts to apply additional suggestion

heuristics to the final set of selected codes and cases. For instance, if SIROCCO finds a selected

case in which the Define the Superior Code operationalization was applied, that is, a past case in

which the ethics review board indicated that one code took precedence over another in that

context, and the relevant codes have also been selected in the present case, SIROCCO suggests

17

that this operationalization may apply to the current fact situation as well. This is precisely the

type of suggestion found near the bottom of Figure 1-2, in which SIROCCO indicates that 76-4-1

is a past case in which public safety codes (i.e., II.1.a. and I.1.) “override” several codes, one of

which deals with confidentiality (i.e., III.4.). Such a suggestion is potentially quite valuable, as it

helps to put the cited cases in juxtaposition and highlights issues that should be considered by the

user. SIROCCO is also capable of making other suggestions, by applying the operationalization

techniques Define or Elaborate a General Issue or Principle (also shown in the analysis of 90-5-

1 at the bottom of Figure 1-2), Rewrite a Code, and Apply a Hypothetical to a Code.

SIROCCO is also capable of explaining why it has suggested certain codes and cases as

relevant to the target case. SIROCCO can explain its reasons in terms of the heuristics that were

applied by the analysis phase or in terms of the mapping performed by Stage 2 between the

Critical and Questioned Facts of source cases to the target case. An explanation excerpt for Case

90-5-1 is displayed in Figure 1-3. Recall that Code III.4. was suggested by SIROCCO as

possibly relevant in Figure 1-2. In terms of the heuristics, this code was selected for a number of

reasons: it was cited by 4 of the top 6 cases from Stage 1, the Critical Facts of two Code

Instantiations, one from Case 76-4-1 and one from Case 89-7-1, map to the target case with high

match scores, the Questioned Facts of those same two Code Instantiations also map to the target,

and, finally, it is grouped with another highly rated code, I.4., in the two cases, 76-4-1 and 89-7-1.

Under the heading “Structural mapping Explanation,” the excerpt also explains how the Code

Instantiation of Case 76-4-1 maps to the target case. The Facts preceded by an asterisk are the

Questioned Facts of the target and source, the Facts at the first indentation level are the Critical

Facts of Case 76-4-1’s Code Instantiation, and the Facts at the second indentation level are the

target Facts that match to corresponding Facts of the Code Instantiation.

SIROCCO’s capability to explain its reasoning is an important aspect of its functionality.

This explanation capability offsets the not insignificant effort involved in representing the cases

and provides a significant advantage over the five methods it is compared to.

6 “Collocation” is defined as the percentage of time code x is cited when code y is cited.

18

III-4: Do not Disclose Confidential Information Without Consent

 Heuristics Explanation:
 --

 o Cited by 4 of the 6 best surface matching cases.
o 100.0% match to 4 critical facts in case 89-7-1.
o 86.7% match to 3 critical facts in case 76-4-1.
o 100.0% match and ques. fact match (Source and Target: FACT-PRIMITIVE) in case 89-7-1.
o 86.7% match and ques. fact match (Source and Target: FACT-PRIMITIVE) in case 76-4-1.
o > 50.0% match in multiple cases: 89-7-1, 76-4-1.
o Grouped with code I-4 in case 89-7-1; Good match to critical facts.
o Grouped with code I-4 in case 76-4-1; Good match to ques. facts.

 Structural mapping Explanation:
 --
 To Case 76-4-1 (Corresponding steps of Case 90-5-1 indented; * = Questioned Fact)

 ENGINEER-DOE DISCOVERS-THAT ((FAILS-STANDARDS-…))

 >>> ENGINEER-A DISCOVERS-THAT ((FAILS-STANDARDS-…))

 ENGINEER-DOE REVIEWS-AND-ANALYZES DISCHARGE

 >>> ENGINEER-A INSPECTS APARTMENT-BUILDING

 *ENGINEER-DOE DOES-NOT-INFORM-THAT CONTROL-AUTHORITY …

 *>>> ENGINEER-A DOES-NOT-INFORM-THAT ANYONE-ELSE …

…

Figure 1-3: An Excerpt of SIROCCO’s Explanation of the Analysis of Case 90-5-1

It is useful to clarify here what SIROCCO is not intended to do. As can be seen by the output

of the program in Figure 1-2, SIROCCO does not suggest a conclusion (i.e., ethical, unethical, or

a qualified “middle” solution) or a course of action, nor does it present an argument, either pro or

con, for a particular conclusion. Rather, the intent of the program is somewhat more modest (yet

still very challenging): to retrieve information – codes, cases, and operationalizations – that are

relevant in the analysis of the case. It is the duty of the human user to evaluate and apply the

information retrieved by SIROCCO, i.e., to confirm the information’s relevance, to develop an

argument, and to come to a conclusion for a given case. The program is not designed to reach a

conclusion for several reasons. First, reaching an ethical conclusion is the obligation of the

human decision-maker. Even if I believed my model of ethical decision making were up to the

task, having a computer program propose decisions oversimplifies the obligations of human

beings and belittles their unique abilities. Second, although the fundamental argument

components were identifiable in the NSPE case analyses (i.e., the operationalization techniques),

19

a coherent, consistent, and structured argument strategy was not. Thus, having the program

produce an argument based on observations of the NSPE case analyses did not appear to be

feasible. Finally, producing relevant information, rather than an argument and a conclusion, is

more in keeping with the ultimate aim of SIROCCO as a retrieval tool for engineers in accessing

relevant ethical information and as a retrieval component in a tutoring system. As pointed out by

Harris, Pritchard, and Rabins [1999, p. 22], studying engineering ethics cases and codes is

important to stimulating the “moral imagination” but such study does not provide ready-made

answers to complex ethical questions.

SIROCCO does not process the natural language descriptions of cases. Although the domain

of engineering ethics is heavily linguistic, natural language processing capabilities in Artificial

Intelligence are still fairly primitive. Instead, as discussed above, I devised a web site to facilitate

untrained persons in transcribing cases into ETL and EETL. The web site provided a means of

enforcing some measure of consistency across cases and also supported the execution of more

objective experiments in which independent third-parties provided the data. Hopefully, however,

in the not-too-distant future a tool will be developed for translating natural language into a

structured form usable by a program, but this is clearly beyond the scope of this project.

Finally, SIROCCO does not explicitly implement all of the operationalization techniques. In

other words, the program does not execute each technique as a distinct function, visible in the

program’s output. Rather, the program incorporates some of the techniques explicitly (such as

those used to provide additional suggestions) and others more conceptually and implicitly. The

way in which each technique is included in, or influences, SIROCCO’s architecture is described

in detail in Section 3.2.

1.3.4. A Summary of the SIROCCO Experiments

Experiments were performed with SIROCCO to test the primary and secondary hypotheses of

the thesis. In particular, the experiments were designed (1) to test whether a core set of

SIROCCO’s operationalization techniques allow the program to make accurate predictions of the

principles and past cases that are relevant to the analysis of new cases and (2) to test whether

SIROCCO’s temporal knowledge similarly supports accurate predictions. Also, several

additional experiments were performed to test the efficiency and scalability of the computational

model.

The data used for the SIROCCO experiments included the 184 foundational cases upon

which SIROCCO was designed and developed together with a set of 58 trial cases that were

decided later than the foundational cases. All of the trial cases were transcribed into EETL by two

20

independent case enterers and the resulting case representations, unlike the foundational cases,

were provided unaltered to SIROCCO for processing to ensure objectivity. The 58 trial cases

were chosen from two pools of cases within a set of 77 cases decided by the NSPE BER between

1993 and 1998: 44 trial cases were chosen at random from 52 Selected Topics cases and 14 trial

cases were chosen at random from 25 Non-Selected Topics cases. Two of the 44 original Selected

Topics cases were rejected by one case enterer as not transcribable and these were replaced by

two other Selected Topics cases chosen at random. Four additional cases were transcribed but not

included in the trial set because they did not cite any codes that were cited a minimal number of

times in the foundational set of cases.

Although the goal was not strictly to choose Selected Topics cases in the trial set at the same

ratio as in the foundational set, the percentage of Selected Topics cases in the trial set (76%, 44

out of 58) was close to that of the foundational set (73%, 135 out of 184). The main objective

was simply to select a significant majority of Selected Topics trial cases, since these constitute the

majority of cases on which SIROCCO was “trained” and developed. On the other hand,

selecting at least some cases outside of SIROCCO’s primary area of knowledge allows an

analysis of whether the program can handle, in at least reasonable fashion, an even wider range of

cases.

To test the primary thesis, i.e., that SIROCCO’s operationalization techniques make a

difference in the accuracy of its predictions, SIROCCO was pitted against five competitor

methods, shown in Figure 1-4. A worst-case baseline was established by the use of a random

selection method, RANDOM, and a second, more-sophisticated random method, INFORMED-

RANDOM, which selects codes and cases randomly but in accordance with historical citation

frequency. Because engineering ethics is a novel domain with no comparable benchmark

systems, it was necessary to find a method or methods that could be expected to perform well at

SIROCCO’s retrieval task, even though not specifically designed for such a task. Full-text

retrieval was a natural place to look for such methods, since engineering ethics is a heavily

linguistic domain and the full-text retrieval systems require no case representation. Also, textual

case-based reasoning, a subarea of CBR in which full-text retrieval techniques are used, has

recently attracted considerable attention in the literature as a viable alternative to traditional

representation-based CBR, especially in domains in which the cases are available in text and are

linguistically complex [Burke et al., 1997; Lenz, 1998; Brüninghaus and Ashley, 1998;

Brüninghaus and Ashley, 1999]. MG [Witten et al., 1999], a full-text retrieval system based on

the relatively simple, yet powerful, vector space model, was selected as one competitor and a

variant of that method, EXTENDED-MG, believed to be potentially more accurate than the base

21

method, was also included. The last competitor method was an ablated version of SIROCCO,

called NON-OP SIROCCO, which only very weakly employs operationalization techniques.

RANDOM: In this method, codes and cases are randomly selected for each case.

INFORMED-RANDOM: Here, codes and cases are selected randomly for each case, but the overall
selection is in accordance with the distribution of code and case citations found
within the corpus of NSPE BER cases decided between 1958 and 1992. In
addition, only the most frequently cited 20 codes and 40 cases are considered
for selection.

MG In this method, codes and cases are selected using a full-text retrieval method,
(Managing Gigabytes): specifically, the vector space model. Given the text of a new ethics case, MG

converts the case into a vector in n-dimensional space – a representation that
accounts for term frequency, term weights, and length of text – and retrieves
codes by comparing the input case vector to the vectors representing all of the
NSPE codes. The code vectors with minimal angles to the input vector are
chosen. In like fashion, MG retrieves cases by comparing the input vector to
vectors representing all of the NSPE cases.

EXTENDED-MG: In this method, codes and cases are selected using a variant of the MG method.
In particular, cases are retrieved as in MG, i.e., by comparing the input vector
to vectors representing all of the NSPE cases, but codes are selected according
to their frequency of citation in the top X selected cases.

NON-OP SIROCCO: This is an ablated version of SIROCCO in which virtually all functionality
related to operationalization is severed from retrieval. Specifically, this method
uses Stage 1 retrieval and the basic dot product calculation, as described in
Section 1.3.3, but it does not employ Stage 2 structural mapping or the analysis
phase of SIROCCO. Thus, the method does not use most of SIROCCO’s
important operationalization knowledge, such as focusing on the Questioned
and Critical Facts in Stage 1, using Code and Case Instantiations to focus
structural mapping in Stage 2, reusing past operationalizations, and applying
selection heuristics based on operationalizations in the Analysis phase.

Figure 1-4: The Five Methods Compared to SIROCCO to Test the Primary Thesis

Each method, including SIROCCO, was given the entire set of trial cases to process one-by-

one, and the retrieval results of each method for each case were then compared to the code and

case citations of the ethical review board for the same cases. To calculate overlap between the

method’s solution and the board’s solution, a metric known as the F-Measure [van Rijsbergen,

1979, p. 173-176; Lewis et al., 1996], an information retrieval metric that combines precision and

recall, was employed. Two F-Measure values were computed for each method for each case, one

representing exact matches of codes and cases between the method’s solution and the board’s and

one representing inexact matches of codes and cases. Inexact matches of codes were determined

based on a Code Hierarchy that clusters similar codes together and inexact matches of cases were

determined using a citation overlap metric.

Not surprisingly, SIROCCO significantly outperformed both the RANDOM and

INFORMED-RANDOM methods. These methods were included only to provide a low-level

22

baseline. More interestingly, the results showed SIROCCO to be clearly more accurate in

retrieving codes and cases than the MG and NON-OP SIROCCO methods. Although the

evidence was somewhat weaker that SIROCCO is more accurate than EXTENDED-MG – in

particular, SIROCCO was significantly more accurate in retrieving exact codes and cases, but it

was inconclusive whether it was more accurate in retrieving inexact codes and cases – there was

still enough supporting statistical data to conclude that SIROCCO is superior to EXTENDED-

MG. Outperforming MG and EXTENDED-MG shows that SIROCCO is indeed a powerful

retrieval method, because the full-text retrieval methods are strongly competitive alternatives for

performing SIROCCO’s task. The fact that SIROCCO outperformed EXTENDED-MG which, in

turn, outperformed MG is also significant with regard to the primary thesis. I will argue that

EXTENDED-MG actually makes weak use of one of the case operationalization techniques,

Reuse an Operationalization, by selecting those codes that appear most frequently in the top-rated

cases. Thus, by augmenting a full-text retrieval method with an operationalization technique, I

was able to demonstrate superiority over pure full-text retrieval. In turn, SIROCCO, with its wide

range of operationalization techniques, outperforms both the full-text retrieval system and the

version augmented with an operationalization technique.

The fact that SIROCCO significantly outperformed NON-OP SIROCCO provides perhaps

the strongest evidence that SIROCCO’s operationalization techniques do, in fact, make a

difference. SIROCCO and NON-OP SIROCCO share the same case representation and Stage 1

retrieval method. Where they differ, and critically so, is in their use of the operationalization

techniques. NON-OP SIROCCO makes only weak use of the techniques – as with EXTENDED-

MG, it also uses the Reuse an Operationalization technique by selecting codes that appear most

frequently in the list of top-rated N cases – whereas SIROCCO makes extensive use of the

operationalization techniques in performing its retrieval task.

Because I believed that some of the code and case citations made by SIROCCO could be

considered reasonable, even though they had not been made by the board, I executed a second

experiment in which I asked two evaluators, graduate students with a background in ethics, to

evaluate the extra code and case citation made by SIROCCO and SIROCCO’s closest competitor,

EXTENDED-MG, for the trial cases. While the board provides the best available gold standard

with which to benchmark the methods, the board may have missed some relevant cases or code

citations. The board’s composition changes over time. Not all of the board members are certain

to be familiar with all of the past decisions (something a tool like SIROCCO could remedy.) In

short, I believed that SIROCCO might have been able to identify relevant codes and cases that the

board simply overlooked or did not consider. For this experiment, the evaluators were asked to

23

indicate, for each additional code and case suggested by the two methods, whether the extra

suggestion was reasonable or not.

After receiving the evaluator’s responses, and accounting for inter-rater reliability, I

recalculated SIROCCO’s and EXTENDED-MG’s F-Measures for the 58 trial cases, counting the

extra citations rated as “reasonable” by the evaluators as board citations. This resulted in a 35%

increase in SIROCCO’s mean F-Measure of inexact matches, compared to only a 23% increase in

EXTENDED-MG’s mean F-Measure of inexact matches. This proved to be crucial, as

SIROCCO’s statistical performance on both exact and inexact matches for this experiment was

now shown to be significantly better than EXTENDED-MG’s. Thus, this experiment provides

even more compelling evidence that SIROCCO’s retrieval method is indeed superior to

EXTENDED-MG’s. Finally, I uncovered some specific situations in which SIROCCO, due to its

unique retrieval approach and case base, suggested codes or cases that were not cited by either the

board or EXTENDED-MG. Although anecdotal, these results are quite interesting, and I present

and discuss an example of this phenomenon in Section 4.2.3.

To test the secondary thesis, i.e., that SIROCCO’s temporal knowledge makes a difference in

the accuracy of its predictions, the trial cases were processed by an ablated version of the

program, NON-TEMP SIROCCO, that did not employ temporal knowledge. As with the initial

experiments, the results of NON-TEMP SIROCCO were compared against the suggestions made

by the ethical review board and the F-Measure calculated for each individual sample and as a

mean value over all samples. These results were then compared to the output of the standard

version of SIROCCO, which did apply temporal knowledge. The results were somewhat

surprising, and with respect to my secondary thesis, disappointing. The differences between

SIROCCO with and without its temporal knowledge were essentially negligible.

In the dissertation I discuss why I believed that temporal knowledge could make a difference

in case retrieval, and I show an example to illustrate this point. I also provide some analysis and

suggestions as to why SIROCCO’s temporal knowledge did not make a difference in these

experiments. For instance, it is possible that a majority of the trial cases simply did not require

the use of temporal reasoning. Other suggestions that are discussed include possible inaccuracies

in the case representations and idiosyncrasies of the SIROCCO implementation that may have

failed to adequately capture the subtleties of the temporal relations. In the end, I am still

convinced that employing temporal knowledge as a component in similarity assessment and

retrieval is important in some domains and should be pursued by future interpretive CBR and

CBR researchers.

24

Finally, experiments were run to test the trade-off between accuracy and efficiency produced

by SIROCCO and to gauge how well SIROCCO scales up. To test accuracy versus efficiency, a

test was executed in which SIROCCO first analyzed each trial case using only the other trial

cases for its case base. As before, the F-Measure was calculated for each sample and as a mean

but, in addition, the run time of all 58 trial cases was captured. Subsequently, a series of 19

additional tests were run. For each test, a random set of 10 cases from the foundational set were

added to the case base (except for the final test, in which only 4 cases remained to be added), the

entire trial set was again run through SIROCCO, and the F-Measure and timing results were

taken. The results showed that, as SIROCCO’s case base grew in size, accuracy generally

increased while run time also increased, but in no worse than linear time.

A second accuracy-versus-efficiency experiment was run in which the number of cases

passed from Stage 1 to Stage 2 (N, a user-specified parameter) was varied from 1 to 15. All of

the trial cases were run at each value of N and, again, F-Measure values were calculated and

timing results measured for each test. As noted in Section 1.3.3, Stage 2’s computation naturally

increases as more cases are passed to it from Stage 1, because it applies structural mapping to all

of the candidate cases supplied to it. The results revealed that after N = 6 SIROCCO’s accuracy

did not improve; in fact, its accuracy decreased for all N > 6, while its run time increased

considerably. Thus, it appears there is no benefit to running SIROCCO with an N value greater

than 6.

The final experiment was intended to evaluate SIROCCO’s capability to scale up. Because

the program’s case base was limited by the number of cases that had been transcribed into EETL

(246: 184 foundational cases plus 58 trial cases plus the 4 unused trial cases), it was necessary to

devise a strategy to artificially scale up the number of cases. This was achieved by running a

PERL script over the Common Lisp foundational case file and generating new files in which case

numbers and critical item names were slightly altered, so that SIROCCO would consider each

new file to be a set of 184 new cases. Ten new foundational case files were generated, resulting

in a total of 2,086 cases, including the original foundational cases and the trial cases. Ten tests

were then run in which, for each test, the case base was increased by 184 cases. For each test all

of the trial cases were provided as input and the total run time was captured. For this test, the run

time increased linearly with the increased case base size, from 575 seconds for the original 242

cases to 1705 seconds for 2,086 cases, certainly a reasonable increase in time.

I argue in the dissertation that it is unlikely that a case base in engineering ethics, or perhaps

in any weak analytic domain, would ever need to grow as large as 2,000 cases, so this is clearly a

worst-case result. First, a smaller case base of carefully represented cases is likely to provide

25

appropriate coverage for a wide range of scenarios, in the sense described by Smyth and

McKenna [1999]. For instance, even conservatively assuming the need for having cases that

cover 200 separate issues (many more than listed in, for instance, the NSPE Ethics Reference

Guide [1996, p. 8]), a case base of 2,000 cases would provide approximately 10 exemplars of

each issue, certainly more than SIROCCO requires to make good suggestions. Second, because

interpretive CBR systems are typically expected to retrieve close, but imprecise, cases that

humans then interpret, analyze, and adapt, there is less need for full, detailed coverage of possible

scenarios. In other words, the competence of a single case is relatively wide in weak analytic

domains because of the purpose they are put to – providing a general guidepost for a human

analyst.

1.4. A Guide to the Remainder of the Dissertation

This section provides a brief guide to the remainder of the dissertation.

Chapter 2 presents additional background on the domain of engineering ethics, including how

reasoning with principles appears to work, and shows specific examples of how the

operationalization techniques are applied by the ethical review board, so that the reader can

appreciate the nuances of the problem domain and SIROCCO’s task. In addition, there is a

discussion of how temporal reasoning appeared to be applied by the board.

Chapter 3 builds upon the introduction to SIROCCO provided in this chapter, as well as the

discussion of the engineering ethics domain found in Chapter 2, by presenting a detailed view of

the program and its architecture and how SIROCCO’s approach implements the observed

reasoning of the board of ethical review. An example case from the NSPE BER corpus is

furnished to focus the discussion, and that case is used throughout the chapter to illustrate the

functionality and features of the program. The chapter concludes by summarizing how

SIROCCO specifically uses operationalization techniques, temporal reasoning, and explanation in

the service of its goals.

Chapter 4 presents, in detail, the SIROCCO experiments and the results discussed briefly in

the current chapter. Both quantitative and qualitative results and analysis are provided. The

chapter also draws some important conclusions regarding SIROCCO which are expounded upon

in Chapter 6, the final chapter of the dissertation.

Chapter 5 relates SIROCCO and my research to other computational work in the areas of

case-based reasoning, analogy, and practical ethics. As previously mentioned, SIROCCO is most

closely aligned with work in the area of interpretive CBR and the emphasis in this chapter is on

how SIROCCO extends and improves upon that research.

26

Finally, Chapter 6 concludes the dissertation by discussing the relative success of this

research vis-à-vis the primary and secondary theses. Also discussed are the contributions of the

research and lessons learned. This chapter concludes with a discussion of possible future work.

27

2. The Example Domain: Engineering Ethics
The case of Roger Boisjoly and the Space Shuttle Challenger, discussed in the previous

chapter, illustrates both the importance of decision making in the engineering field and the

difficulty of applying ethical principles to that decision making. This chapter briefly introduces

the domain of engineering ethics and presents an overview of the empirical study and analysis of

a particular engineering ethics subdomain, the NSPE BER case opinions.

2.1. What is Engineering Ethics?

The professional responsibilities of an engineer extend beyond the myriad technical decisions

that he or she must make. Engineers play an important role in protecting and helping the public,

and that role requires moral responsibility, imagination, and courage, in addition to technical

skills [Harris et al., 1999, p. 7]. Although most engineering scenarios are not as high-profile or

dramatic as the Challenger case [Pinkus et al., 1997] – indeed, none of the remaining cases

discussed in this dissertation are quite so gripping – ethical decision making is nonetheless

integral to the professional life of an engineer.

Engineering ethics is a domain that relies heavily on the concept of a principle. A moral

principle is a general normative rule of behavior. According to philosophical theories (e.g.,

[Kant, edited and published in 1969]) and psychological theories (e.g., [Colby and Kohlberg,

1987a; Colby and Kohlberg, 1987b]), moral principles play important roles in the ethical life of

humans. First, they tell us whether a particular situation raises ethical issues. Having knowledge

of and sensitivity to moral principles helps us to recognize situations in which our actions may be

ethically questionable. Second, moral principles provide us with some guidance on which facts in

an ethical dilemma7 are relevant to its resolution. Typically, not all of the facts in a given

situation are ethically relevant; moral principles help to differentiate the relevant from the

irrelevant facts. Finally, moral principles provide us with guidance regarding appropriate actions

to take in resolving ethical problems. Principles typically prescribe a general course of action,

such as “tell the truth” or “be fair.” (Note that Carol Gilligan [1982] challenges the central role of

principles, endorsed by Kohlberg, in moral problem solving. Her research indicates that a

woman’s approach to moral reasoning is oriented more toward relationships and caring than

toward principles.)

7 I will use the words “dilemma” and “problem” interchangeably in discussing ethical problems. By both “ethical
dilemma” and “ethical problem” I mean a situation in which more than one action may be taken by a protagonist where
the choice of action has ethical ramifications.

28

It is important to separate the professional ethics required of an engineer from personal ethics.

It is certainly true that engineering ethics has a foundation in personal ethics. For instance, the

public safety codes discussed in connection with the Challenger case (i.e., I.1. and II.1.a.) are

clearly rooted in the general principle “avoiding harm,” one of four principles, along with

fairness, veracity, and producing benefit, stressed as “good dispositions whose tendency is

directly to countervail the limitation of human sympathies” [Warnock, 1971, p. 79]8. Engineering

ethics is inextricably tied to personal ethics: the urge to make ethical decisions in one’s profession

is tied to one’s desire to be an ethical human being [Harris et al., 1999, p. 8].

On the other hand, there are significant differences between professional ethics, in particular

engineering ethics, and personal ethics [Harris et al., 1999, p. 8-11]. The standards and rules of

engineering ethics, and the ethics of any professional domain, constitute a specialized type of

morality known as role morality. Such a system of morality is framed and dictated by the

particular obligations of a role one assumes. For instance, the engineer has ethical obligations to

the public, to clients, and to employers. In addition, the rules that guide and judge professional

behavior are typically defined by professional communities or societies. For instance, in

engineering the National Council of Examiners for Engineering and Surveying (NCEES) has

recommended “Model Rules of Conduct” as ethical guidance for state boards of registration. As

another example, the NSPE, introduced in Chapter 1 and the domain focus of this dissertation, is

an engineering society, open to engineers in any discipline, that defines its own set of principles.

No such organized communities or societies define the standards and principles of personal

ethics.

2.1.1. Ethical Problem Solving and Decision Making in Engineering

Instead of measuring a principle’s "weight" quantitatively or applying principles deductively,

decision makers in engineering ethics appear to reason symbolically and qualitatively with

principles. They identify the facts that are relevant in light of applicable principles, resolve

conceptual issues by defining terms of the principles and their application to case facts, and

engage in moral reasoning (e.g., use past cases for "line-drawing" comparisons, employ creative

middle-way solutions) [Harris et al., 1999]. In other words, engineers, like practitioners in

medical ethics and other practical fields of endeavor, appear to rely heavily on specific

circumstances – i.e., cases – to resolve, interpret, and apply ethical principles [Jonsen and

Toulmin, 1988; Strong, 1988; Arras, 1991].

8 In an important and influential book in bioethics, Beauchamp and Childress suggested a similar set of four general
principles: autonomy, beneficence, nonmaleficence, and justice [1978].

29

A system of explicit, middle-level ethical principles tailored to the role morality of

engineering ethics is known as a code of ethics. Although an engineering code of ethics provides

"rules" of ethical behavior for practicing professional engineers, typically the principles are stated

in an abstract and sometimes quite complicated fashion. As a result, applying the codes to

particular fact situations is not straightforward. Engineering codes exemplify all of the

characteristics of the weak analytic domains, discussed in Chapter 1. In particular, the

engineering codes and conclusions to the codes are available almost exclusively at a highly

abstract level, and the codes can conflict with one another with no formal means of arbitrating

between them. Consider, for example, the following code from the National Society of

Professional Engineers [1996]:

"Code II.5.a. Engineers shall not falsify or permit misrepresentation of their ... academic or

professional qualifications. They shall not misrepresent or exaggerate their degree of

responsibility in or for the subject matter of prior assignments. Brochures or other presentations

incident to the solicitation of employment shall not misrepresent pertinent facts concerning

employers, employees, associates, joint ventures or past accomplishments with the intent and

purpose of enhancing their qualifications and their work."

This middle-level ethical principle specializes the more general principle of “honesty” in an

engineering context. Each of the three sentences in the code deals with a different aspect of

"misrepresentation of an engineer," and each sentence covers a wide range of possible

circumstances. The precise circumstances that support application, however, are not specifically

stated. Knowing whether this code applies to a particular fact situation requires that one must

recognize the applicability of and interpret open-textured terms and phrases in the code, such as

“misrepresentation” and “intent and purpose of enhancing their qualifications.”

Even if one is able to determine that a code applies to a specific situation, another problem is

that the engineering ethics codes sometimes conflict with one another in specific circumstances.

For instance, suppose that an engineer determines that her employer’s company brochure contains

a “misrepresentation” of the company’s capabilities, as covered by NSPE Code II.5.a, above.

However, suppose also that the “misrepresentation” is relatively minor, i.e., it is not likely to have

much, if any, impact on a potential client’s decision making, and it would cost the company

substantial money to change and reprint the brochure. What should our engineer do? Push for a

change to the brochure? One of the codes discussed earlier, in connection with the Challenger

case, might also be said to apply here, i.e., “Engineers shall act in professional matters for each

employer or client as faithful agents or trustees” (NSPE Code II.4.). This code places an

obligation on the engineer to do what is best for his or her employer and, in this example, this

30

could be interpreted to mean not pushing for a change to the brochure. When engineering codes

conflict – as they do in the particular circumstances of this hypothetical situation – which of the

conflicting codes should one follow?

Engineering codes, while providing important guidance for the engineering profession, are

highly abstract, open-textured, and subject to interpretation. The abstract specification of the

codes makes it hard to determine the particular circumstances in which they apply. In addition, it

is difficult to know the precise action that a code advocates. In engineering ethics, the specific

context of a case helps to interpret a code. Thus, answering the questions posed in the previous

paragraph entails a careful examination of all of the specific facts of a case. In other words,

specific circumstances are essential for understanding, interpreting and applying principles, as

well as arbitrating between principles that conflict with one another. This reliance on in-context

interpretation and application is the key to the operationalization techniques that are the central

theme of this dissertation.

Harris and his colleagues emphasize the use of cases in studying and understanding

engineering ethics. In fact, their textbook begins with the presentation and discussion of several

famous engineering ethics dilemmas, including the Challenger case discussed above. Throughout

the book the authors use cases to illustrate the application of principles, the use of various ethical

problem solving techniques, and the important issues a professional engineer may encounter. In

effect, Harris et al advocate a casuistic approach to resolving engineering ethics problems.

Casuistry is a form of ethical reasoning in which decisions are made by comparing a problem to

paradigmatic, real or hypothetical cases [Jonsen and Toulmin, 1988; Strong, 1988; Arras, 1991].

Harris and his colleagues describe the significance of cases as follows:

“[Cases’] importance cannot be overemphasized. It is by studying cases that we can most easily

develop the abilities necessary to engage in constructive ethical analysis. Cases stimulate the

moral imagination by challenging us to anticipate the possible alternatives in resolving them and

the consequences of those alternatives. Through cases we learn to recognize the presence of

ethical problems and to develop the analytic skills necessary to resolving them. A study of

cases is the most effective way to see that the codes cannot provide ready-made answers to all

moral questions that professional engineering practice generates and that the individual must

become a responsible moral agent. Finally, the study of cases convinces us that there may be

some unresolvable uncertainties in ethical analysis and that in some situations rational and

responsible professionals may disagree about what is right.” [1999, p. 22].

The importance of cases is also apparent in the database and documentation of NSPE BER

cases, the domain focus of this dissertation. Cases are used to “supplement and amplify” the

31

codes so that engineers may more fully understand their application [NSPE, 1958-1998, Volume

II, p. iii]. A high percentage of the decided opinions of the NSPE BER reference past cases.

Finally, the NSPE BER has provided a “Case Index” in which all of the codes in the NSPE code

of ethics are cross-referenced with the cases that cite these codes [NSPE, 1996, p. 18-20]. In

short, it is clear that the NSPE BER takes a stance similar to that of Harris et al., with respect to

cases.

The following section discusses the empirical analysis of the NSPE BER cases that led to the

identification of the operationalization techniques, the recognition of the importance of temporal

constraints, and the development of SIROCCO.

2.2. The Empirical Analysis of the NSPE BER Cases

Although both codes and cases are clearly integral to the decision making and justifications

of the NSPE board of ethical review, it is an empirical question specifically how the codes and

cases are used to solve and justify cases. Thus, I undertook a systematic analysis of the NSPE

BER database of cases and documentation in order to ascertain the approach used by the review

board and to develop a computational model that can leverage elements of its reasoning.

As discussed briefly in Section 1.3, the NSPE Board of Ethical Review is a committee of five

to seven professional engineers that has met yearly since 1958 to discuss and decide engineering

ethics dilemmas9. The individual members of the review board are appointed by the NSPE

president to serve a 3-year term. BER members can be reappointed, but they cannot succeed

themselves for more than one term. The dilemmas addressed by the NSPE BER are submitted by

members of the professional engineering community. The purpose of the NSPE BER is not to

mete out punishment to offending engineers and organizations, but rather to provide an

educational resource to the engineering community. Thus, the actual names of the individuals

and organizations involved in these dilemmas are not provided in the cases published in hardcopy

or on the Internet. The NSPE Board of Directors approves the opinions “with the hope that they

will serve to make the profession’s ethical principles a living and dynamic force.” [NSPE, 1958-

1998, Volume II, p. iii]

Over the course of more than 40 years, over 400 particular fact situations and have been

addressed, decided, and published by the NSPE BER. Each published fact situation is presented

and structured by the following subsections: (1) A title, that provides both a year-sequence label

9 The NSPE BER officially began in 1954, but it did not start publishing cases until 1958. It is unknown whether the
board actually convened and decided cases between 1954 and 1957 [Personal Communication with Arthur Schwartz,
the NSPE’s legal counsel, and Mary Ann Cannon, the NSPE’s Legal Administrative Assistant.]

32

(e.g., 90-5 is the fifth fact situation of 1990) and a mnemonic description of the primary issue of

the fact situation (e.g., “Failure to Report Information Affecting Public Safety”); (2) the facts, a

brief description of the events of the scenario, usually between one and three paragraphs in

length; (3) an ethical question (or questions) raised by the facts, each question corresponding to a

distinct case10; (4) a list of code references that are (or may be) relevant to the fact situation; (5) a

discussion of the fact situation by the review board that represents a consensus analysis and

includes citations to codes and past cases; (6) the conclusion reached by the board for each of the

ethical questions; and, optionally, (7) a dissenting opinion by one or more board members.

2.2.1. The Analysis Process and General Results

A total of 371 NSPE BER fact situations (comprising 475 cases) decided between 1958 and

1992 were chosen as the basis for the empirical analysis. The intent was to use these cases as the

case base for the computational model to be developed subsequently. Cases decided between

1993 and 1998 were excluded from the analysis so that they could be used as the trial set for the

experiments. The reason for choosing a larger set of earlier cases for the computational model’s

case base is discussed in detail in Section 4.1.4. Briefly, this division of foundational and trial

cases was chosen to set up a more realistic evaluation (i.e., increasing the chances that the trial set

of later cases would have the actual earlier cases available for citation) and to assure that a

reasonably large pool of cases could be cited by all of the trial cases.

All of the 371 fact situations were carefully read. For approximately 50 of the fact situations

the following steps were taken: (1) Text in the discussion section that either explicitly or

implicitly cited or discussed codes, past cases, or important issues was underlined or highlighted.

(2) An informal indication of the purpose of each citation or discussion was written next to the

underlined or highlighted text, e.g., “making an analogy to a past case,” “interpreting some terms

of the code,” “deciding which code takes precedence in the context of this case,” etc. After the

initial mark-up of the texts, a second pass was used to correlate the citations of the different fact

situations to ascertain whether a canonical set of techniques were applied. At this stage the

operationalization techniques discussed in Section 1.2 were identified and cataloged. Next, to

verify the general applicability of the operationalization techniques, a substantial number of the

371 NSPE BER cases that were not included in the original set of approximately 50 cases were

reread. Rereading these cases confirmed that the operationalization techniques were, in fact,

identifiable and repeated across a large segment of the foundational fact situations. Thus, it was

10 As discussed in Section 1.3.3, a fact situation that raises multiple ethical questions comprises multiple cases, one for
each question.

33

concluded that the NSPE BER implicitly applies the operationalization techniques in resolving

dilemmas and/or justifying its conclusions.

In addition to identifying the operationalization techniques, the empirical analysis also

indicated that the board employs a structured, yet evolving and dynamic, resolution process in

analyzing cases. In particular, the review board appears to resolve cases by:

1. Selecting potentially relevant codes and past cases.

2. Interpreting the potentially relevant codes and past cases in the context of the new

case.

• For a code or case that is clearly applicable or analogous to the new case,

establishing how the code or case impacts the decision in the new case (e.g., an

unviolated code supports a conclusion that the questioned action is ethical; a

similar past case with a few distinguishing facts may support a conclusion

opposite from that of the past case, etc.).

• For a code or case that is marginally applicable or analogous to the new case,

determining in what way the code is useful or relates to the discussion of the case

(e.g., the code relates to the actions of someone other than the main protagonist,

the past case raises an important ethical issue that merits discussion, etc.)

• For a relevant past case, reapplying (and, perhaps, reinterpreting) the code and

case citations of the past case to the new case.

3. Given the interpretations of Step 2, deciding whether the protagonist’s action(s)

were ethical, unethical, or ethical in a qualified way (e.g., “Engineer A was not

unethical, provided he did X (where X is an action not stated in the facts).”).

4. Recording the interpretations of Step 2 and the decision of Step 3 for use in future

case analyses.

In this dialectical process, codes and cases interact in an essential way; neither satisfactorily

supports decision making and justification without the other. New codes are sometimes

introduced, old codes are reworded, and new interpretations of codes (and cases) are provided in

the context of new cases. The changed and reinterpreted codes sometimes lead to case decisions

that differ from very similar or virtually identical circumstances in earlier cases – a nonmonotonic

reasoning process. In essence, the codes – and principles from which the codes are defined – act

like "guideposts," focusing engineers on important issues and dimensions of fact situations, but

34

not providing definitive resolutions without interpretation. The codes’ evolving abstract nature –

requiring grounding in the specific circumstances of cases – defies definition in terms of

deductive rules.

Finally, the empirical analysis indicated that temporal knowledge factors into the decision

making and justifications of the review board. Knowing the sequence of actions and events in an

engineering ethics scenario is important in deciding whether codes are relevant, violated, or not

violated. Likewise, temporal sequence can be important in drawing an analogy from one case to

another. Similar patterns of facts, including matching temporal relations, appear to help in

drawing analogies between cases. Small differences in the chronological sequence of actions and

events across cases can either invalidate an analogy altogether or turn a relevantly similar analog

into a case with distinguishing characteristics.

To illustrate these findings, the following sections present examples of the mark-up and

analysis of actual NSPE BER cases from the empirical study. In particular, these sections show

specific examples of (a) how the operationalization techniques are applied by the review board

and (b) how temporal knowledge affects the decision making of the board.

2.2.2. How Does the Review Board Use the Operationalization Techniques?

This section shows the way in which the review board employs operationalization techniques.

Several NSPE BER cases that were analyzed during the empirical analysis are used as examples.

Before discussing the examples, it is worth briefly mentioning that the analysis of the NSPE

BER discussions was necessarily somewhat subjective. Many conclusions rest upon implicit

assumptions of what the board meant and how it ties stated facts to its analysis. However, in any

analysis of free-form natural language text, such assumptions are unavoidable.

The first example is Case 90-5-1, the public safety case discussed in the previous chapter

(i.e., in Section 1.3.3 and shown in Figure 1-2). The facts of the case, the ethical question it

raises, and the relevant code provisions are shown in Figure 2-1. Recall that the case involves an

engineer who discovered serious structural defects during a building inspection. The engineer

reported the defects to his client but did not report the problems to an outside authority, because

his client requested confidentiality. The question is whether it was ethical for the engineer to

conceal his knowledge of the safety-related defects in deference to his client’s confidentiality.

35

Facts of Case 90-5-1: Failure to Report Information Affecting Public Safety
Tenants of an apartment building sue the owner to force him to repair many defects in the building that affect
the quality of use. The owner’s attorney hires Engineer A to inspect the building and give expert testimony in
support of the owner. Engineer A discovers serious structural defects in the building, which he believes
constitute an immediate threat to the safety of the tenants. The tenants’ suit has not mentioned these safety-
related defects. Upon reporting the findings to the attorney, Engineer A is told he must maintain this
information as confidential as it is part of a lawsuit. Engineer A complies with the request of the attorney.

Question:
Was it ethical for Engineer A to conceal his knowledge of the safety-related defects in view of the fact that it
was an attorney who told him he was legally bound to maintain confidentiality?

References:
Code II.1.a. – “Engineers shall at all times recognize that their primary obligation is to protect the safety,
health, property and welfare of the public. If their professional judgment is overruled under circumstances
where the safety, health, property or welfare of the public are endangered, they shall notify their employer or
client and such other authority as may be appropriate.”
Code II.1.c. – “Engineers shall not reveal facts, data or information obtained in a professional capacity
without the prior consent of the client or employer except as authorized or required by law or this Code.”

Figure 2-1: The Fact Situation, Question Raised, and Relevant Codes in Case 90-5-1

The most-relevant portion of the review board’s analysis of Case 90-5-1 is shown in Figure

2-2. Less-relevant portions are not shown, and the absence of this text is indicated by ellipses.

Text that appears to indicate the use of an operationalization technique by the board is underlined,

and the particular technique that is applied is shown on the right side of the figure with an arrow

(or arrows) pointing to the relevant underlined text. In the following paragraphs, each of the

applied operationalization techniques is discussed.

The board appears to apply the operationalization technique Cite an Analogous Precedent (a

type of Case Instantiation) in the first two paragraphs of Figure 2-2. Such a technique is applied

when the board wishes to draw attention to the relevant similarities between the current case and

a past case in order to argue that the conclusion reached in the past case should also be reached in

the present case. In the first sentence of their discussion, the board stresses the importance of an

engineer’s obligation to protect public safety. Next, the board explicitly cites Case 84-5-111 as an

example of a scenario in which this obligation was the overriding consideration in deciding the

case. The facts of the past case are then summarized. In the next paragraph, the underlined text

beginning “the Board noted that Section II.1.a. admonishes engineers to recognize that their

primary obligation is to protect the public” is critical in summing up the decision in Case 84-5-1

11 This case citation (as well as all other case citations in the NSPE BER texts discussed in this section) has been
modified to conform to the adopted case nomenclature used in the dissertation. In particular, a “1” was appended to
“Case 84-5,” signifying a citation to the first question of fact situation 84-5. Note that when a case enterer actually
transcribes a case, it is his or her responsibility to determine which specific case (i.e., question) of a fact situation is
referenced in the citing text.

36

and in drawing an analogy to the current case. Although the specific facts of Case 84-5-1 are

quite different from Case 90-5-1 – and 84-5-1 does not involve the issue of confidentiality, as

does 90-5-1 – the overriding issue of public safety is shared by both cases. In 84-5-1, the board

ruled that the engineer’s actions were unethical, and that decision appears to have supported, at

least in part, a similar conclusion in 90-5-1 (the conclusion is shown at the bottom of Figure 2-2).

The same text that summarizes the decision in Case 84-5-1 could also be said to invoke the

operationalization technique Reuse an Operationalization. This technique is used when the

board cites a past case in order to reuse an operationalization that was applied in that case. The

basic idea is that the operationalization from the board’s analysis of the past case is likely to also

be relevant in the context of the new case. The passage beginning “the Board noted (in 84-5-1)

that Code II.1.a. …,” indicates that II.1.a. was interpreted and linked to the facts of Case 84-5-1 in

the analysis of that case (i.e., a Code Instantiation was applied). By discussing that Code

Instantiation in the context of Case 90-5-1, the board indicates that the Instantiation is also

relevant to – in other words, it may be “reused” in – the current case.

The next operationalization technique that the board appears to apply in Figure 2-2 is Define

or Elaborate a General Issue or Principle. This technique is used to define or raise a relevant

issue by citing a past case in which the issue was involved. The cited past case is typically not

similar enough to the present case to consider it analogous or distinguishing, but the general issue

raised in that case is relevant in the context of the present case. The citation and discussion of

Case 82-2-1 in Figure 2-2 appears to fulfill this purpose. Case 82-2-1 involves the “obligation of

(an engineer) not to reveal information of the client without prior consent of the client,” and it is

cited by 90-5-1 for this reason. However, not only are the facts of 82-2-1 (see case summary in

Figure 2-2) significantly different from those in 90-5-1, but 82-2-1 also does not involve the

central issue of 90-5-1: public safety. Thus, Case 82-2-1 appears to have been cited simply to

make the reader aware of the issue of confidentiality, and not to draw attention to the similarities

between 82-2-1 and 90-5-1.

The central theme of Case 90-5-1 – the conflict between the public safety code II.1.a. and the

confidentiality code II.1.c. – is addressed by the next operationalization technique: Define the

Superior Code. This technique is used to arbitrate between two or more conflicting codes. The

board acknowledges the conflict between Codes II.1.a. and II.1.c. in the following passage: “It is

clear that there may be facts and circumstances in which the ethical obligation of engineers in

protecting the public health and safety conflict with the ethical obligation of engineers to maintain

the right of confidentiality…” In the final paragraph of Figure 2-2, the board makes it clear that

Code II.1.a. takes precedence over Code II.1.c. in this case: “… in cases where the public health

37

and safety is endangered, engineers not only have the right but also the ethical responsibility to

reveal such (confidential) facts …”

The obligation of the engineer to protect the public health and safety has long
been acknowledged by the Code of Ethics and by the Board of Ethical Review … A
good example is BER Case 84-5-1. There, a client planned a project and hired
Engineer A to furnish complete engineering services for a project. Because of the
potentially dangerous nature of implementing the design … Engineer A
recommended to the client that a full-time, on-site project representative should be
hired for the project. After reviewing the completed project plans and costs, the
client indicated to Engineer A that the project would be too costly if such a
representative were hired.

Engineer A proceeded with the work on the project even though he had
recommended that a full-time, on-site project representative should be hired. In
discussing the issue … the Board noted (in 84-5-1) that Code II.1.a. admonishes
engineers to recognize that their primary obligation is to protect the public safety,
health, property and welfare. Under the facts, Engineer A did not recognize this
primary obligation. … For that reason, Engineer A was in violation of Code II.I.a.

Although the public health and safety clearly is the most basic and fundamental
ethical obligation … other important ethical obligations exist ... One important
ethical consideration is the obligation of engineers not to reveal information of the
client without the prior consent of the client.

The Board has had reason to consider this ethical issue on occasion. In BER
Case 82-2-1, Engineer A offered home inspection services ... Engineer A performed
this service for a client for a fee and prepared a one-page written report, concluding
that the residence was in generally good condition requiring no major repairs, but
noting several minor items needing attention. Engineer A submitted his report to the
client showing that a carbon copy was sent to the real estate firm handling the sale of
the residence. The client objected ... In concluding that Engineer A acted unethically
… the Board concluded that although it did not appear from the facts that Engineer
A had acted with some ulterior motive … the principle of the right of confidentiality
on behalf of the client predominated.

Given these two cases, it is clear that there may be facts and circumstances in
which the ethical obligation of engineers in protecting the public health and safety
conflict with the ethical obligation of engineers to maintain the right of
confidentiality in data and other information obtained on behalf of a client…

It appears that Engineer A, having become aware of the imminent danger to the
structure, had an obligation to make absolutely certain that the tenants and public
authorities were made immediately aware of the dangers that existed… Engineer A
had an obligation not to reveal facts, data or other information in a professional
capacity without the prior consent of the attorney. However, there were valid
reasons why Engineer A should have revealed the information ...

Unlike the facts presented in BER Case 82-2-1, there is not any conflict or
potential conflict of interest that exists between owner and attorney with regard to
the information. ...

Code II.1.c. makes a clear exception concerning the obligation of engineers not
to reveal facts obtained in a professional capacity without the client’s consent. That
exception allows the disclosure of such information in cases authorized by the Code
or required by law. We believe that in cases where the public health and safety is
endangered, engineers not only have the right but also the ethical responsibility to
reveal such facts to the proper persons…

Conclusion:
It was unethical for Engineer A to not report the information directly to the

tenants and public authorities.

Figure 2-2: The NSPE BER Analysis of Case 90-5-1 and the Operationalization Techniques Applied

Case
Instantiation
(Cite an
Analogous
Precedent)

Define or
Elaborate
a General
Principle
or Issue

Define the
Superior
Code

Code
Instantiation

Reuse an Op
(Code
Instantiation)

38

The final operationalization technique indicated in the figure is a Code Instantiation. This

technique is used to interpret a code’s conditions and to discuss how the facts of the case satisfy

those conditions. In the analysis of Case 90-5-1, the board makes it clear that the engineer in this

case was compelled by the conditions of Code II.1.c. not to reveal his client’s confidential

information. However, in the final paragraph of the analysis, the board also cites two exceptions

to this application of the code: “(II.1.c.) allows the disclosure of such information in cases

authorized by the Code or required by law.” This interpretation of Code II.1.c. is critical to the

board’s final determination that the engineer was unethical in not reporting the safety hazard he

discovered. In other words, despite being told that “he must maintain (the structural defects) as

confidential,” the engineer’s primary obligation is to report the structural defects to an authority,

as “authorized by the Code,” in particular Code II.1.a. dealing with public safety.

As a side note, it is worth briefly mentioning that SIROCCO’s output for Case 90-5-1, shown

in Figure 1-2, compares favorably with the review board’s analysis. First, note that SIROCCO

suggests both of the codes cited by the review board in Figure 2-1 (i.e., II.1.a. and II.1.c.), as well

as citing additional public safety and confidentiality codes that could be considered relevant.

Note also that the program suggests Case 84-5-1 as a possibly relevant case. Finally, SIROCCO

correctly identifies the conflict between public safety and confidentiality that exists in this case.

The second example is Case 89-5-1. The fact situation, the ethical questioned raised, and the

relevant code references for this case are shown in Figure 2-3. The case involves an important

and commonly occurring issue in engineering ethics: a conflict of interest. Engineer A is retained

by a construction contractor to perform engineering services for the city of Downstream. The

contractor and Downstream become entangled in a financial dispute over the project Engineer A

participates in. Engineer A completes his work, but two years later he is contacted by

Downstream and asked to assist the city in filing an arbitration claim against the construction

contractor. Engineer A agrees to help the city, even though he used to work for the contractor.

The question is whether it was ethical for Engineer A to provide claim services to the city of

Downstream in this manner.

The most relevant portions of the review board’s analysis of Case 89-5-1 are shown in Figure

2-4. The board begins its analysis by stressing, in abstract terms, Engineer A’s obligation to tell

the truth. This is important to the analysis because the board assumes that part of Engineer A’s

promised services to Downstream will include his testimony at an arbitration hearing. They

discuss the obligation to tell the truth in connection with Code I.3., which requires engineers “to

issue public statements only in an objective and truthful manner.” This discussion effectively

amounts to a Code Instantiation of Code I.3., as the review board stresses (in the sentence

39

beginning “Obviously in circumstances where the engineer is providing testimony…”) the

relevance of this obligation to the particular circumstances of the case at hand, i.e., an engineer

who provides official testimony is obligated to tell the truth.

Facts of Case 89-5-1: Conflict of Interest - Claim Services to City
In the early stages of a project, Engineer A, a geophysical engineer, was retained by a construction contractor
to make field compaction tests in connection with work to be performed for the city of Downstream. The job
specifications stated that the contractor would be responsible for retaining the geophysical engineer with the
approval of the city engineer. The frequency of the testing would be determined by the city engineer. During
the course of the work, the contractor ran into financial difficulty, alleging that there was excessive testing
and that the soil borings did not represent actual conditions, and asked the city for additional funds. Two
years later, long after Engineer A's services were completed, the city brought an arbitration action against the
contractor. Engineer A was requested by the city to assist the city in developing a claim against the
contractor. Engineer A agrees and provides claim review and analysis services for the city.

Question:
Was it unethical for Engineer A to provide claim services to the city?

References:
Code I.3. - “Engineers, in the fulfillment of their professional duties, shall issue public statements only in an
objective and truthful manner.”
Code II.3.a. - “Engineers shall be objective and truthful in professional reports, statements or testimony. They
shall include all relevant and pertinent information in such reports, statements or testimony.”
Code II.3.c. - “Engineers shall issue no statements, criticisms or arguments on technical matters which are
inspired or paid for by interested parties, unless they have prefaced their comments by explicitly identifying
the interested parties on whose behalf they are speaking, and by revealing the existence of any interest the
engineers may have in the matters.”
Code II.4.a. - “Engineers shall disclose all known or potential conflicts of interest to their employers or
clients by promptly informing them of any business association, interest, or other circumstances which could
influence or appear to influence their judgment or the quality of their services.”
Code III.4.b. - “Engineers shall not, without the consent of all interested parties, participate in or represent an
adversary interest in connection with a specific project or proceeding in which the Engineer has gained
particular specialized knowledge on behalf of a former client or employer.”

Figure 2-3: The Fact Situation, Question Raised, and Relevant Codes in Case 89-5-1

While acknowledging the importance of telling the truth, as exemplified by Code I.3., the

board also suggests that there is an overriding consideration in this case. In particular, it suggests

that the engineer should not “participate in an adversary interest in connection with a specific

project … in which the engineer has gained particular knowledge on behalf of a former client or

employer.” (see the second sentence of the third paragraph.) This essentially summarizes the

conflict of interest that is central to this case. The board appears to apply the operationalization

technique Define the Superior Code in paragraphs two through five by giving precedence to Code

III.4.b. over Code I.3. and concludes that Engineer A’s actions were unethical. Although the

board does not explicitly state that Code III.4.b. takes precedence over I.3., their intent is clear

because (a) they focus their discussion on Code III.4.b. in the final three paragraphs and (b) their

final conclusion suggests the overriding importance of III.4.b. The board also suggests that this

40

conflict could have been avoided altogether if Engineer A had not agreed to participate in the

legal proceedings or if he had promised not to divulge any information related to the contractor’s

interest if he did agree to provide testimony.

…
As technical experts, engineers attempt to provide the most accurate and truthful

information available in order to best serve the public interest. This approach is
consistent with Code I.3 requiring engineers to issue public statements only in an
objective and truthful manner. While the importance of this Fundamental Canon
cannot be overstated, as with all provisions of the Code, it must be read in the
context of the entire Code. As we have noted on numerous occasions, the Code of
Ethics should not be viewed as an absolute, but rather, should be read as a series of
interwoven concepts which must be balanced among one another.

One of the basic ethical dilemmas contained in the Code relates to the duty to be
objective and truthful and the obligation to protect privileged and confidential
information of a client. This situation frequently arises when an engineer is called
upon to provide testimony as an expert witness or in some other capacity for a party
who has an interest which is in conflict with that of the engineer’s present or former
client. Obviously in circumstances where the engineer is providing testimony under
oath, the engineer has an ethical and legal obligation to provide honest, truthful and
complete testimony to the best of the engineer’s ability. To do otherwise would be to
act in violation of both the Code of Ethics and the laws which govern our common
law system.

Nevertheless, the fact that an engineer is requested to participate in some
capacity in connection with a legal or arbitration proceeding does not necessarily
require the engineer to either (1) agree to become involved in that legal proceeding,
or (2) divulge factual information which may bear upon the interests of a present or
former client. These two actions are extremely difficult to distinguish and for that
reason, both the Code of Ethics (Code III.4.b.) and this Board (Cases 76-3-1, 82-6-1)
have taken them together and determined that it would not be appropriate for an
engineer, without the consent of all interested parties, to participate in or represent
an adversary interest in connection with a specific project or proceeding in which
the engineer has gained particular knowledge on behalf of a former client or
employee.

Although both earlier cases interpreted the language contained in Code III.4.b.
under circumstances in which the engineer was providing direct testimony in court
or statements before a governmental entity, we believe the intent of Code III.4.b. is
to cover the broad array of circumstances in which an engineer is called upon to
provide assistance to another party whose interests are adverse to those of a present
or former client of the engineer. In fact, we believe that the assistance and services
provided in the instant case, that of “claims review and analysis” may raise more
sinister issues, because unlike testimony in open court or at a public hearing, the
assistance offered by Engineer A in an arbitration proceeding is not subject to the
rules of civil procedure and evidence.

… While we recognize that under certain circumstances the ethical commitment
of the engineer to a former client or a former employer may change, we do not
believe under the facts presented in this case that either a sufficient amount of time
has passed or that the circumstances have been altered to dilute the ethical
obligations owed by Engineer A to his former client, the contractor.

…
Conclusion:

It was unethical for Engineer A to agree to perform claims review and analysis
services for the city.

Figure 2-4: The NSPE BER Analysis of Case 89-5-1 and the Operationalization Techniques Applied

Code
Instantiation

Define
the
Superior
Code

Code
Instantiation

Group Cases

Case
Instantiation
(Cite an
Analogous
Precedent)

(Para. 3 to 5)

41

In the third and fourth paragraphs of Figure 2-4, the board applies a Group Cases

operationalization technique by combining Case 76-3-1 and Case 82-6-1 as examples of “cases

(that) interpreted the language contained in Code III.4.b. under circumstances in which the

engineer was providing direct testimony in court or statements before a governmental entity.”

The Group Cases operationalization technique is used to support a single illustrative purpose or

to apply a greater force to a conclusion. The citation of these cases can also be viewed as two

instances of the operationalization technique Cite an Analogous Precedent. The circumstances of

each case involves very similar facts and issues to that of Case 89-5-1: an engineer is confronted

by a conflict of interest in testifying against his or her current or former client. In both of the past

cases, the engineer’s conduct was found to be unethical and, by analogy, that ruling also supports

the conclusion in the present case.

The final operationalization technique that appears to be applied in the analysis of Case 89-5-

1 is a Code Instantiation of III.4.b. In the final two paragraphs of Figure 2-4, the board extends

the application of Code III.4.b. from legal proceedings to arbitration proceedings (and, in fact, to

“the broad array of circumstances in which an engineer is called upon to provide assistance to

another party whose interests are adverse to those of a present or former client of the engineer”).

The board also states, in the last paragraph, that sufficient time has not passed or circumstances

have not changed enough “to dilute the ethical obligations owed by Engineer A.” In essence, the

board links particular facts of Case 89-5-1 (i.e., the fact that Engineer A used to work for the

construction contractor, the fact that he likely gained “specialized knowledge” through that work,

and the fact that he subsequently performed work for Downstream that is “adversarial” to the

contractor’s interests) to Code III.4.b. in these paragraphs.

The final example of the application of operationalization techniques is Case 83-1-1, and it is

displayed in Figure 2-5. Notice that this case is part of a fact situation that comprises three cases,

one for each of three questions raised in the scenario. In Fact Situation 83-1, Engineer A works

for Engineer B and is told that he is going to be terminated. After being told of his termination,

but before the termination takes effect, Engineer A solicits work from clients of Engineer B.

During the same period, Engineer B distributes a brochure listing Engineer A as one of his key

employees and continues to distribute the brochure after Engineer A is terminated. The fact

situation raises the following three questions: (1) Was it ethical for Engineer A to solicit Engineer

B’s clients while still in his employ? (Case 83-1-1); (2) Was it ethical for Engineer B to distribute

a brochure listing Engineer A as a key employee after he had notified him of his termination but

before he was actually terminated? (Case 83-1-2); (3) Was it ethical for Engineer B to distribute

the brochure after Engineer A was actually terminated? (Case 83-1-3). The first case, 83-1-1, is

42

discussed in this section, while the second and third cases are discussed in the next section

(Section 2.2.3).

Fact Situation 83-1: Conflict of Interest – Duty of Loyalty of Terminated Engineer to Employer – Misleading
Brochure
Engineer A worked for Engineer B. On November 15, 1982 Engineer B notified Engineer A that Engineer B
was going to terminate Engineer A because of lack of work. Engineer A thereupon notified clients of
Engineer B that Engineer A was planning to start another engineering firm and would appreciate being
considered for future work. Meanwhile, Engineer A continued to work for Engineer B for several additional
months after the November termination notice. During that period, Engineer B distributed a previously
printed brochure listing Engineer A as one of Engineer B’s key employees, and continued to use the
previously printed brochure with Engineer A’s name in it well after Engineer B did in fact terminate Engineer
A.

Question 1: (Case 83-1-1)
Was it ethical for Engineer A to notify clients of Engineer B that Engineer A was planning to start a firm and
would appreciate being considered for future work while still in the employ of Engineer B?

Question 2: (Case 83-1-2)
Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key employee in view of the fact
that Engineer B had given Engineer A a notice of termination?

Question 3: (Case 83-1-3)
Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key employee after Engineer
A’s actual termination?

References:
Code I.4. - “Engineers, in the fulfillment of their professional duties, shall: Act in professional matters for
each employer or client as faithful agents or trustees.”
Code II.5.a. - “Engineers shall not falsify or permit misrepresentation of their, or their associates’, academic
or professional qualifications. They shall not misrepresent or exaggerate their degree of responsibility in or
for the subject matter of prior assignments. Brochures or other presentations incident to the solicitation of
employment shall not misrepresent pertinent facts concerning employers, employees, associates, joint
venturers, or past accomplishments with the intent and purpose of enhancing their qualifications and their
work.”
Code III.3.a. - “Engineers shall avoid the use of statements containing a material misrepresentation of fact or
omitting a material fact necessary to keep statements from being misleading; statements intended or likely to
create an unjustified expectation; statements containing prediction of future success; statements containing an
opinion as to the quality of the Engineers’ services; or statements intended or likely to attract clients by the
use of showmanship, puffery, or self-laudation, including the use of slogans, jingles, or sensational language
or format.”
Code III.4.a. - “Engineers in the employ of others shall not without the consent of all interested parties enter
promotional efforts or negotiations for work or make arrangements for other employment as a principal or to
practice in connection with a specific project for which the Engineer has gained particular and specialized
knowledge.”
Code III.7. - “Engineers shall not compete unfairly with other engineers by attempting to obtain employment
or advancement or professional engagements by taking advantage of a salaried position, by criticizing other
engineers, or by other improper or questionable methods.”

Figure 2-5: The Fact Situation, Questions Raised, and Relevant Codes in Case 83-1-1

43

The case presented before the Board raises a number of significant points that
have heretofore not been specifically addressed. In BER Case 77-11-1, the Board
ruled that four engineers who founded a new firm did not violate the Code of Ethics
by generally seeking work from former clients of their previous employer, but were
in violation of the Code with regard to projects for which they had particular
knowledge while working for their former employer. Although at first glance the
facts in Case 77-11-1 appear to be quite similar to the instant case, they are
distinguishable on two very important points: (1) In the instant case Engineer A
notified “current” and not former clients of Engineer B and offered professional
services to them. (2) Engineer A was still employed by Engineer B when Engineer
A notified the clients and others of the offer of professional services. We are
therefore now asked to decide whether one engineer in the employ of another who is
aware of a pending termination may ethically contact “current” clients of an
employer and offer professional services to the client without informing the
employer.

An engineer is expected to act, at all times in professional matters for the
employer, as a faithful agent and trustee (Code I.4.). That requires the engineer to
recognize both a duty of loyalty and good faith. An essential aspect of those is the
duty to disclose. Certainly it is not possible for an engineer to meet those
obligations to the employer if the engineer is engaging in such promotional activity
to the employer’s detriment. We do not mean to suggest that an employee who
severs all ties with the employer and then seeks to contact clients of the employer in
order to offer engineering services is in violation of the Code. To the contrary, those
were the facts of Case 77-11-1 and that case remains a proper interpretation of the
Code. Nor do we wish to suggest any restraint exists upon one’s absolute right to
select in all cases, the engineer of one’s choice. As we noted in Case 77-11-1, “We
have often held that (the Code) is not to be interpreted to give an engineer or firm a
right to prevent other engineers from attempting to serve former clients of other
firms.” Nevertheless, for the above-noted reason, it is concluded that Engineer A
violated Code I.4. by failing to act as a faithful employee.

Another issue related to the conduct of Engineer A is whether Engineer A
violated Code III.7. by competing with Engineer B using “questionable methods.” It
seems obvious that by failing to act as a faithful employee and by failing to disclose
the actions to Engineer B, Engineer A engaged in questionable methods of
competition. Even if Engineer A was not certain that the actions constituted
unethical conduct, Engineer A knew or should have known that they were
problematic and dubious and raised the possibility of an ethical violation.
Therefore, we are of the view that Engineer A was in violation of Code III.7.

A related question under the facts of this case is whether Engineer A violated a
duty of disclosure to all interested parties by entering into promotional efforts for
work as a principal in connection with work for which Engineer A had gained a
particular and specialized knowledge. The facts do not indicate whether Engineer A
was attempting to secure work through particular and specialized knowledge gained.
Assuming that in fact Engineer A had gained such knowledge and then sought such
work without full disclosure to the employer, Engineer B, it appears that Engineer A
would have violated Code III.4.a. of the Code. Again, Engineer A owes duties of
loyalty, good faith, and disclosure to the employer for which the breach constitutes a
violation of the Code. As an employee of Engineer B, Engineer A could not
ethically use proprietary information concerning clients, trade secrets, or other
valuable information of the employer without full disclosure to the employer.

…
Conclusion:
Question 1 (Case 83-1-1). It was unethical for Engineer A to notify clients of
Engineer B that Engineer A was planning to start a firm and would appreciate being
considered for work while still in the employ of Engineer B.

Figure 2-6: The NSPE BER Analysis of Case 83-1-1 and the Operationalization Techniques Applied

Case
Instantiation
(Cite a
Distinguishing
Precedent)

Code
Instantiation

Apply a
Hypothetical to
a Code

Code
Instantiation

44

The board’s analysis of Case 83-1-1 is shown in Figure 2-6. This analysis involves two

operationalization techniques that have not been previously discussed. In the first paragraph of

the analysis, the board employs Cite a Distinguishing Precedent, a type of Case Instantiation.

This operationalization technique is used to draw similarities between a present and a past case,

but ultimately its purpose is to distinguish the relevant differences between the cases.

The board cites Case 77-11-1 as similar to Case 83-1-1 because it involves ex-employees of a

firm who solicit work from former clients of that firm. However, the board also distinguishes the

two cases on the basis of two facts: “(1) In (Case 83-1-1) Engineer A notified ‘current’ and not

former clients of Engineer B and offered professional services to them. (2) Engineer A was still

employed by Engineer B when Engineer A notified the clients and others of the offer of

professional services.” These distinguishing facts appear to be critical to the board’s conclusion:

Engineer A is found to be unethical in soliciting clients of Engineer B (see the bottom of Figure

2-6), while in the past case (77-11-1), the engineers were not found to be unethical in soliciting

former clients of their former employer.

The last paragraph of the analysis of Case 83-1-1 contains the other operationalization

technique that has not yet been discussed. In this paragraph, the board appears to use the

operationalization technique Apply a Hypothetical to a Code. This technique is used to establish

the range of applicability of a code or to hypothesize unknown but likely facts that help to lead to

a conclusion. In this instance, the review board assumes that Engineer A uses “particular and

specialized knowledge” gained while performing work for Engineer B in order to solicit work

from clients of Engineer B. Such a fact would lead to a violation of Code III.4.a., the conflict of

interest code discussed in connection with the last case example.

Two additional operationalization techniques are indicated in the case analysis of Figure 2-6.

First, a Code Instantiation of I.4. appears to be applied in the second paragraph of the analysis.

Here, the board argues that Engineer A’s duties of loyalty, good faith, and disclosure – all

necessary aspects of his obligation to be a “faithful agent and trustee” (Code I.4.) – are violated

by his solicitation of his employer’s clients. In other words, the board expands on and interprets

Code I.4. and then links the code to the facts of the case that violate it. In particular, the

following facts are linked to a violation of Code I.4.: (1) Engineer A was employed by Engineer

B and (2) Engineer A solicited Engineer B’s clients while still employed by Engineer B. Finally,

another Code Instantiation, of Code III.7. (see the text of this code in Figure 2-5), appears to be

applied in paragraph three of the board’s analysis. Here, the board interprets the phrase

“questionable methods” to apply to Engineer A’s solicitation of Engineer B’s clients and hence

45

concludes that Code III.7. is violated. Again, the fact that Engineer A solicits Engineer B while

still employed by Engineer B underlies, and is linked to, the code violation.

2.2.3. How Does the Review Board Use Temporal Knowledge?

The examples in the previous section illustrate how the board uses operationalization

techniques in their analysis and justification of ethical dilemmas. In this section, several brief

examples are presented and discussed to illustrate how the review board uses temporal knowledge

and reasoning in their analyses.

First, consider how temporal knowledge can impact an analogy drawn between two cases.

Recall the use of the operationalization technique Cite a Distinguishing Precedent, discussed in

the previous section and depicted in Figure 2-6. Although Cases 83-1-1 and 77-11-1 were

deemed by the review board to be similar on a number of basic facts, the cases were also

distinguished by two critical comparison points, each of which involved temporal relationships.

First, the cases were distinguished because 83-1-1 involved the solicitation of current clients

versus former clients in Case 77-11-1. Second, the engineer in Case 83-1-1 was still employed

when he solicited these clients, while the engineers in Case 77-11-1 were not still employed. In

essence, the two cases are distinguishable because of mismatches in the temporal relationships

between the facts of the cases.

Temporal reasoning was also critical in the board's evaluation of the actions of Engineer B in

Cases 83-1-2 and 83-1-3 (see questions 2 and 3 in Figure 2-5). The question raised in Case 83-1-

2 is whether it was ethical for Engineer B to continue to distribute a brochure citing Engineer A

as a key employee after Engineer A had been informed of his termination. The question raised in

Case 83-1-3 is whether it was ethical for Engineer B to continue to distribute the brochure after

Engineer A had actually been terminated.

The board’s discussion of Cases 83-1-2 and 83-1-3 is shown in Figure 2-7. The underlined

text in the figure corresponds to the board’s apparent use of temporal reasoning in analyzing and

deciding the two cases. The ovals on the right indicate and point to the board’s temporal

reasoning that is relevant to each case.

In analyzing these two cases, the board focuses on Codes II.5.a. and III.3.a. (see Figure 2-5

for the text of these codes) and an interpretation of the open-textured terms contained in each.

For instance, in evaluating Code II.5.a., the board states that it must interpret “whether (1)

Engineer B in fact misrepresented ‘pertinent facts’ and (2) whether it was the ‘intent and purpose’

of Engineer B to ‘enhance the firm's qualifications and work.’ Both prongs must be present for a

violation of Code II.5.a. to exist.”

46

…
The other dimension of this case is the actions of Engineer B. Code II.5.a. of the

Code specifically states that brochures or other presentations incident to the
solicitation of employment shall not misrepresent pertinent facts concerning
employers, employees, associates . . . with the intent and purpose of enhancing their
qualifications and their work. Thus, the Code provision requires the Board to
interpret that provision to determine whether (1) Engineer B in fact misrepresented
“pertinent facts” and (2) whether it was the “intent and purpose” of Engineer B to
“enhance the firm’s qualifications and work.” Both prongs must be present for a
violation of Code II.5.a. to exist.

“Pertinent facts” are those facts that have a clear and decisive relevance to a
matter at hand. Another way to characterize pertinent facts is as those that are
“relevant and highly significant.” It is not unusual for an engineering firm that seeks
to promote itself for business reasons to include in such a brochure a statement of
the firm’s experience, its history, its qualifications, and the names and qualifications
of the members of the firm. The names of the firm’s members are often quite
significant to the client selecting the firm. The client may be familiar with an
individual member of the firm and the selection of that firm may be based on the
presence of that engineer in the firm as represented in the brochure. It is clear,
therefore, that the inclusion of the name of Engineer A in the firm’s brochure
constituted a misrepresentation of “pertinent facts.”

The second point of inquiry is whether it was the “intent and purpose” of
Engineer B to “enhance the firm’s qualifications and work” by including Engineer
A’s name in the promotional brochure after Engineer A had left the firm. The facts
presented in the case appear to demonstrate that Engineer B acted with “intent and
purpose” in distributing the misleading brochure. Certainly, Engineer B was well
aware of the impending termination of Engineer A. Engineer B was the very person
who terminated Engineer A. Engineer B distributed the brochure while Engineer A
was still employed but had been given a notice of termination by Engineer B. That
could easily mislead potential clients into believing that Engineer A, noted as a key
employee, would be available in the firm for consultation on future projects.
Moreover, Engineer B distributed the brochure after Engineer A had left the firm.
That is a clear misrepresentation of a pertinent fact with the intent to enhance the
firm’s qualifications and as such constitutes a violation of the Code.

Code III.3.a. states in part that “Engineers shall avoid use of statements
containing a material misrepresentation of fact or omitting a material fact necessary
to keep statements from being misleading; statements intended or likely to create an
unjustified expectation....” Although that Code appears to provide Engineer B with
the appropriate guidance under the facts in this case, we are of the view that a
requirement that Engineer B insert an addendum or an amendment in the brochure
informing prospective clients that Engineer A would soon be leaving the firm is both
impracticable and unnecessary. That would be a burden to all firms from the
standpoint of both time and cost. We do believe that during the interim period
between Engineer A’s being given notice of termination and his actual cessation of
employment, Engineer B had an obligation, during negotiations with a prospective
client, to inform the client of Engineer A’s pending termination. However, once
Engineer A had been formally dismissed, Engineer B had an ethical obligation to
cease using the brochure with Engineer A’s name in it entirely.

Conclusion:
Question 2 (Case 83-1-2). It was not unethical for Engineer B to distribute a
previously printed brochure listing Engineer A as a key employee provided Engineer
B apprised the prospective client during the negotiation of-Engineer A’s pending
termination.
Question 3 (Case 83-1-3). It was unethical for Engineer B to distribute a brochure
listing Engineer A as a key employee after Engineer A’s actual termination.

Figure 2-7: The NSPE BER Analysis of Cases 83-1-2 and 83-1-3 and the Importance of Temporal
Reasoning

Critical
Temporal
Reasoning
Regarding
83-1-3

Critical
Temporal
Reasoning
Regarding
83-1-2

47

Temporal reasoning is used to help interpret and link the facts of the two cases to the open-

textured terminology of the codes. For instance, in evaluating the question raised in Case 83-1-2,

the board indicates that “intent and purpose to enhance the firm's qualifications and work” is

present because Engineer B clearly knew that Engineer A would be terminated; in fact, he was

the “very person who terminated Engineer A.” Further, the board concludes that by distributing

the brochure during Engineer A’s termination notice period, Engineer B “could easily mislead

clients.” In deciding this question, the board finds Engineer B’s actions to be questionable but

not wholly unethical if he apprises prospective clients of Engineer A’s pending termination.

The review board is less forgiving in their decision on Case 83-1-3 and, again, this appears to

be because of temporal considerations. The board states unequivocally that Engineer B’s

distribution of the brochure citing Engineer A as a key employee after Engineer A left the firm

“is a clear misrepresentation of a pertinent fact with the intent to enhance the firm’s qualifications

and as such constitutes a violation of the Code.” In other words, the board believes that the

passage of time between the notification that Engineer A was to be terminated and the actual

termination is critical to determining Engineer B’s ethical obligations in this matter.

Case 89-5-1, discussed in the previous section (see Figure 2-3), also involved temporal

reasoning by the review board. In deciding whether it was ethical for Engineer A to provide claim

services for the city of Downstream and against a construction contractor for whom he had

previously worked, the review board apparently applied a Code Instantiation of III.4.b. to the

facts of the case to try to resolve the issue (see the bottom of Figure 2-4). As part of this

Instantiation, the board considered the question of whether enough time had passed between the

completion of the engineer’s work for the contractor and the time of the claim services. The

general idea was that the engineer’s obligation to his former employer could be considered

completed if enough time had passed. The board did not believe that sufficient time had passed

to make that assertion in Case 89-5-1. Thus, it appears that in some situations the board considers

durations of actions and events and how these impact the applicability of codes.

Finally, consider Case 76-5-1, shown in Figure 2-8. In this case, Engineer A provides

engineering services for the XYZ Development Company in connection with a subdivision. XYZ

declares bankruptcy and pays Engineer A a portion of the payment for his services. PDQ buys

the subdivision property and decides to make major changes to the original plans. Engineer A

negotiates with PDQ to update the plans, but the negotiations collapse when Engineer A claims

that he should be paid the remainder of money owed to him by XYZ from the original project.

After terminating negotiations, PDQ retains Engineer B to revise the plans. The question raised

48

in this case is whether it was ethical for Engineer B to accept the assignment under these

circumstances.

Facts of Case 76-5-1: Supplanting - Use of Second Engineer After Bankruptcy of Client
The XYZ Development Company retained Engineer A for engineering services related to a subdivision
project. During the course of the work by Engineer A the XYZ Development Company was declared
bankrupt and underwent bankruptcy proceedings. Engineer A filed a claim for payment for work done along
with other creditors and was paid a proportion of the amount due him in accordance with the bankruptcy
procedure. The PDQ Development Company bought up the property and plans to develop it with some major
changes from the original development plan. Engineer A contacted PDQ to offer a continuation of his
services.
During the negotiations between Engineer A and the PDQ firm, Engineer A claimed that under the agreement
with PDQ he should be paid for his original work for the XYZ firm over and above the amount received from
the bankruptcy proceeding. The PDQ firm refused this condition and negotiations were terminated. The PDQ
firm then retained Engineer B to proceed with the engineering services to complete the revised development
plan. Engineer A contends that Engineer B was unethical by his action in taking the assignment under these
circumstances.
Question:
Was Engineer B unethical in taking the engineering assignment under the circumstances?

References:
Code 11(a). - “The Engineer will not attempt to supplant another engineer in a particular employment after
becoming aware that definite steps have been taken toward the other's employment.”

Figure 2-8: The Fact Situation, Question Raised, and Relevant Code in Case 76-5-1

At the time this case was decided, Code 11(a) stipulated that an engineer “will not attempt to

supplant another engineer in a particular employment after becoming aware that definite steps

have been taken toward the other’s employment.” The analysis of the review board regarding

this case, shown in Figure 2-9, focuses on this code and its application in the context of the

current case. The board discusses and analyzes the temporal aspects of the code by referring to a

past case, 62-18, that states that “the ‘supplanting’ rule cannot apply when the client has

terminated the services of the engineer before retaining another.” The board then applies these

temporal constraints to the facts of Case 76-5-1 by stating that “when Engineer B entered the

scene, Engineer A had no contract with PDQ and negotiations had been terminated. Thus, the

client was free to turn to another engineer.” For this reason, the board ultimately concludes that

Engineer B was not unethical in taking the engineering assignment from PDQ.

In summary, these examples illustrate that the NSPE BER sometimes employs temporal

reasoning in order to analyze and decide engineering ethics dilemmas. Temporal knowledge can

be helpful in determining when ethics codes apply and when analogies across cases are valid.

49

In previous cases we have made it abundantly clear that §11(a) does not give an
engineer an exclusive right or claim on a particular client or for a particular project.
As we said as early as Case 62-10-1, and affirmed in Case 73-7-1, "there can be no
question but that the client has a right to change from one consulting engineer to
another." And we have also noted that the "supplanting" rule cannot apply when the
client has terminated the services of the engineer before retaining another (Case 62-
18-1). Also, in Case 64-9-1 we restated the principle that for the "supplanting"
standard to apply the facts must demonstrate that the complaining engineer either
had a contract for the work, or had been selected for negotiation by the client for the
particular work, citing a similar result in Case 62-18-1. (For other supplanting
instances see Cases 59-2-1 and 65-8-1.)

Applying these same observations to the facts at hand, it is clear that when
Engineer B entered the scene, Engineer A had no contract with PDQ and
negotiations had been terminated. Thus, the client was free to turn to another
engineer.

It is not material to the ethical question that Engineer A had not received full 71-
10-1 payment for his previous services. In Case we made the point that nothing in
§11(a) expresses the idea that the ethical standard should turn on whether or not the
engineer had been paid his full fee. Even if that standard were to be applied (as
contended by two dissenting members in Case 59-2-1 if the owner terminated the
engineer for unjust causes) the rationale would not apply here because Engineer A
had been paid "in full" to the extent that the law provided. In other words, the very
purpose of the bankruptcy proceeding is to wipe out all debts by whatever amounts
can be recovered and paid from the assets of the bankrupt.

Accordingly, Engineer A did not in fact have any further legal claim against the
original client, nor certainly did he have any legal claim against the PDQ firm, never
having had a contract with it. He was free, of course, to endeavor to have the PDQ
firm pick up the part of his fee which was wiped out by the bankruptcy, but when
that effort failed he had no further standing to prevent the PDQ firm from
proceeding with a new engineer for its purposes.

Conclusion:
Engineer B was not unethical in taking the engineering assignment under the
circumstances.

Figure 2-9: The NSPE BER Analysis of Case 76-5-1 and the Importance of Temporal Reasoning

Representing the Temporal Information: A Brief Preview of SIROCCO’s Representation

As we shall see in the next chapter, SIROCCO’s representation language allows a case

enterer to specify both case facts and the temporal relationships between those facts. For

instance, the representation of Case 83-1-1 (Figure 2-5), as provided by a case enterer, includes

the facts: (1) Engineer A is employed by Engineer B; (2) Engineer B has clients; (3) Engineer B

informs Engineer A of his termination; and (4) Engineer A solicits Engineer B’s clients12.

SIROCCO’s temporal representation also allowed the case enterer to specify that fact (4)

occurred during facts (1) and (2). That is, Engineer A solicited Engineer B’s clients while he was

still employed by Engineer B, the crux of the ethical issue in Case 83-1-1. This issue is

essentially captured by Code Instantiations of Codes I.4. and III.7., which are linked to facts (1),

12 Appendix B, section B-5 presents a detailed discussion of how fact situation 83-1 was transcribed into the
representation language.

Critical
Temporal
Reasoning
Regarding
76-5-1

50

(2), and (4) in the case enterer’s representation. The other examples discussed in this section

were similarly represented as facts, temporal relationships between those facts, and Instantiations.

However, as we shall see in Chapter 4, the capturing of facts and temporal relationships in

Instantiations, as illustrated above, did not make an overall impact on SIROCCO’s capability to

retrieve codes and past cases. Why did this occur when the examples in this section – as well as a

more detailed example of SIROCCO to be presented in Section 3.3 – seem to indicate that

temporal knowledge is important? A number of possible reasons will be proposed and discussed.

For instance, perhaps the case enterers were not sensitive to the subtleties required to specify

temporal relationships. Perhaps temporal knowledge is not appropriately emphasized in the

representation: temporal relationships are only implicitly part of an Instantiation, i.e., as

“background” knowledge about the facts that are linked to cited codes and cases, and they are all

treated equally. These – and other – possibilities will be discussed in Section 4.3.2.

2.2.4. Limitations of the NSPE BER Codes and Cases

In closing the discussion of the NSPE BER subdomain, it is important to note that the NSPE

BER codes and cases are not without drawbacks [Harris et al., 1999, p. 16-17]. First, the NSPE

BER case analyses tend to focus exclusively on the NSPE codes. There is little or no discussion

of more general principles, such as honesty, fairness, and veracity. Second, there are very few

dissenting opinions in the analyses of NSPE BER cases. Almost every case represents a

consensus of the board. There are times in ethical analysis when disagreement and unresolved

issues are more important than reaching consensus. Finally, most of the NSPE BER cases focus

on issues faced by independent consulting engineers rather than engineer employees of

corporations. Also, the cases are mostly related to civil engineering and certain important topics,

such as “whistle blowing,” are sparsely represented.

On the other hand, because the NSPE BER cases tend to be ordinary – in contrast to dramatic

and highly publicized cases such as the Challenger case discussed in Chapter 1 – most engineers

can relate to these ethical dilemmas from their everyday practice. Also, the analyses of the board

are usually clear, concise, and carefully reasoned. Finally, the NSPE BER cases potentially

provide a vital learning resource to the engineering community. The vitality and usefulness of the

published cases could be further enhanced by providing intelligent access to the cases, as

proposed and implemented in this dissertation. Such access might help stimulate discussion and

educate engineers far more effectively than access to a static database would.

51

3. SIROCCO: Retrieving and Analyzing Cases, Codes, and
Operationalizations

SIROCCO was developed to test the primary and secondary theses of the dissertation and to

determine how well the operationalization techniques could be employed computationally to

improve retrieval and organize the resulting information. Ultimately, SIROCCO is intended to be

an intelligent assistant to users who are charged with the responsibility of analyzing and deciding

engineering ethics cases. The program is designed to retrieve information – past cases, codes,

and operationalizations – and provide that information so that the user can develop an argument

or rationale for a particular conclusion to an ethical dilemma.

The previous two chapters introduced SIROCCO’s high-level architecture and explained how

the board of ethical review decided cases and justified conclusions. Tying these two threads

together, this chapter presents a detailed view of SIROCCO’s architecture. SIROCCO’s design is

greatly influenced by and utilizes the reasoning techniques that were directly observed and

inferred from the board’s case analyses.

After presenting the details of SIROCCO’s operation, illustrated by an extended example, the

chapter then focuses on how the most critical features of the program are implemented. In

particular, it describes how the operationalization techniques inform and are implemented within

the architecture, how temporal knowledge is used during SIROCCO’s retrieval, and how the

program explains its reasoning,

3.1. SIROCCO’s Architecture

A general overview of SIROCCO’s architecture was first presented in Section 1.3.3. In this

section, I briefly review the architecture and illustrate it in greater detail by following a trace of

SIROCCO processing an example case.

A diagram of SIROCCO’s architecture is shown in Figure 3-1. Briefly to recap, the program

begins retrieval and analysis by accepting a new engineering ethics case, called the target case,

that has been transcribed into the Ethics Transcription Language. ETL represents a case as a

chronology of Facts, each of which describes an action or event that occurred in the scenario.

Each Fact is composed of a Fact Primitive, a verb phrase that describes an action or event, a set of

Actors or Objects that execute or are acted upon by the Fact Primitive, and a Time Qualifier,

which describes how that Fact is related to other Facts in time. In addition to the target case,

SIROCCO accepts a series of parameters that customize the behavior of each phase of the

algorithm.

52

The program’s primary goal is to find the cases, codes, and operationalizations that are most

relevant to the target case. All of this information is accessible to SIROCCO through its case

base (i.e., the source cases), shown in the upper right portion of Figure 3-1. The source cases,

have been transcribed into the Extended Ethics Transcription Language. This superset of ETL

provides elements to model the board’s rationale. Each source case may be linked to relevant

cases by case operationalizations and to relevant codes by code operationalizations (see the

dashed arrows in Figure 3-1). The operationalizations represent the fundamental components

used by the board to argue or rationalize their decision in a source case.

Figure 3-1: SIROCCO’s Architecture

53

The program begins by retrieving a set of source cases that match, at least superficially, to the

target case. This is achieved by retrieving and scoring all cases that contain at least one of the

target’s Fact Primitives, or an abstraction of one of the primitives. Each source case is essentially

scored by the degree to which its Fact Primitives overlap the Fact Primitives of the target. Fact

Primitives are cast in a hierarchy known as the Action/Event Hierarchy and matching between

source and target may occur at higher levels of abstraction in that structure. The source cases are

also scored by the degree to which their Critical and Questioned Facts match the Facts of the

target case. The scoring formula is discussed in detail later in this chapter.

After scoring all of the source cases, Stage 1 of SIROCCO passes the top N cases to a second

stage of retrieval, known as structural mapping, which performs a graph mapping of the target

case to each of the N cases, using A* heuristic search. SIROCCO’s graph-mapping operation

does not encompass all Facts found in the target and source; not only would this be

computationally expensive, it would also ignore important operationalization knowledge,

represented in EETL, that certain Facts are more critical than others. Instead, the graph-mapping

operation focuses on mapping the target case to the Code Instantiations and Case Instantiations

found in the top-rated source cases. As first defined in Section 1.3.3 and Figure 1-1, an

Instantiation is a type of operationalization which relates the Questioned Fact, certain critical

Facts, and the temporal sequence of those Facts to a code or case citation.

The structural mappings from the target to the Instantiations of each source case in Stage 2

are scored and sorted according to percentage of match and are passed to the next phase of the

program, the Analyzer. The Analyzer selects and displays the final output of the program (i.e.,

suggested codes, cases, and operationalizations) by using a separate set of heuristics for each

information type. In making the program’s final selections, the heuristics take into account the

results of both Stage 1 and Stage 2, as well as other operationalization information associated

with the top-rated cases.

SIROCCO was developed in Common Lisp on a Power Macintosh. Loom [MacGregor,

1990; Brill, 1993], a knowledge representation language that runs under Common Lisp, was used

to represent all of the components of EETL, as well as the Action/Event Hierarchy and Code

Hierarchy.

3.1.1. An Example Target Case and Some Potentially Relevant Source Cases

To illustrate the operation of SIROCCO, the processing of a target case example is traced in

its entirety in this chapter. The example case is 90-5-1, the public safety scenario originally

54

introduced in Chapter 1 (in Figure 1-2) and shown in its entirety in Chapter 2 (in Figure 2-1 and

Figure 2-2). For convenience, the facts of the example case are reprinted in Figure 3-2.

Facts of Case 90-5-1:
Tenants of an apartment building sue the owner to force him to repair many defects in the building that affect
the quality of use. The owner's attorney hires Engineer A to inspect the building and give expert testimony in
support of the owner. Engineer A discovers serious structural defects in the building, which he believes
constitute an immediate threat to the safety of the tenants. The tenants' suit has not mentioned these safety-
related defects. Upon reporting the findings to the attorney, Engineer A is told he must maintain this
information as confidential as it is part of a lawsuit. Engineer A complies with the request of the attorney.

Question:
Was it ethical for Engineer A to conceal his knowledge of the safety-related defects in view of the fact that it
was an attorney who told him he was legally bound to maintain confidentiality?

Figure 3-2: The Example Target Case, 90-5-1

In Case 90-5-1, Engineer A is confronted with conflicting obligations. He has an obligation

to protect the public, but he also has an obligation of confidentiality to his client. Engineer A

discovers serious safety problems in a building he is asked to inspect, but he does not report the

safety problems to anyone because his client requests confidentiality. As discussed in Chapter 2,

the review board concluded that Engineer A’s action was unethical, because his obligation to

public safety outweighed his obligation of confidentiality in these circumstances. The board

justified their conclusion by applying, for example, the code operationalization Define the

Superior Code (arguing that the public safety code II.1.a. takes precedence over the

confidentiality code II.1.c.) and the case operationalization Cite an Analogous Precedent

(drawing an analogy to the source case 84-5-1).

Three source cases that are potentially relevant to Case 90-5-1 are depicted in Figure 3-313.

The first case, 76-4-1, is the one most strikingly similar to the target. In this case, Engineer Doe

is hired to inspect waste produced by a manufacturing plant. As in Case 90-5-1, the engineer

does, in fact, discover that a safety hazard exists, i.e., the manufacturing waste is below

established standards. Doe’s client, the XYZ Corporation, terminates his contract and instructs

him “not to render a written report.” As in the target case, Doe does not write a report or contact

any outside authority about his findings, presumably to protect his client’s confidentiality.

The second case, 99-1-1, also involves a scenario in which an engineer, Engineer Smith,

performs an inspection for a client, discovers that a safety hazard exists, and is told by his client

not to report his findings. However, in several respects, this case is fundamentally different from

55

the target case and source Case 76-4-1. First, unlike Cases 90-5-1 and 76-4-1, Engineer Smith

proceeds to report the safety hazard to the appropriate authority, the Environmental Protection

Agency (EPA). Second, there appears to be an issue of competence involved in this scenario. It

is stated that Smith has “limited experience” in environmental engineering, the field in which he

renders an evaluation. Third, and most critically, the case does not raise a direct question about

Engineer Smith’s actions. Rather, it questions the actions of Engineer X, a senior engineer with

the EPA, who handles Smith’s report. Engineer X believes, perhaps correctly, that Smith’s

analysis is faulty, and he makes harshly critical comments about Smith and his methodology to

colleagues at the EPA. Thus, the question in this case is whether it is ethical for Engineer X to

publicly criticize Engineer Smith, a fundamentally different issue from the conflict between

public safety and confidentiality raised in Cases 90-5-1 and 76-4-1.

The final case, 84-5-1, is similar to the target in the sense that an engineer’s judgment is

overruled by a client in a situation in which safety is at issue. Confidentiality, however, is not as

central an issue to this case as it is to Cases 90-5-1 and 76-4-1. Here, an engineer develops plans

for a project and, because of the potential dangers involved in the project’s construction phase,

recommends to his client that an “on-site representative” be hired to oversee the work. The client

rejects this proposal because of costs, yet the engineer proceeds with the project nonetheless. In

this situation, it is not clear that a standard or law has been or will be violated, so there is

seemingly no compelling obligation for the engineer to keep “confidences,” as in Cases 90-5-1

and 76-4-1. However, the fact that the engineer’s judgment is overruled, resulting in potential

public harm, is highly relevant. In fact, as shown in Figure 2-2 of Chapter 2, this case was

actually cited by the board as an analogous precedent in its analysis of Case 90-5-1.

Throughout this chapter the example target and source cases are employed to illustrate the

representation and functionality of SIROCCO. As we will see, the similarities and differences

between the example target case and source cases, described above, will factor prominently in

SIROCCO’s similarity assessment. Case 76-4-1 will be correctly recognized as highly similar to

the target throughout SIROCCO’s retrieval and analysis algorithm. On the other hand, Case 99-

1-1 will initially be considered as a good match by Stage 1 but will ultimately, and appropriately,

be rejected later in that stage. Finally, Case 84-5-1 will initially be rejected by Stage 1 but then

later selected by the Analyzer as a potentially relevant case.

13 Cases 76-4-1 and 84-5-1 are actual cases from the NSPE BER corpus of cases. Case 99-1-1 is a hypothetical
variation of case 76-4-1, devised to illustrate how changes to critical aspects of a scenario can change SIROCCO’s
processing of that scenario.

56

Facts of Case 76-4-1:
Facts: The XYZ Corporation is advised by a State Pollution Control Authority that it has 60 days to apply for
a permit to discharge manufacturing wastes into a receiving body of water. XYZ is also advised of the
minimum standard that must be met.
In an effort to convince the authority that the receiving body of water will still meet established
environmental standards after receiving the manufacturing wastes, the corporation employs Engineer Doe to
perform consulting engineering services and submit a detailed report.
After completion of his studies but before completion of any written report, Doe concludes that the discharge
from the plant will lower the quality of the receiving body of water below established standards. He further
concludes that corrective action will be very costly. Doe verbally advises the XYZ Corporation of his
findings. Subsequently, the corporation terminates Doe's contract with full payment for services performed,
and instructs him not to render a written report to the corporation.
Thereafter, the control authority calls a public hearing, and the XYZ Corporation presents data at the hearing
to support its view that the present discharge meets minimum standards. Doe learns of the hearing and
XYZ's presentation but does not report his earlier contradictory findings to the authority.
Question:
Was it ethical for Doe not to report his findings to the authority upon learning of the hearing?

Facts of Case 99-1-1:
The ABC Corporation hires Engineer Smith as a consultant to inspect their facility and assure that its
manufacturing waste meets Environmental Protection Agency (EPA) standards. Engineer Smith has limited
experience in environmental engineering.
After completion of his inspection, Smith concludes that smog from ABC's plant violates the Clean Air Act.
Smith verbally advises the ABC Corporation of his findings. Subsequently, the corporation terminates
Smith's contract, pays him in full, and instructs him not to render a written report. Engineer Smith does not
write a report, but he does contact the EPA about his findings.
After being contacted by Smith, the EPA performs an independent inspection and determines that, in fact, the
ABC Corporation's discharge does meet established standards. Engineer X, a senior engineer for the EPA,
makes harshly critical comments to his colleagues at the EPA about Engineer Smith and the methodology he
applied in his inspection.
Question:
Was it ethical for Engineer X to make critical comments about Engineer Smith to his colleagues?

Facts of Case 84-5-1:
The client plans a project and hires Engineer A to furnish complete engineering services for the project.
Because of the potentially dangerous nature of implementing the design during the construction phase,
Engineer A recommends to the client that a full-time, on-site project representative be hired for the project.
After reviewing the completed project plans and costs, the client indicates to Engineer A that the project
would be too costly if such a representative were hired. Engineer A proceeds with his work on the project.
Question:
Was it ethical for Engineer A to proceed with his work on the project knowing that the client would not agree
to hire a full-time project representative?

Figure 3-3: Three Example Source Cases, 76-4-1, 99-1-1, and 84-5-1

3.1.2. Knowledge Representation in SIROCCO: An Ontology of Engineering
Ethics

SIROCCO cannot process the natural language descriptions of input target cases such as 90-

5-1. Instead, a web site (www.pitt.edu/~bmclaren/ethics) was devised to enable untrained (but

graduate-level) persons to transcribe cases into the Extended Ethics Transcription Language, the

57

knowledge representation language of SIROCCO’s cases. The web site contains a Participant's

Guide with instructions on how to transcribe ethics cases into EETL and a Reference Shelf of

useful materials, including the full vocabulary of EETL and an example set of 47 transcribed fact

situations. A comprehensive description of the web site, along with a full reprint of the

Participant’s Guide, is provided in Appendix B.

The Extended Ethics Transcription Language essentially provides an ontology of the

engineering ethics domain. It includes the basic components and structures for representing the

factual description of a case (including the raw facts, the temporal relationships between facts, the

types of actors and objects involved, and the question raised by the case) and an analysis of a

case. The Ethics Transcription Language is a subset of EETL that provides the components

necessary for the factual description of a case only. A target case presented to SIROCCO for

analysis must be represented in ETL (i.e. a factual description only), while a source case in

SIROCCO’s case base must be represented in full EETL (i.e., a factual description and an

analysis representation). The constraints on the ontology are defined by the ETL grammar (see

Figure 3-5 below) and the valid attribute values of an analysis representation (see “The Extended

Ethics Transcription Language (EETL),” below, and Appendix sections B7, B8, and B9). Other

critical structures in SIROCCO’s ontology are two abstraction hierarchies, the Action/Event

Hierarchy and the Code Hierarchy.

In addition to the distinction between EETL and ETL, there is a representational distinction

between fact situations and cases in SIROCCO. A fact situation is a representation of the actions

and events of a scenario but is not focused on a particular questioned action or event of that

scenario. A case, on the other hand, is a fact situation with a particular fact selected as the

questioned action or event. Thus, if there are multiple questions raised in one scenario, a fact

situation may have several associated cases. Note that it is typically more convenient to refer to

cases, so fact situations are mentioned and discussed in the dissertation only when it is necessary

to do so. Figure 3-4 provides a general schematic of the use of EETL and ETL and the

relationship between target cases, source cases, and fact situations.

This section begins with a description of ETL, followed by a discussion of EETL, an

introduction to the Action/Event Hierarchy and the Code Hierarchy, and, in conclusion, a

discussion of the elements of the representation that were ultimately not used by SIROCCO’s

algorithm. Throughout, the example target case, 90-5-1, is used to illustrate the representation.

58

Fact Situation 1 Fact Situation 2

Source Case 1

Represented using the Ethics Transcription Language (ETL)

Fact Chronology
Action or Event 1
Action or Event 2
 …
Action or Event N-1
Action or Event N

Questioned: Action or Event N-1
Outcome: …
Protagonist: …
Supporting Evidence : …
Conflicting Evidence : …
Background Evidence: …

Source Case 2

Represented using the Extended Ethics Transcription Language (EETL)

Questioned: A ction or Event N
Outcome: …
Protagonist: …
Supporting Evidence : …
Conflicting Evidence : …
Background Evidence: …

Fact Chronology
Action or Event 1
Action or Event 2
 …
Action or Event M-1
Action or Event M

Target Case 1
Questioned: Action or Event M

Figure 3-4: The Use of EETL and ETL and the Relationship between Fact Situations and Cases

The Ethics Transcription Language (ETL)

The standard vocabulary of the Ethics Transcription Language comprises: (1) Actor and

object Types, a list of the types of actors and objects that may appear in the engineering ethics

scenarios; (2) Fact Primitives, a list of the actions and events in which the actors and objects may

participate; and (3) Time Qualifiers, a list of temporal relations that specify how the actions and

events relate to each other in time. There are presently 70 Actor and Object Types, 190 Fact

Primitives, and 10 Time Qualifiers in the definition of ETL. The entire set of Actors, Objects,

Fact Primitives, and Time Qualifiers in the current version of SIROCCO is provided in Appendix

A.

ETL allows a case to be described as an ordered list (i.e., the Fact Chronology) of short

sentences, each of which is a Fact and satisfies the grammar of a <Fact> as shown in Figure 3-5.

59

<Fact-Chronology> := <Fact> [<Fact> …]
<Fact> := <Fact-#> <Fact-Phrase> [(Questioned Fact <X>)]

<Time-Qualifier> [,<Time-Qualifier>, ...]
<Fact-Phrase> := <Fact-Primitive> [<Fact-Modifier>] <Actor-Or-Object>

[<Actor-Or-Object> | (<Fact-Phrase>)]
[<Actor-Or-Object> | (<Fact-Phrase>)]

<Fact-#> := <Positive-Integer>
<Fact-Primitive> := An instance of a Fact-Primitive
<Actor-Or-Object> := An instance of an Actor or an Object
< Fact-Modifier> := partially | substantially | limited | extensive
<Time-Qualifier> := Pre-existing fact |

After the start of <Fact-#> [, <Fact-#>, ...] |
Starts at the same time as <Fact-#> [, <Fact-#>, ...] |
<Time-Period> after the start of <Fact-#> [, <Fact-#>, ...] |
After the conclusion of <Fact-#> [, <Fact-#>, ...] |
Immediately after the conclusion of <Fact-#> [, <Fact-#>, ...] |
<Time-Period> after the conclusion of <Fact-#> [, <Fact-#>, ...] |
Ends <Fact-#> [, <Fact-#>, ...] |
Occurs during <Fact-#> [, <Fact-#>, ...] |
Occurs as part of <Fact-#> [, <Fact-#>, ...] |
Occurs concurrently with <Fact-#> [, <Fact-#>, ...] |

<Time -Period> := <Y> Days | <Y> Weeks | <Y> Months | <Y> Years
<X> := Empty | <Positive-Integer>
<Y> := Many | Several | <Positive-Integer>
<Positive-Integer> := 1 ... N

Key: | = Alternative; [] = Optional; < > = Grammar element
Regular font indicates literal placement of language (e.g., "Pre-existing fact ")
Italicized font indicates a general description (i.e., "An instance of a Fact-Primitive ")

Figure 3-5: The Grammar for the Ethics Transcription Language (ETL)

In essence, the Fact Primitive in each Fact Phrase is a verb phrase that indicates a specific

action or event involving actors, objects, or similarly constituted Fact-Phrases. It is treated, in

effect, like a function with up to three arguments (Fact-Primitive arg1 [arg2] [arg3]), where arg1

is the Actor-Or-Object serving as the subject of the verb phrase. An important objective was to

allow the case enterers to transcribe the cases in as natural a way as possible. Thus, in the Fact

Chronologies, human case enterers put arg1 before the Fact Primitive as they would the subject of

a verb in a sentence. Each of the Facts is listed in a table in approximate chronological order as

indicated by its Fact-#. Time Qualifiers specify additional detail about the chronological ordering.

A Fact Chronology for Case 90-5-1 is shown in Figure 3-6. The corresponding table of actors

and objects is shown in Figure 3-7. The case enterer has designated Fact 12 as the Questioned

Fact; this fact corresponds most closely to the question posed by the board in the natural language

60

version of Case 90-5-1 (Figure 3-2). The web site’s Participant’s Guide, which is reproduced in

its entirety in Appendix B, provides instructions on how to perform this task.

1. Apartment Building <may be hazardous to safety>. Pre-existing fact

2. Apartment Building Owner <owns> Apartment Building. Occurs during 1

3. Residents of Apartment Building <reside in> Apartment Building. Occurs during 1, 2

4. Residents of Apartment Building <file a lawsuit or arbitration action against>
Apartment Building Owner <because> (Apartment Building <may be hazardous to
safety>).

Occurs during 3

5. Apartment Building Owner <is legally represented by> Owner’s Attorney. Occurs during 4

6. Owner’s Attorney <hires the services of> Engineer A <for> (Engineer A <inspects>
Apartment Building).

Occurs during 4, 5

7. Engineer A <inspects> Apartment Building. Occurs during 6

8. Engineer A <discovers that> (Apartment Building <fails standards and may be
hazardous to safety.>)

Occurs during 7

9. Engineer A <knows> (Government Authority <should be informed about the hazard
or potential hazard>).

Occurs during 8

10. Engineer A <informs> Owner’s Attorney <that> (Apartment Building <fails standards
and may be hazardous to safety.>)

Immediately after
the conclusion of 8

11. Owner’s Attorney <instructs> Engineer A <to> (Engineer A <withholds information
from> Anyone Else <regarding> Apartment Building).

After the
conclusion of 10

12. Engineer A <does not inform> Anyone Else <that> (Apartment Building <fails
standards and may be hazardous to safety.>) [Questioned fact]

After the
conclusion of 11

Figure 3-6: The Fact Chronology of Case 90-5-1

1. Apartment Building –> House.
2. Apartment Building Owner –> Client.
3. Residents of Apartment Building –> General Public.
4. Owner’s Attorney –> Attorney.
5. Engineer A –> Engineer.
6. Anyone Else –> General Public.
7. Government Authority –> Government Authority.

Figure 3-7: The Actors and Objects in Case 90-5-1

Fact Primitives have alternate forms (e.g., inverse, plural, negative) that allow the case

enterer to choose the appropriate expression for specific situations. For instance, in step 12 of

Figure 3-6, the negative form of the Fact Primitive “… informs … that …” is employed. All of

the alternate forms are linked to the base form of that Fact Primitive, and SIROCCO treats the

alternate forms as equivalent to the base form for purposes of initial retrieval14.

14 Note, however, that a positive-to-negative mapping between target and source can be specified by the user to yield a
lesser match score during structural mapping.

61

Fact Primitives are of three types: Events, States, and Terminating Events, to ensure that the

Time Qualifiers are used in a consistent manner. Events have relatively short duration. States

have relatively long duration. Terminating Events are special events that typically end a State. In

selecting Fact Primitives, case enterers are instructed to take the primitive’s type into

consideration. For example, <is employed by> in Fact 3 in Figure 3-6 is a State primitive. It

properly represents a relatively long term of employment during which some of the other events

of this case occur. If the case facts had focused on the events of being offered and accepting

employment, then certain Event Fact primitives would be more appropriate (e.g., <is offered

employment by>, <accepts an offer of employment from>).

Fact Modifiers may be attached to Fact Primitives to indicate partial participation in states or

events. “Partially” and “substantially” indicate that an actor was responsible for a quantifiable

portion of the fact (i.e., either less than half or more than half, respectively). “Limited” and

“extensive” indicate that the actor was responsible for a portion of the fact that can be expressed

only in a qualitative way.

After the case enterer has identified the Facts and marked the Questioned Fact or Facts, he or

she assigns Time Qualifiers to clarify the chronological relationships between each Fact and other

Facts in the Fact Chronology. The Time Qualifiers provided in ETL are those that appeared to be

the most common and representative of the engineering ethics scenarios, according to the

engineering ethics case study. In addition, an attempt was made to provide Time Qualifiers that

are naturally expressed by humans. Each of the 10 Time Qualifiers represents a disjunctive group

of one or more of Allen’s temporal relations [1983] and, as we shall see during the discussion of

SIROCCO’s Stage 2 retrieval in Section 3.1.4, the Allen relations provide a formal way to

propagate temporal relations throughout a chronology and thus to use those relations in the

structural mapping algorithm. Figure 3-8 provides a table of all of the Time Qualifiers and their

mappings to Allen’s temporal relations.

In order to make temporal specification easier for case enterers, Allen’s temporal relations

weren’t used directly. First, it was believed that some of the Allen relations aren’t typically or

naturally expressed by humans when they discuss time periods. For instance, how often does one

say that event A “meets” event B? Second, using the relations directly would have forced the

case enterers to provide disjunctive groups of relations between Facts, a difficult and unnatural

task, instead of providing single relations between Facts as with the Time Qualifiers. Of course,

abstracting the temporal relations introduces some imprecision. On balance, however, this

appeared to be an important and necessary trade-off to achieve the goal of having independent

case enterers transcribe the cases.

62

SIROCCO's Time Qualifiers Allen’s Temporal Relations

Pre-existing fact15 B, C, Fi, M, O

After the start of ... A, D, F, Mi, Oi

Starts at the same time as ... S, Si

<X time> after the start of ... D, F, Oi

After the conclusion of ... A, Mi

Immediately after the conclusion of ... Mi

<X time> after the conclusion of ... A

Ends ... F, Mi, Oi

Occurs during ... / Occurs as part of ... D, F, S

Occurs concurrently with ... E

Figure 3-8: Mapping of SIROCCO’s Time Qualifiers to Allen’s Temporal Relations

As an example of how the Time Qualifiers map to Allen’s temporal relations, consider “After

the start of …” from Figure 3-8. This qualifier specifies that a Fact may be after (A), during (D),

finishes (F), met by (Mi), or overlapped by (Oi) another Fact. The “After the start of …” qualifier

and its relation to the Allen temporal relations can be visualized by inspecting the chart of the

Allen relations shown in Figure 3-9. Notice that A, D, F, Mi, and Oi all have starting times that

are later than the base time interval, depicted with a “y” at the top of the figure.

On the web site, the Time Qualifiers are not described in terms of Allen’s relations, but,

instead, in terms that are more relevant to the transcription task. In particular, each qualifier has

associated information that is intended to guide the case enterer’s choice – for example its

intended use, what one needs to know to apply it, and links to other possible qualifiers and to case

examples.

15 “Pre-existing fact” defines a global time relation that starts before all other Facts in the chronology, except other
Facts that are also pre-existing. All of the other qualifiers explicitly designate a Fact or Facts (depicted by ellipses (…)
in the table) for which the specified time relation holds.

63

y

After A

Before B

Contains C

During D

Equals E

Finishes F

Finished by Fi

Meets M

Met by Mi

Overlaps O

Overlapped by Oi

Starts S

Started by Si

x

x

x

x

x
x

x
x

x
x

x

x
x

x Relation y Key

Figure 3-9: Allen’s Temporal Relations [Koomen, 1989, p. 3]

Each Fact in the chronology must have at least one Time Qualifier but may have more than

one. In the Fact Chronology of Case 90-5-1, Figure 3-6, perhaps the most critical temporal

relationship is that between Facts 11 and 12, in which Engineer A is told by the Attorney that he

must keep the potential safety hazard confidential (in Fact 11) and then he does not inform

anyone of that critical information (in Fact 12). This sequence of events is indicated by the

“After the conclusion of 11” Time Qualifier assigned to Fact 12. Although this sequence did not

prove compelling to the board in their conclusion – they decided in favor of the engineer’s

obligation to public safety over confidentiality – it is certainly arguable that this event sequence

was instrumental in prompting the board to consider the confidentiality obligation.

The goal is for the case enterer to represent the important events in the case as accurately as

possible, given the somewhat limited set of Fact Primitives, Actors, and Objects. In some

instances, a case enterer may not be able to be completely accurate, but he or she is asked to do

his or her best. Throughout the development of SIROCCO and the transcription of the

foundational cases, the ETL vocabulary was gradually supplemented. For instance, the case

enterers identified important missing Fact Primitives and Actor or Object Types. However, after

the transcription of the 184 foundational cases, the size of the vocabulary appeared to have

leveled off, at least for the types of engineering ethics cases found in the Selected Topics group.

64

During the period in which the trial cases were transcribed, no changes were made to the ETL

vocabulary.

The Fact Chronology of Figure 3-6 is only one interpretation of the facts of Case 90-5-1. For

a variety of reasons, different case enterers may produce different interpretations. Despite the

step-wise instructions of the Participant's Guide, a case enterer must make a number of judgments

including:

1. Deciding whether certain facts should be represented at all. It is not always

necessary, or even possible, to represent every sentence of a fact situation, assigning

Fact Primitives to every piece of information. Some of the facts in the natural

language text of the case may simply not be relevant to the ethical dilemma.

2. Recording facts that are implied but not explicitly stated in the text. Often, critical

facts are not explicitly stated but are nonetheless relevant and should be recorded.

For instance, the text of Case 90-5-1, shown in Figure 3-2, does not state that

Engineer A “knows that a government authority should be informed about the safety

hazard.” Yet it appears reasonable, even important, to specify this fact, as is done in

step 9 of the Fact Chronology of Figure 3-6.

3. Deciding whether to reference other facts within a fact. The arguments of a Fact

Primitive may be filled by other Fact Phrases as in Facts 4, 6, 8, 9, 10, 11, and 12 in

Figure 3-6. This supports flexibility in expression, alternative formulations, and

explicit linking of facts to one another.

4. Deciding on a particular Fact Primitive when multiple Fact Primitives may be

possible. ETL provides multiple ways to express the same or similar concepts.

Similar primitives are clustered together in the Action/Event Hierarchy (to be

discussed) and SIROCCO uses this clustering information to assess similarities

between similar primitives.

An important issue addressed in this dissertation is the empirical question of whether ETL is

expressive enough, and SIROCCO’s similarity metric flexible enough, to support the program in

doing an acceptable job of case retrieval despite the limitations and need for the subjective

judgments discussed above. The empirical evidence, discussed in Chapter 4, indicates that the

language supports SIROCCO's retrieval algorithm at least well enough to out perform several

competing retrieval methods.

65

The Extended Ethics Transcription Language (EETL)

Representing a case to input as a target problem for SIROCCO’s analysis involves the

application of the Ethics Transcription Language and the steps described above. Submitting a

case to the case base, on the other hand, requires all of the above, plus a representation of the

board’s analysis of the case using the Extended Ethics Transcription Language. The additional

representation required to complete a case for inclusion in SIROCCO’s case base is discussed in

this section.

In summary, the EETL analysis representation provides a conclusion (e.g., Ethical, Unethical,

or Unknown) and a justification or argument for that conclusion. For instance, a representation

of the board’s analysis for example Case 90-5-1 is depicted in Figure 3-10. As can be seen at the

top of the figure, the board concluded that Engineer A, the Questioned Actor in this case, acted

unethically by not informing anyone of the public safety problems he discovered while inspecting

the apartment building. Engineer A’s questioned, and ultimately unethical, action is represented

by Fact 12 in the Fact Chronology, and a link to that Fact is provided at the top of the analysis

representation.

The case enterer provides a summary of the board’s argument or justification in support of its

conclusion. Three tables are used for this purpose. The first table is filled with the codes and

cases that were cited by the board and that, in the circumstances of the current case, support the

board’s conclusion. The second table is populated with the cited codes and cases that conflict

with the board’s conclusion in these circumstances. The citations in this table run counter to the

board’s conclusion but were nonetheless overridden in the final decision. The third table contains

codes and cases that were cited for informational or background purposes. These elements may

have relevance to the case, but they do not provide strong evidence either for or against the

board’s conclusion.

For instance, consider the categorization of the board’s code and case citations in the analysis

of Case 90-5-1 in Figure 3-10. (In reviewing the analysis representation, it is suggested that the

reader refer back to Figure 2-2, an abbreviated version of the NSPE BER’s actual analysis of this

case.) Code II.1.a. and Case 84-5-116 are listed as citations that support the conclusion that

Engineer A’s action was unethical. Code II.1.a. states:

Engineers shall at all times recognize that their primary obligation is to protect the safety, health,

property and welfare of the public. If their professional judgment is overruled under

16 In the tables, a case “name” is read as the value in the Case column appended by the value in the Q# column. For
instance, the case in the first table is read as “84-5-1,” because the case reference is “84-5” (from the Case column) and
the question number is “1” (from the Q# column).

66

circumstances where the safety, health, property or welfare of the public are endangered, they

shall notify their employer or client and such other authority as may be appropriate.

Questioned Fact(s): Fact 12

Questioned Actor or Actors: Engineer A

The Board's Conclusion: Unethical

The board cited the following evidence in support of their conclusion:

Code Code
Status

How
Cited

Grouped
With

Over
rides

Why Relevant? Why Violated, Not
Violated, Changed,
or Not Applicable?

II.1.a Violated Explicitly
discussed

None II.1.c ^ Engineer's judgment is overruled in
a particular professional circumstance.
[11]

Overruling the Engineer's judgment
may lead to the endangerment of the
safety, health, property or welfare of
the public [8, 9] ^

^ In the given situation,
Engineer does not hold
paramount the safety,
health, property, and
welfare of the public
[12] ^

Case Citation
Type

How
Cited

Grouped
with

Q # Why Relevant? Why Distinguished
or Analogous?

84-5 Analogous
Precedent

Explicitly
discussed

None 1 ^ % Engineer's judgment is overruled
in a particular professional
circumstance. % [11]

% Engineer complies with the client's
judgment % [12] ^

^ % Engineer's
complicity could result
in a potentially
dangerous situation %
[1, 8, 9] ^

The board cited the following evidence that conflicts with their conclusion:

Code Code
Status

How
Cited

Grouped
With

Over
rides

Why Relevant? Why Violated, Not
Violated, Changed,
or Not Applicable?

II.1.c Not violated Explicitly
discussed

None None ^ Engineer has a client [6] Engineer
obtains confidential facts, data, or
information through work for the
client. [7, 8]^

^ Engineer does not
reveal confidential
facts, data, or
information to
unauthorized parties
[12] ^

The board cited the following background information that neither directly supports nor directly
conflicts with their conclusion:

Case Citation
Type

How
Cited

Grouped
with

Q # Why Relevant? Why Distinguished
or Analogous?

82-2 Relevant, But
Not
Controlling

Explicitly
discussed

None 1 ^ % Engineer has a client % [6] %
Engineer obtains confidential facts,
data, or information through work for
the client. % [7, 8]

% However, in the present case there
is no issue of "conflict of interest" as
there was in 82-2 % [6, Inference
based on facts] ^

^ NA ^

Figure 3-10: The Analysis Representation of Case 90-5-1

67

The board interprets this code as requiring Engineer A to report the safety violations,

particularly considering that the engineer’s professional judgment has been overruled (i.e., by the

attorney). Furthermore, the board argues that Code II.1.a. takes precedence over the

confidentiality code, II.1.c. in these circumstances; this is represented in Figure 3-10 by the

inclusion of II.1.c. in the row headed by II.1.a. and beneath the column titled “Overrides.” Case

84-5-1 is cited as an analogous precedent. In this previously decided case, an engineer’s

judgment was also overruled in circumstances in which public safety might have been at risk.

Similarly, in the prior case the engineer also did not attempt to dispute the overruling of his

judgment by, for instance, contacting appropriate “authorities.” The board came to the

conclusion that the engineer’s action in Case 84-5-1 was unethical, citing Code II.1.a., and the

board held the circumstances and conclusion of the previous case as an exemplar for the

conclusion in Case 90-5-1.

On the other hand, Code II.1.c., the confidentiality code, states:

Engineers shall not reveal facts, data or information obtained in a professional capacity without

the prior consent of the client or employer except as authorized or required by law or this Code.

As has been discussed, this code argues against the board’s conclusion. That is, to report the

safety violations he has discovered, the engineer must, at the same time, violate his client’s

confidences. The board acknowledges the tension between the two codes, but they also clearly

indicate that Code II.1.a. predominates in this situation. The conflict of Code II.1.c. with the

conclusion is represented by the presence of that code in the second table of Figure 3-10.

The final table contains those citations that provide relevant and useful background

information, but do not directly impact the conclusion reached by the board. For instance,

consider Case 82-2-1, found in the third table of Figure 3-10. This past decided case seemed to

be cited by the board to introduce and discuss the importance of confidentiality. However, the

particular circumstances of the prior case are significantly different; in particular, there is no issue

of public safety, so this past case was not interpreted, by the case enterer, as providing

precedential support either for or against the board’s decision in Case 90-5-1.

Each row of the tables provides additional detail about each citation. Most important are the

last two columns of each row. The “Why Relevant” column is intended for sentences that explain

why the code or case would be considered relevant to the current case. The last column, with

different titles for code citations versus case citations, is intended for sentences that provide

evidence that the citation is violated, not violated, changed, or not applicable (for codes), or

distinguished or analogous (for cases).

68

In these last two columns, the Code and Case Instantiations are effectively defined17. The

case enterer creates the Instantiations by linking the Facts of the Fact Chronology to declarative

sentences that represent the cited codes and cases. For a code citation, the declarative sentences

are rephrasings of the original text of the code. The declarative code sentences are predefined

and provided on the web site, to be copied by the case enterer as he or she transcribes a case. For

a case citation, the sentences are an interpretation of the key issues of the past case. These

sentences are not predefined; they are the personal interpretation of the case enterer and are

constructed from scratch.

Consider the first row of the first table in Figure 3-10, the row representing the citation of

Code II.1.a. This code is relevant for two reasons. First, the “Engineer’s judgment is overruled

in a particular professional circumstance,” and this general statement is best supported by Fact 11

of the Fact Chronology of Case 90-5-1 (Figure 3-6), the fact in which the attorney instructs

Engineer A not to reveal the public safety problems he has discovered. Second, “Overruling the

Engineer’s judgment may lead to the endangerment of the safety, health, property or welfare of

the public” is best represented by the eighth and ninth Facts of the Fact Chronology. These two

facts state that Engineer A discovers the problems that may lead to a potential safety hazard and

that the engineer knows that a government authority should be alerted of such facts. Finally, the

code is violated under these circumstances because “In the given situation, Engineer does not

hold paramount the safety, health, property, and welfare of the public.” This general statement is

supported in specific terms in the Fact Chronology by the last fact, in which Engineer A

withholds his knowledge of the public safety problems. Altogether, the Facts 8, 9, 11, and 12

form a Code Instantiation operationalization for Code II.1.a. in Case 90-5-1.

By filling in tables like those in Figure 3-10, the case enterer records the particular Facts in

the problem that seem to best answer the questions: Why is the code provision relevant? Why was

it violated? Why was it not violated? Why is the past case relevant? Why is the past case an

analogous precedent? Why is it a distinguishing precedent? Answering these questions by

specifying the relevant Facts defines the Code and Case Instantiations in that problem. The case

enterers are instructed to do the best they can at identifying the Facts the review board regards as

important for explaining the relevance and disposition of the cited codes and cases.

In many instances, the Facts of the Fact Chronology do not, by themselves, provide adequate

support for the sentences of the code and case citations. For this reason, there are several special-

purpose citation support elements that can also be used: “Hypo,” “Unstated Assumption,” and

17 Note, however, that the columns are not explicitly called “ Instantiations” in Figure 3-10. This is because
Instantiations are internal SIROCCO constructs. They are mapped from the user-friendly table representations, but are

69

“Inference Based on Facts.” A “Hypo” is used when the board explicitly states that they are

making an assumption in order to claim that a particular code or case is relevant to, violated, did

not violate or is analogous to the target case. Typical phrases that introduce a “Hypo” in the

analysis texts are: “Assuming that…”, “Provided that …” and “If we assume that …” When a

“Hypo” is used, the corresponding quotation from the actual text of the analysis is copied to the

table, along with the “Hypo” indicator. An “Unstated Assumption” is applied by the case enterer

when nothing in the analysis text appears to directly support the cited code or case; yet, by virtue

of the board having cited this code or case, it is clear the board must be making a supporting

assumption. In other words, an “Unstated Assumption” is like a “Hypo” except that the board

does not explicitly state the assumption in the analysis text. Finally, the support element

“Inference Based on Facts” is used when the board appears to be inferring new facts based on the

stated facts. That is, the board asserts some unstated fact that was apparently derived as a logical

conclusion of the stated facts.

The other columns of the analysis representation provide various additional information that

describes the code and case citations. For instance, the column headed by “Code Status”

indicates whether a cited code is violated, not violated, not applicable, changed, or unknown in

the present circumstances. The same column for cases, titled by “Citation Type,” indicates

whether a cited case is an analogous precedent, distinguishing precedent, or a relevant (but not

controlling) citation. The column headed by “Grouped With” indicates, for both codes and cases,

those citations that are cited in tandem because of similarity or their combined support for a

particular position (i.e., this is effectively how the Group Codes and Group Cases

operationalization techniques are represented).

 All of the possible values for all of the columns in the tables are provided in Appendix A.

The Participant’s Guide section of Appendix B reproduces the instructions that were given to the

case enterers for filling in these tables.

The tables in Figure 3-10 provide a form the case enterer fills out to annotate those aspects of

the review board’s analysis of a problem that relate most closely to the operationalization

techniques. This information will be of use in helping SIROCCO retrieve relevant cases in the

future.

not labelled Instantiations, as such, for the case enterer.

70

The Action/Event Hierarchy

Although Fact Primitives are specified at the most detailed level in the Fact Chronologies,

SIROCCO is able to reason with the primitives at a more abstract level using a structure known

as the Action/Event Hierarchy. The Action/Event Hierarchy, developed through an analysis of the

NSPE corpus of cases, is a characterization and abstraction of the most-important actions and

events that typically occur in engineering ethics scenarios. As will be discussed, the

Action/Event Hierarchy is an important component of SIROCCO's retrieval algorithm. Cases

may potentially be retrieved and matched based on similarity at higher levels of the hierarchy; in

fact, both stages of SIROCCO’s retrieval algorithm utilize the Action/Event Hierarchy to perform

some form of inexact matching. This abstraction hierarchy helps with the problem, discussed

earlier, that different case enterers may have different interpretations of the facts, as different Fact

Primitives can be matched at higher levels of the abstraction hierarchy.

A portion of SIROCCO’s Action/Event Hierarchy is shown in Figure 3-11. Fact Primitives

are displayed in italics as the leaves of the hierarchy. Abstract categories are the inner nodes of

the hierarchy. The depth of the hierarchy ranges from 2 to 5 levels and there are a total of 33 first

level abstraction categories (i.e., those categories directly beneath the Fact-Primitive-Root). Note

also that the hierarchy is a network and not a tree; for instance, “reviews-and-analyzes” is

classified in two abstraction categories. The Action/Event Hierarchy is shown in its entirety in

Appendix A.

The Fact Primitive “inspects,” found within the abstraction category “Perform-Engineering-

Analysis-or-Testing-Work” in Figure 3-11, is used in the seventh fact of Case 90-5-1’s Fact

Chronology (see Figure 3-6). When SIROCCO’s analysis of the 90-5-1 is traced later in this

chapter, it will be shown how the Action/Event Hierarchy helps SIROCCO improve the match

between the example case and a case that uses a primitive from the same abstraction category.

71

Fact-Primitive-Root

… Perform-Professional-Engineering-Services-or-Work …

 …

Perform-Miscellaneous-Engineering-Work Perform-Engineering-Analysis-Review-or-Testing-Work

 Perform-Engineering-Design-or-Analysis-Work

 designs redesigns reviews-and-analyzes performs-test records-the-existence-of

 inspects collects-test-samples-from

provides-engineering-services-on

in-his-capacity-as-takes-the-action

Figure 3-11: A Portion of SIROCCO’s Action/Event Hierarchy

Code Representation and the Code Hierarchy

Other than the natural language that describes a code, each individual code in SIROCCO is

represented in a purely extensional way. In particular, each code is represented by the set of

Code Instantiations that links that code to specific Facts of the cases in which it is cited. There is

no antecedent or consequent to a code, as in standard production rule representation.

The provisions of the NSPE code of ethics are cast in an abstraction hierarchy, the Code

Hierarchy, which is an adaptation of the NSPE’s subject reference list [1996, p. 8]. Essentially,

the Code Hierarchy groups related codes together according to similarity of the issues they

address. The Code Hierarchy is used by SIROCCO to assess the citation overlap of possible case

citations to the input cases, and it also provides important similarity information used to quantify

SIROCCO’s accuracy and to compare SIROCCO to the other methods. In essence, the Code

Hierarchy provides a means for assessing inexact matches between a pair of codes. For instance,

two different codes found in the same abstract code category are considered an inexact match for

purposes of calculating the F-Measure used in the experiments (see Section 4.1.3).

72

Code I.1. : “Hold paramount the safety, health and
welfare of the public in the performance of their
professional duties.”

 …
Code II.1.a. : “Engineers shall at all times recognize
that their primary obligation is to protect the safety,
health, property and welfare of the public. If
their professional judgment is overruled under
circumstances where the safety, health, property
or welfare of the public are endangered, they shall
notify their employer or client and such other authority
as may be appropriate.”

 Duty-to-Public-Safety
Code II.1.b. : “Engineers shall approve only those engineering
documents which are safe for public health, property,
and welfare in conformity with accepted standards.”

Code-Root
Code III.2.b. : “Engineers shall not complete, sign or seal
plans and/or specifications that are not of a design safe to
the public health and welfare and in conformity with accepted
engineering standards. If the client or employer insists on such
unprofessional conduct, they shall notify the proper authorities
and withdraw from further service on the project.”

Code III.2. : “Engineers shall at all times strive to serve the
public interest.”

 Community-Service-and-Civic-Affairs
Code III.2.a. : “Engineers shall seek opportunities to be of
constructive service in civic affairs and work for the advance-
ment of the safety, health and well-being of their community.”

Code III.2.c. : “Engineers shall endeavor to extend public
knowledge and appreciation of engineering and its
achievements and to protect the engineering profession
from misrepresentation and misunderstanding.”

Figure 3-12: A Portion of SIROCCO’s Code Hierarchy

A portion of the Code Hierarchy is shown in Figure 3-12. Codes are the leaves of the

hierarchy with code names italicized. Abstract categories are the inner nodes of the hierarchy.

There are a total of 75 codes in the hierarchy, 31 abstraction categories, and the maximum depth

of the hierarchy is 4. As with the Action/Event Hierarchy, the Code Hierarchy is a network and

not a tree. Note, for instance, that Codes III.2. and III.2.a. are classified as both “Duty-to-Public-

Safety” and “Community-Service-and-Civic-Affairs” types. The Code Hierarchy is shown in its

entirety in Appendix A.

Because the NSPE BER cases were decided over such a long period of time, both the content

and naming of the codes has changed from 1958 to the present. At two separate times during the

40-year existence of the code, in 1964 and again in 1981, the review board reorganized and

completely renamed all of the codes. However, the vast majority of the content of the original

codes remains, in some form, in the present code of ethics. Most of the changes made by the

review board over the years involved (a) adding new codes and (b) modifying or extending the

73

language of existing codes. There are very few instances in which codes were deleted altogether

from the code of ethics.

The inconstancy of the codes is handled in the following way in the SIROCCO model. The

code of ethics as of July, 199318 and its present naming convention are used as the basis for all

cases discussed in this dissertation. For cases decided prior to 1981, when the present convention

was established, the transcription translation program translates each old citation to the July, 1993

version of that citation. That is, the case enterers provide the code citations that were applied at

the time a case was decided, and then the translation process maps those citations to SIROCCO’s

current code set. Although this normalization process effectively allows SIROCCO to ignore the

differences between old and new codes, the changes to the codes are handled, at least to a

minimal extent, by SIROCCO’s application of Rewrite a Code operationalizations. In particular,

when the board discusses code changes in their analyses, and those changes are recorded by the

case enterer, SIROCCO has the capability to cite the code changes in the context of new cases.

On the other hand, small changes to the code language are, for the most part, not highly critical to

SIROCCO’s retrieval objective. Even in instances of changes to the codes, it is important that

SIROCCO point the user to past cases and codes that might be relevant to a new situation.

In instances in which the old code citations do not map to new citations, SIROCCO carries

the old citation as part of the representation of a case. Outdated citations may be presented to the

user as suggested codes, but they are not used in estimating the value of a case citation or other

operationalizations. In addition, the unmapped old code citations are ignored in assessing

SIROCCO’s (and the other models’) accuracy.

Components of the Knowledge Representation Not Used by SIROCCO’s Algorithm

The Extended Ethics Transcription Language was designed, developed, and deployed for case

acquisition prior to the completion of the SIROCCO algorithm. Although it was originally

believed that all of the knowledge representation of EETL would provide support for retrieval and

analysis in SIROCCO, a number of the structures and components discussed in this chapter were

ultimately not incorporated into the program’s reasoning process. In this section, I briefly

mention the unused structures and discuss why they are not used.

Perhaps the most significant unused aspect of the representation are the Actor and Object

types. Originally, it was believed that these types would provide contextual information in

assessing the similarity between Facts of different cases. For instance, one case involving an

18 Some minor language changes and a couple new codes were added in 1996, but these are not included in the present
version of SIROCCO.

74

“Engineer” and an “Engineering Manager” and another involving an “Engineer” and an

“Engineering Firm” might be considered similar based on similarity between actors and roles

(i.e., an employee-employer relationship). Although there are a few notable exceptions, the Actor

and Object information did not appear, in general, to provide the intended benefit. Rather, the

Fact Primitives and the mapped consistency of Actors and Objects across different pairs of

matching facts seemed to provide most of the useful similarity information. Perhaps some

exceptions could have been implemented. For instance, a set of codes stipulates how an engineer

should behave when employed concurrently in both public and private capacities. Cases in which

these codes apply tend to have a standard set of Actor and Object types. Thus, for instance, one

can imagine some type of similarity assessment in which a new case with an “Engineer” who is

employed by both a “Governmental Body” and a “Firm” might be rated a close match to the

cases which cite the public/private sector codes, irrespective of the other Fact Primitives

involved. For the present version of SIROCCO, however, these types of special situations were

considered ad hoc and were not included in the algorithm.

Internal Fact-Phrases, i.e., those fact structures that are nested within Facts, are treated as

atomic, rather than complex, structures by SIROCCO. That is, an internal Fact-Phrase may map

to another Fact-Phrase, an Object, or an Actor of another Fact, but the structure within the Fact-

Phrase is not evaluated or used as part of the similarity assessment. Fact-Phrases are mapped

positionally to other Fact-Phrases, Objects, or Actors that are contained within a matching top-

level Fact. Originally, it was thought that Fact-Phrases, such as the internal phrase “Apartment

Building <fails standards and may be hazardous to safety>” used in Fact 8 of Figure 3-6, could be

used to more precisely match Facts of other cases. Although internal structure clearly provides

more precise information about the actions and events of a case, it is computationally expensive

to recursively match these types of structures (which, theoretically, may have many nested

levels). In addition, it was unclear that the payoff in increased accuracy would be worth the cost

in run time of a recursive matching scheme.

Fact Modifiers are provided to represent partial participation in actions and events. The

possible Fact Modifiers are “partially,” “substantially,” “limited,” and “extensive.” The original

idea was that modified Fact Primitives would yield weaker matches to unmodified Fact

Primitives. Ultimately, however, it was unclear just how this information could factor into

SIROCCO’s similarity assessment. In addition, the case enterers applied modifiers very

sparingly. Thus, the version of SIROCCO’s algorithm discussed in the dissertation does not use

them.

75

A number of the elements of the EETL analysis representation are also not used by

SIROCCO. For instance, each code and case citation can be assigned an importance level (i.e.,

“More Importance,” “Less Importance”), and each code and case can be defined as explicitly

discussed or referenced only (see the column headed “How Cited” in Figure 3-10). Both of these

elements were intended to provide a way of placing more or less emphasis on a particular code or

case citation in an argument or justification made by the board. Again, it was unclear how this

information would be included in SIROCCO’s similarity assessment, and thus it is unused in the

current program.

Finally, the citation support elements “Inference Based on Facts” and “Unstated Assumption”

are not used by the SIROCCO algorithm. These support elements tend to undermine the Code and

Case Instantiations created by linking Facts to the citations. This is because these elements are

generally applied when none of the Facts from the Fact Chronology provide direct support for

sentences of the citations. However, because of the complex and unknown reasoning underlying

these two citation support elements, as well as the fact that the case enterers used these elements

very sparingly, they were ultimately ignored for the purposes of developing SIROCCO’s retrieval

and analysis algorithm.

3.1.3. Stage 1: Surface Retrieval

In this and the following sections, the individual phases of SIROCCO are explained in detail

and the example target case, 90-5-1, and source cases, 76-4-1, 99-1-1, and 84-5-1, are used to

illustrate the behavior of the computational model and the output it produces.

The retrieval phase of the program is composed of two stages, Stage 1: Surface Retrieval and

Stage 2: Structural Mapping. In Stage 1, SIROCCO retrieves the source cases that appear, at

least superficially, to be the most promising precedent cases. Stage 1 is superficial in the sense

that it doesn’t account for case structure – that is, the relationship between and within Facts – but

it does account for abstract Fact Primitive matches and matches to important source case Facts.

SIROCCO’s Stage 1 algorithm is summarized in Figure 3-13. The major steps of the algorithm

(i.e., steps 1, 2, 3, 4, and 5) are executed in sequence. All of these steps, as well as the important

sequential substeps of step 2, are named in the figure to allow ease of reference. The input

parameters are in italics throughout.

76

SIROCCO Stage 1: Surface Retrieval
INPUT: Target-Case, N, CV-Weight-List, QF-Weight-List, CF-Weight-List
OUTPUT: The top N Source Cases, sorted by the Weighted Dot Product Calculation

1. Create Content Vectors to Represent the Target Case
For each abstraction level (FACT-PRIMITIVE, FACT-GROUP, SIBLING-GROUP, FACT-ROOT)

Generate a content vector for Target-Case at the current level

2. Calculate Dot Product and Apply Abstraction Level Weighting to all Source Cases
For each abstraction level (FACT-PRIMITIVE, FACT-GROUP, SIBLING-GROUP, FACT-ROOT)

2(a). Retrieve Source Cases and Calculate Dot Products for each at the Current Level
For each Element in the content vector of the Target-Case at the current level

For each Source-Case containing Element (key the content vector hash table)
Current-Level-Dot-Product [Source-Case] =+

Source-Fact-Count * Target-Fact-Count
2(b). Adjust all Dot Products for Possible Multiple Parents
2(c). Normalize all Dot Products for Current Level

For each retrieved Source-Case
Current-Level-Dot-Product [Source-Case] =/ Total Count of Content Vector Elements

2(d). Tally Combined Dot Products by using Weighted Sum
For each retrieved Source-Case

Dot-Product [Source-Case] =+
 CV-Weight-List [CV-Level] *

(Current-Level-Dot-Product [Source-Case] / Max-CV-Dot-Product)

3. Apply Questioned Fact Weighting to all Source Case Dot Products
For each abstraction level (FACT-PRIMITIVE, FACT-GROUP, SIBLING-GROUP, FACT-ROOT)

For each Questioned-Fact in the Target-Case
For each Source-Case in which Questioned-Fact is also a questioned fact in Source-Case

& no questioned fact update yet
Dot-Product [Source-Case] =+ Max-Dot-Product * QF-Weight-List [CV-Level]

4. Apply Critical Fact Weighting to all Source Case Dot Products
For each abstraction level (FACT-PRIMITIVE, FACT-GROUP, SIBLING-GROUP, FACT-ROOT)

For each Fact in the Target-Case
For each Source-Case in which Fact is a critical fact & no critical fact update yet

Dot-Product [Source-Case] =+ Max-Dot-Product * CF-Weight-List [CV-Level]

5. Return the Top N Source Cases
Sort all Source Cases by descending dot product (i.e., sort Dot-Product [*])
Return the top N Source Cases

Figure 3-13: SIROCCO’s Stage 1 Algorithm

Stage 1 is superficial in the sense that it focuses solely on fact matching between the target

case and the source cases and ignores the structural characteristics of the graphs that represent

each case. Essentially, Stage 1 compares each new target problem to all of the source cases that

share at least some abstract factual similarity with the target. Comparison is performed at each of

four predefined levels of abstraction, shown in Figure 3-14, and the results are combined. The

77

value of such an approach is that both exact and inexact similarity are factored into the overall

similarity assessment. In addition, by predefining the abstraction levels and pre-storing each

source case’s information at each of those levels, the similarity computation is relatively fast.

Fact Primitive: Exact matches between Fact Primitives.
Fact Group: Matches between Fact Primitives that share the same parent abstraction

category, i.e., matches one level up the Action/Event Hierarchy.
Sibling Group: Matches between Fact Primitives that share the same abstraction category two

levels up the Action/Event Hierarchy.
Root Group: Matches between Fact Primitives at the "root group" level, i.e., one level below

the root of the Action/Event Hierarchy.

Figure 3-14: SIROCCO’s Predefined Abstraction Levels for Matching Fact Primitives

SIROCCO enlists a variety of knowledge to assist in this task. First, the program uses the

knowledge found in the Action/Event Hierarchy. In particular, it performs retrieval and matching

at each of the predefined abstraction levels. SIROCCO calculates match scores between the

target case and all of the source cases that share at least one element at any of the predefined

abstraction levels. SIROCCO stores, in advance, a specialized representation of all of the source

case facts and their abstractions in hash tables, thus making the retrieval and computation

relatively fast. At run time, the program uses the Fact Primitives of the target – and the

abstractions of those primitives – as keys into the hash tables corresponding to each abstraction

level.

The specialized knowledge structures stored in the hash tables are called content vectors.

Each content vector summarizes the Fact Chronology of a single case by specifying the Fact

Primitives, or abstractions of those primitives, found in the chronology and a count of how many

times each primitive (or abstraction) appears. The concept of a content vector was first suggested

by Forbus and colleagues [1994], but in SIROCCO it has been extended to represent fact

abstractions, as well as the specific facts of a case.

The content vectors of all of the source cases in SIROCCO’s case base are created and stored

in the aforementioned hash tables prior to the retrieval and analysis of new target cases19. When a

new case is provided to SIROCCO for analysis, the program immediately takes the ETL case

format and generates four content vectors, one for each of the standard abstraction levels, to

represent the new target case. This translation process is depicted in step 1 of Figure 3-13, and

the resulting content vectors for the first two abstraction levels (i.e., Fact Primitive and Fact

78

Group) of Case 90-5-1’s facts are shown in Figure 3-15. For simplicity, the content vectors for

the Sibling and Root Group are omitted. Refer to Figure 3-6 to see the Fact Chronology of Case

90-5-1.

Case 90-5-1
Fact-Primitive-CV: Fact-Group-CV:

(May-be-Hazardous-to-Safety 1) (Deal-with-Potential-Dangers-or-Hazards 1)
(Owns 1) (Own-Something 1)
(Resides-in 1) (Specify-Location-of-Residence 1)
(Files-a-Lawsuit-or-Arbitration-Action-Against 1) (Initiate-Legal-or-Arbitration-Proceedings 1)
(Is-Legally-Represented-by 1) (Has-Legal-Representation 1)
(Hires-the-Services-of 1) (Work-as-an-Employed-or-Contract-Professional-Engineer 1)
(Inspects 1) (Perform-Engineering-Analysis-Review-or-Testing-Work 1)
(Discovers-That 1) (Know-or-Believe-Something 2)
(Knows 1) (Disclose-Information 2) ***

 (Informs-That 2) *** (Order-Subordinate-to-Perform-Task 1)
(Instructs-to 1)

Figure 3-15: The Fact Primitive and Fact Group Content Vectors for Case 90-5-1

Note that almost all of the Fact Primitives in the Fact-Primitive-CV have values of 1, because

each primitive appears only once, with the exception of “Informs-That,” which appears twice, in

steps 10 and 12 in Figure 3-6. Also note that the Questioned Fact of the target case has been

denoted by three asterisks (“***”).

The four content vectors representing the target case help SIROCCO to retrieve all of the

source cases that share at least some fact similarity with the target. Each element of each content

vector is used as a hash key to retrieve source cases sharing that same element. For instance, see

Figure 3-16. On the left side of the figure are the first two elements of Case 90-5-1’s Fact-

Primitive-CV and the first two elements of its Fact-Group-CV. These elements serve as hash

keys into the Fact-Primitive and Fact-Group hash tables, respectively, shown on the right side of

the figure. At each hash table location, there is a list of the cases that contain that Fact Primitive

or abstraction. Each element in this list also specifies the fact count for that Fact Primitive or fact

abstraction within that case. For example, the Fact-Primitive hash table in Figure 3-16 shows that

“May-be-Hazardous-to-Safety” is found once in Case 84-5-1 and once in Case 99-1-1. By using

every element of the target case’s content vectors as a hash key, the program is thus able to

collect, and score, all of the cases that share at least some fact similarity with the target.

Notice how the multiple tables allow the program to retrieve and score abstract matches. For

instance, the fact abstraction “Deal-with-Potential-Dangers-or-Hazards” is stored in the Fact-

19 It is actually fact situations , not cases, that have associated content vectors, since Fact Chronologies are part of fact
situations (see Figure 3-4). Multiple cases may share the same fact situations and therefore may share the same content
vectors. Since this is a largely irrelevant distinction for this description, I will simplify refer to cases only.

79

Group-CV of Figure 3-16, because Case 90-5-1 contains the primitive “May-be-Hazardous-to-

Safety” which is a Fact Primitive of this abstraction category. When this fact abstraction is hashed

into the Fact-Group hash table, on the right, it retrieves not only the cases that contain an exact

match to the primitive (i.e., 84-5-1 and 99-1-1, discussed above) but also two cases, 63-4-1 and

Case 72-3-1, that match only at the fact abstraction level. These cases are found at this location

because they apparently contain a different Fact Primitive in the “Deal-with-Potential-Dangers-

or-Hazards” category.

Fact-Primitive-CV

May-be-Hazardous-to-Safety 1

Owns 1

…

Fact-Group-CV

Deal-with-Potential-Dangers-or-Hazards 1

Own-Something 1

…

Fact-Primitive Hash Table

Employs (63-2-1, 2) (75-4-1, 1) … (84-2-3, 1)

…

May-be-Hazardous-to-Safety (84-5-1, 1) (99-1-1, 1)

Owns (77-11-2, 1) (90-3-1, 2)

…

Case 90-5-1

Fact-Group Hash Table

Disclose-Information
(68-3-2, 2) (78-4-2, 1) … (92-3-1, 2)

…

Deal-with-Potentia l-Dangers-or-Hazards
(63-4-1, 1) (72-3-1, 2) (84-5-1, 1) (99-1-1, 1)

Own-Something
(77-11-2, 1) (82-3-1, 3) (84-7-2, 1) (90-3-1, 2)

…

Figure 3-16: Example of Target Content Vectors Retrieving Cases Using the Hash Tables

As shown in step 2(a) of Figure 3-13, a dot product calculation is then applied

(incrementally) to determine the degree of content vector overlap between the target and each of

the retrieved source cases. The dot product is calculated as follows:

Dot-Product (SC, TC) = ∑ cvTC . cvSC

Where SC is the source case
TC is a target case
cvTC is a count of element x in the target content vector
cvSC is a count of element x in the source content vector
element x is either a Fact Primitive or a fact abstraction

80

The content vectors representing the first two abstraction levels for each of the example

source cases are shown in Figure 3-17. All three of the example cases are retrieved in step 2(a)

at each abstraction level, because in each case elements are shared between the target and the

source cases. For instance, Case 76-4-1 is retrieved at the Fact Primitive level because it shares

the primitives “Hires-the-Services-Of,” “Discovers-That,” “Instructs-to,” and “Informs-That”

with the target case.

Case 76-4-1
Fact-Primitive-CV: Fact-Group-CV:

(Hires-the-Services-Of 1) (Work-as-an-Employed-or-Contract-Professional-Engineer 1)
(Reviews-and-Analyzes 1) (Perform-Engineering-Design-or-Analysis-Work 1)
(Discovers-That 3) (Perform-Engineering-Analysis-Review-or-Testing-Work 1)
(Informs-That 2) *** (Know-or-Believe-Something 3)
(Terminates-the-Services-of 1) (Disclose-Information 3) ***
(Instructs-to 1) (Terminate-Services-by-Client 1)
(Pays-For 1) (Order-Subordinate-to-Perform-Task 1)
(Calls-a-Hearing-Regarding 1) (Give/Receive-Remuneration 1)
(Claims-That 1) (Purchase-or-Pay-for-Something 1)

(Initiate-Legal-or-Arbitration-Proceedings 1)

Case 99-1-1
Fact-Primitive-CV: Fact-Group-CV:

(Has-Experience-in 1) (Specialize-or-Provide-Experience-… 1)
(May-be-Hazardous-to-Safety 1) (Deal-with-Potential-Dangers-or-Hazards 1)
(Hires-the-Services-of 1) (Work-as-an-Employed-or-Contract-Professional-Engineer 1)
(Inspects 2) (Perform-Engineering-Analysis-Review-or-Testing-Work 2)
(Discovers-That 2) (Know-or-Believe-Something 2)
(Informs-That 2) (Disclose-Information 2)
(Terminates-the-Services-of 1) (Terminate-Services-by-Client 1)
(Instructs-to 1) (Order-Subordinate-to-Perform-Task 1)
(Pays-for 1) (Give/Receive-Remuneration 1)
(Employs 1) (Purchase-or-Pay-for-Something 1)
(Criticizes 1) *** (Criticize-or-Accuse 1) ***

Case 84-5-1
Fact-Primitive-CV: Fact-Group-CV:

(Hires-the-Services-Of 1) (Work-as-an-Employed-or-Contract-Professional-Engineer 1)
(Is-a-Work-Segment-of-the-Engineering-Project 1) (Relate-Engineering-Projects-to-One-Another 1)
(May-be-Hazardous-to-Safety 1) (Deal-With-Potential-Dangers-or-Hazards 1)
(Knows 1) (Know-or-Believe-Something 1)
(Asks-For 1) (Request-Something 1)
(Refuses-the-Request-by-to 1) (Refuse-Request 1)
(Provides-Engineering-Services-on 1) *** (Perform-Miscellaneous-Engineering-Work 1) ***

Figure 3-17: The Fact Primitive and Fact Group Content Vectors for Cases 76-4-1, 99-1-1, and 84-5-1

The Fact Primitive overlap between 90-5-1 and 76-4-1 produces a dot product of 9 (1 * 1 for

each of the matching primitives “Hires-the-Services-Of” and “Instructs-to,” plus 1 * 3 for

“Discovers-That,” plus 2 * 2 for “Informs-That”). Not surprisingly, since these two cases are

conceptually quite similar, this score ranks as one of the best in the list of retrieved cases.

However, the score for 99-1-1, the case that shares much event similarity with the target but

81

ultimately deals with a different issue, is ranked even higher, at the top of the list for Fact

Primitive matching and near the top for Fact Group matching. A partial listing of the top dot

product scores for the first two abstraction levels after step 2(a) is20:

Fact Primitive Dot Products:
1. Case 99-1-1: Criticism of an Inexperienced Engineer 11

Case 88-6-1: Whistleblowing City Engineer 11
2. Case 89-7-1: Duty to Report Safety Violations 10
3. Case 76-4-1: Public Welfare - Knowledge of Damaging Information 9
…
8. Case 84-5-1: Engineer’s Recommendation Overruled 3
…

Fact Group Dot Products:
1. Case 91-9-1: Misrepresentation of Education 17

Case 77-5-1: Use of Another’s Project Study 17
2. Case 76-4-1: Public Welfare - Knowledge of Damaging Information 16

Case 92-6-2: Public Welfare - Hazardous Waste 16
3. Case 99-1-1: Criticism of an Inexperienced Engineer 14
…
14. Case 84-5-1: Engineer’s Recommendation Overruled 4
…

In step 2(b) of Figure 3-13, SIROCCO identifies and adjusts downward dot products in which

fact abstractions have been “double-counted.” Since the Action/Event Hierarchy is a network and

not a tree, it is possible that more than one fact abstraction, and hence more than one element in a

content vector, will represent the same base Fact Primitive. For instance, consider the Fact

Primitive “reviews-and-analyzes” from Figure 3-11 and also shown as a content vector element

of Case 76-4-1 in Figure 3-17. Any case using this primitive will have both “Perform-

Engineering-Design-or-Analysis-Work” and “Perform-Engineering-Analysis-Review-or-Testing-

Work” elements in its Fact Group content vector, since both are parents of “reviews-and-

analyzes.” Matching such a content vector to a target case containing the same two fact

abstractions leads to double-counting and thus the need for a downward adjustment21.

Adjustments are required only above the Fact Primitive level and, in our example, none of the

source cases require changes.

Because cases with long Fact Chronologies tend to be favored by the dot product calculation,

simply because they contain more elements that can be matched, it is necessary to provide a

normalization factor. This is what SIROCCO does in step 2(c) of Figure 3-13 when it divides the

dot product by the total count of the current level’s source content vector, which is roughly

20 Although sorted case rankings are used here for illustrative purposes, the cases are actually not sorted until the final
step of Stage 1.

82

equivalent to the length of the Fact Chronology of that case22. In the example trace, this

calculation slightly reorders the list, as shown below. Notice, in particular, that Case 89-7-1

moves to the top of the Fact Primitive list, jumping over Case 99-1-1, and also moves above 99-

1-1 in the Fact Group list. This occurs because Case 89-7-1’s Fact Chronology is shorter than

Case 99-1-1’s.

Fact Primitive Dot Products:
1. Case 89-7-1: Duty to Report Safety Violations 1 (10 / 10)
2. Case 99-1-1: Criticism of an Inexperienced Engineer .786 (11 / 14)

Case 88-6-1: Whistleblowing City Engineer .786 (11/14)
3. Case 76-4-1: Public Welfare - Knowledge of Damaging Information .750 (8/12)
…
13. Case 84-5-1: Engineer’s Recommendation Overruled .429 (3 / 7)
…

Fact Group Dot Products:
1. Case 91-9-1: Duty to Report Safety Violations 1 (17/14)
2. Case 92-6-2: Public Welfare - Hazardous Waste 1.14 (8/7)

Case 76-4-1: Public Welfare - Knowledge of Damaging Information 1.14 (8/7)
…
6. Case 99-1-1: Criticism of an Inexperienced Engineer .933 (14 / 15)
…
16. Case 84-5-1: Engineer’s Recommendation Overruled .571 (4 / 7)
…

After the adjusted, normalized dot products are calculated for all of the source cases at each

predefined abstraction level, a weighted sum is used to tally a combined dot product across all

levels for each case (see step 2(d) of Figure 3-13). A user-specified parameter, CV-Weight-List,

which consists of four weights corresponding to each of the predefined abstraction levels23, is

central to this calculation. To calculate the contribution of the dot product at a particular fact

level, the weight for that level is multiplied by the dot product divided by the maximum dot

product at that level. Dividing by the maximum dot product effectively normalizes the

contribution of the dot product at that level.

Informal experimentation with SIROCCO indicated that a CV-Weight-List of (Fact-Primitive

= 1.0; Fact-Group = 0.5; Sibling-Group = 0.25; Fact-Root = 0.125) yields reasonably accurate

results. These values specify that each abstraction level wields 50% more weight in the combined

dot product calculation than its successor level. The results of applying this parameter setting in

21 In general, note that such an adjustment algorithm could quickly become intractable. However, because multiple
parents are relatively rare in the Action/Event Hierarchy – there are less than 10 Fact Primitives with multiple parents
and a number of these are rarely used in the foundational and trial cases – in practice this routine takes very little time.
22 Actually, SIROCCO allows the user to choose a normalization factor from among the following: (1) the sum of the
source and target counts, (2) the shortest of the source and target counts, (3) the target content vector count, and (4) the
source content vector count. In practice, I have consistently found the last of these, the source content vector count, to
be the best factor and thus it is used in the example and in all experiments reported in the dissertation.
23 SIROCCO normalizes this list so that the relative values add up to 1.0.

83

the example are shown below. At this point in the algorithm, the example source case that

appeared to be most similar to the target, i.e., Case 76-4-1, is, in fact, rated very high, higher than

the other two example cases. Notice that Case 99-1-1, the case with many similarities but which

ultimately turns on a completely different ethical issue, is also highly rated. Finally, the third

example source case, 84-5-1, which was actually cited by the board, lags far behind.

Combined Dot Products:
1. Case 89-7-1: Duty to Report Safety Violations .973
2. Case 76-4-1: Public Welfare - Knowledge of Damaging Information .848
3. Case 92-6-2: Public Welfare - Hazardous Waste .787
4. Case 88-6-1: Whistleblowing City Engineer .772
5. Case 99-1-1: Criticism of an Inexperienced Engineer .767
…
18. Case 84-5-1: Engineer’s Recommendation Overruled .494
…

Questioned Facts, another key knowledge source not yet brought to bear on the problem, will

make a critical difference in this ranking. As has been discussed, Questioned Facts are important

because they are essentially the focal point of each case, anchoring SIROCCO’s retrieval and

analysis method. All of the output produced by the program should, in some sense, be relative to

the issues raised by the Questioned Facts. SIROCCO leverages this knowledge in Stage 1 by

increasing the dot products of any source cases that share a Questioned Fact with the target case,

at any of the four abstraction levels (see step 3 of Figure 3-13). Each source case can realize this

benefit at only one level, in particular at the most-specific level in which the match occurs (see

the condition “no questioned fact update yet” in step 3). The user-specified parameter QF-

Weight-List provides a multiplier for each of the four abstraction levels. Unlike the CV-Weight-

List, QF-Weight-List is not normalized; the values provided by the user are directly applied as

weights. The dot product for each source case with a Questioned Fact matching the target is

increased by the maximum dot product (from the combined dot product calculation of step 2(d))

multiplied by the specified weight for that level.

For the example, a QF-Weight-List of (Fact-Primitive = 1.0; Fact-Group = 0.5; Sibling-Group

= 0.25; Fact-Root = 0.125) is applied. This means a Questioned Fact match at the most-detailed

level will improve the score by an amount equal to the highest combined dot product (i.e., max-

dot-product * 1.0); a match at the next level will improve the score 50% of the highest combined

dot product, and so on.

At this point, we can begin to see how SIROCCO’s similarity assessment appropriately

evaluates the example source cases. For Case 76-4-1, the Questioned Fact computation is good

news; the score for that case doubled, as its Questioned Fact (“informs-that”) matches the target’s

84

Questioned Fact exactly, i.e., at the Fact Primitive level (see the Questioned Facts for these two

cases, highlighted by “***” in Figure 3-15 and Figure 3-17). However, perhaps more

importantly, this calculation devalues Case 99-1-1, the deceptively similar case that is not directly

relevant to Case 90-5-1. Because 99-1-1’s Questioned Fact does not match 90-5-1’s Questioned

Fact at any of the predefined abstraction levels, its score does not change, meaning that it

effectively falls down the ranked list. Case 84-5-1’s Questioned Fact also does not match 90-5-

1’s, so it, too, falls back in the ranked list. It isn’t until later in SIROCCO’s assessment that 84-5-

1is recognized as a potentially relevant citation.

Dot Products with Questioned Facts Applied:
1. Case 89-7-1: Duty to Report Safety Violations 1.946
2. Case 76-4-1: Public Welfare - Knowledge of Damaging Information 1.821
3. Case 92-6-2: Public Welfare - Hazardous Waste 1.759
4. Case 88-6-1: Whistleblowing City Engineer 1.745
5. Case 91-9-1: Misrepresentation of Education 1.737
6. Case 63-11-1: Recommendation of Personnel 1.649
…
17. Case 99-1-1: Criticism of an Inexperienced Engineer .767
…
27. Case 84-5-1: Engineer’s Recommendation Overruled .494
…

Critical Facts are the final type of knowledge used by SIROCCO in Stage 1. Critical Facts

are those Facts in source cases that are part of one or more Code or Case Instantiations. In other

words, these are the Facts that the board employed as part of a code or case operationalization, as

interpreted by the case enterer. SIROCCO utilizes this knowledge by increasing the dot products

of any source cases that have a Critical Fact that matches a Fact of the target case, at any of the

four abstraction levels (step 4 of Figure 3-13). As with the Questioned Fact weighting, each case

can accrue benefit only at the most specific level at which the match occurs. The user-specified

CF-Weight-List is applied in similar fashion as was the QF-Weight-List, and the increase to the

dot product of a matching source case is equal to the maximum dot product multiplied by the

weight corresponding to the abstraction level of the match.

Because Critical Facts appeared to have a slightly less-central role than Questioned Facts, the

standard CF-Weight-List, set to (Fact-Primitive = 0.333; Fact-Group = 0.111; Sibling-Group =

0.036; Fact-Root = o.012), reflects a lesser contribution to the dot product calculation. In the

example run, the Critical Facts calculation affected the scores but not the relative position of any

of the top-rated cases. The following list contains the final scores for Stage 1:

85

Dot Products with Critical Facts Applied:
1. Case 89-7-1: Duty to Report Safety Violations 2.270
2. Case 76-4-1: Public Welfare - Knowledge of Damaging Information 2.145
3. Case 92-6-2: Public Welfare - Hazardous Waste 2.083
4. Case 88-6-1: Whistleblowing City Engineer 2.069
5. Case 91-9-1: Misrepresentation of Education 2.061
6. Case 63-11-1: Recommendation of Personnel 1.973
…
15. Case 99-1-1: Criticism of an Inexperienced Engineer 1.067
…
28. Case 84-5-1: Engineer’s Recommendation Overruled .494
…

Stage 1 concludes with SIROCCO sorting the source cases by descending dot product. The

top N source cases are then passed to Stage 2 for processing. An N value of 6 appeared to

provide, in general, the most-accurate results without flooding Stage 2 with excessive (and

expensive!) computation, so this value is used in the example as well. Notice that this means that

Stage 1 has, in fact, managed to include the most relevant source example, Case 76-4-1, while, at

the same time, eliminating the far less relevant Case 99-1-1. On the other hand, Case 84-5-1, a

case actually cited by the board as an analogous precedent, is also eliminated. However, we will

see Case 84-5-1 later in the processing, as SIROCCO’s operationalization techniques will

eventually recover it.

3.1.4. Stage 2: Structural Mapping

The goal of Stage 2 is to find structural mappings from each of the top-rated source cases to

the target case. The structure of a case is a graph that is defined by (1) the Actors, Objects, Fact-

Phrases, and Fact-Primitives of individual Facts and (2) the temporal relationships between Facts

represented by the Time Qualifiers and the propagation of those qualifiers. Structural mapping

between two cases is not attempted across the entire case representation of the cases but, rather, it

is focused on subsets of the source Facts: those represented by the Code Instantiations and Case

Instantiations of the source case. This approach achieves two objectives. First, it focuses

SIROCCO’s reasoning on those Facts that are most relevant to a source case, and in particular to

codes and cases cited in that source case, since the Instantiations are composed of the Critical and

Questioned Facts of a case. Second, it leads to a significant computational benefit, as the process

of graph mapping is known to be intractable for general complex graphs [Bunke and Messmer,

1993].

SIROCCO’s Stage 2 algorithm is summarized in Figure 3-18. The algorithm is composed of

two major functions, with Collect-and-Sort-Instantiations calling Search-For-the-Best-Structural-

Mapping. As in the description of Stage 1, the input parameters to Stage 2 are displayed in italics

86

throughout the figure. As an example of how Stage 2 operates, consider some of the

representation details of one of the example source cases, 76-4-1. Figure 3-19 shows the Fact

Chronology for Case 76-4-1, while Figure 3-20 depicts the analysis representation for this case.

The goal of Collect-and-Sort-Instantiations is to produce a list of Instantiations that are

mapped to the target case and sorted by degree of match, according to structural characteristics.

This function operates by iterating over all of the relevant Instantiations that are associated with

the top N cases retrieved in Stage 1. For each relevant Instantiation, Collect-and-Sort-

Instantiations calls Search-For-the-Best-Structural-Mapping to perform a graph mapping of that

Instantiation to the target.

Relevant Instantiations are those that either support or conflict with the conclusion reached by

the board. In Figure 3-20, the rows containing Codes II.1.a.24, I.1., III.2.b., III.1., I.4., III.1.b., and

III.4. appear in the first two tables because they each represent supporting or conflicting Code

Instantiations. On the other hand, the row containing Case 67-10-1 is in the third table because it

is not considered a relevant Case Instantiation for the purposes of graph mapping; it neither

supports nor conflicts with the board’s conclusion.

Search-For-the-Best-Structural-Mapping executes a variant of A* search in its attempt to map

each relevant Instantiation to the target case. The goal of the search is to map each of the Facts of

the source Instantiation to a corresponding Fact in the target case while maintaining a one-to-one

and consistent mapping between the Actors and Objects of the source and the target. Each node

in the search space (with the exception of the initial node, see below) represents (1) a proposed

mapping of a pair of Facts, one from the source Instantiation and one from the target, (2) all of

the Fact mappings that preceded this node (i.e., all of the successful Fact mappings from ancestor

nodes), (3) a one-to-one, consistent set of Actors and Objects entailed by the Fact mappings of (1)

and (2), and (4) consistent temporal relations between mapped Facts of the source and target.

24 Because 76-4-1 was decided before the current code of ethics was established, the codes cited in its analysis
representation tables are older, outdated codes. The codes shown in boldface and parentheses below the original code
citation are the newer versions of these codes. Note that multiple old codes can map to the same new code (i.e., old
Codes 2 and 2(a) of Figure 3-20 both map to new Code II.1.a.), and multiple new codes can map to the same old code
(i.e., new Codes I.1. and II.1.a. map to old Code 2(a)). SIROCCO handles the first case by performing separate graph
mappings for each of the multiple new citations and then choosing the best match score to represent that Code
Instantiation. The second case is handled by defining multiple Code Instantiations for a single row of the table, each
one with identical information.

87

SIROCCO Stage 2: Structural mapping
INPUT: Target-Case, Top-Stage-1-Source-Cases, Temporal-Match-Flag
OUTPUT: A list of mapped Code Instantiations and Case Instantiations, sorted according to ascending

match scores. Also, the Top-Stage-1-Source-Cases are passed on to Analysis.

Collect-and-Sort-Instantiations
For each Source-Case in Top-Stage-1-Source-Cases

For each Source-Case-Instantiation in Source-Case
(i.e., For each Supporting-Code, Supporting-Case, Conflicting-Code, Conflicting-Case)

If Critical-Facts and Questioned-Facts of Source-Case-Instantiation are unique Then
Best-Search-Result =

Search-For-The-Best-Structural-Mapping
(Source-Case-Instantiation, Target-Case, Temporal-Match-Flag)

Push Best-Search-Result onto Code-and-Case-Instantiations
Else

Push search result from previous mapping onto Code-and-Case-Instantiations
Sort Code-and-Case-Instantiations by ascending match score and return them.

Search-For-The-Best-Structural-Mapping
 (Source-Case-Instantiation, Target-Case, Temporal-Match-Flag)

Facts-In-Instantiation = Collect Questioned-Facts and Critical-Facts of Source-Case-Instantiation
Solution-Depth = Length of Facts-In-Instantiation
Search-Node-1 = New Node :Object-Mappings (Target Questioned Actor, Source Questioned Actor)
Search-Node-List = List with Search-Node-1 as sole element
Until (Search-Node-List is empty) or (Goal-Node-P (First (Search-Node-List), Solution-Depth))

Current-Best-Search-Node = First (Search-Node-List)
Insert New-Child-Search-Node

(Current-Best-Search-Node, EMPTY-MAP, Solution-Depth, Temporal-Match-Flag)
into Search-Node-List

For each SourceTarget in Source-Target-Mapping-List
Insert New-Child-Search-Node

(Current-Best-Search-Node, SourceTarget, Solution-Depth, Temporal-Match-Flag)
into Search-Node-List

Return First (Search-Node-List)

Goal-Node-P (Search-Node, Solution-Depth)
If (Depth-Of (Search-Node) = Solution-Depth) Then Return True Else Return False

New-Child-Search-Node (Parent-Node, SourceTarget, Solution-Depth, Temporal-Match-Flag)
If (SourceTarget preserves one-to-one mapping and
 SourceTarget preserves or extends existing Actor and object mappings and

SourceTarget preserves temporal relations (if Temporal-Match-Flag is on)) Then
Current-Depth = Depth-Of (Parent-Node) + 1
Local-Mismatch-Cost = Get abstraction level value of SourceTarget, adjust for pos-neg if necessary.
Return New Node

:Fact-Primitive-Mappings All Fact Primitive mappings from SourceTarget on this path
:Object-Mappings All Actor and object mappings from SourceTarget on this path
:Depth Current-Depth
:Path-Mismatch-Cost Path-Mismatch-Cost-of (Parent-Node) + Local-Mismatch-Cost
:Match-Score (Path-Mismatch-Cost / Current-Depth) + f (n) = g (n) + h’ (n)

(Path-Mismatch-Cost / Solution-Depth)

Figure 3-18: SIROCCO’s Stage 2 Algorithm

88

1. XYZ Corporation <hires the services of> Engineer Doe <for>
(Engineer Doe <reviews and analyzes> Discharge).

Pre-existing fact

2. Engineer Doe <reviews and analyzes> Discharge. After the start of 1

3. Engineer Doe <discovers that> (Discharge <fails standards and may
be hazardous to safety>).

After the start of 2

4. Engineer Doe <informs> XYZ Corporation <that>
(Discharge <fails standards and may be hazardous to safety>).

Immediately after the
conclusion of 3

5. XYZ Corporation <terminates the services of> Engineer Doe. After the conclusion of 4,

Ends 1

6. XYZ Corporation <instructs> Engineer Doe <to> (Engineer Doe <does not
write paper/article> (Discharge <fails standards and may be hazardous
to safety>)).

Occurs concurrently with 5

7. XYZ Corporation <pays> Engineer Doe <for> (Engineer Doe <reviews and
analyzes> Discharge).

Occurs concurrently with 5

8. Control Authority <calls a hearing regarding> Discharge. After the conclusion of 5

9. XYZ Corporation <claims that> (Discharge <does not fail standards
and is not hazardous to safety>).

After the start of 8

10. Engineer Doe <discovers that> (Control Authority <calls a hearing
regarding> Discharge) & (XYZ Corporation <claims that> (Discharge
<does not fail standards and is not hazardous to safety>)).

After the conclusion of 9

11. Engineer Doe <does not inform> Control Authority <that> (Discharge
<fails standards and may be hazardous to safety>). [Questioned fact]

After the start of 10

Figure 3-19: The Fact Chronology of Case 76-4-1

The initial node of the search space is a mapping of the questioned Actor of the source to the

questioned Actor of the target. New nodes are generated from an existing node by selecting an

unmapped Fact from the source and mapping it to each of the unmapped Facts in the target in

which the corresponding Fact Primitives match either exactly or abstractly. A new node is

generated for each mapping between the source Fact and an unmapped target Fact (e.g., if F is an

unmatched source Fact that has Fact Primitive mappings to target Facts F1 and F2, two new

nodes are generated, one corresponding to F->F1 and one corresponding to F->F2). In order for

each new node to be valid, the Actors and Objects between the source and target must map in a

one-to-one, consistent manner with prior mappings and all temporal relations must be consistent.

An "empty" node is also generated at each level to represent a failure of mapping this particular

Fact but to allow mapping on this path for subsequent Facts. The goal node is reached when the

current depth equals a pre-defined solution depth (equal to the number of Facts to match in the

source) and either the current node has the lowest mismatch score of all open nodes, as defined by

the A* cost function, or the list of nodes is empty.

89

Questioned Fact(s): Fact 11

Questioned Actor or Actors: Engineer Doe

The Board's Conclusion: Unethical

The board cited the following evidence in support of their conclusion:

Code Code
Status

How
Cited

Grouped
With

Over
rides

Why Relevant? Why Violated, Not
Violated, Changed,
or Not Applicable?

2

(II.1.a.)

Violated Explicitly
discussed

2(a) 1,7 ^ Engineer's judgment is overruled in
a particular professional circumstance.
[6]

Overruling the Engineer's judgment
may lead to the endangerment of the
safety, health, property or welfare of
the public [3, 9] ^

^ Engineer does not
notify the proper
authority [11] ^

2(a)

(I.1.,

II.1.a.)

Violated Explicitly
discussed

2 1,7 ^ Engineer is involved in a
professional situation in which the
public welfare is at stake [3, 9] ^

^ Engineer’s action
does not hold
paramount public
welfare [11] ^

2(c)

(III.2.b.)

Violated Explicitly
discussed

None None ^ Engineer has a client [1]

The client insists that the Engineer
completes, signs or seals plans and/or
specifications [6]

… [1, 2, 3, Inference …]^

^ Engineer does not
notify the proper
authorities [11] ^

The board cited the following evidence that conflicts with their conclusion:

Code Code
Status

How
Cited

Grouped
With

Over
rides

Why Relevant? Why Violated, Not
Violated, Changed,
or Not Applicable?

1

(III.1.,

I.4.)

Not
violated

Explicitly
discussed

1(c) None ^ Engineer has a client [1]^ ^ Engineer acts as a
faithful agent or trustee
… [12] ^

1(c)

(III.1.b.)

Not
violated

Explicitly
discussed

1 None ^ Engineer has a client [1]

Engineer believes the client’s project
will not be successful [3] ^

^ Engineer advises …
the project will not
succeed [4] ^

7

(III.4.)

Not
Violated

Explicitly
discussed

None None ^ Engineer obtains confidential
information concerning the business
affairs … of a former client [2, 3] ^

^ Engineer does not
disclose the
confidential
information [11] ^

The board cited the following background information that neither directly supports nor directly
conflicts with their conclusion:

Case Citation
Type

How
Cited

Grouped
with

Q # Why Relevant? Why Distinguished
or Analogous?

67-10 Relevant, But
Not
Controlling

Explicitly
discussed

None 1 ^%Engineer is involved in a
professional situation in which the
public welfare is at stake %[3, 9] ^

^ NA ^

Figure 3-20: The Analysis Representation of Case 76-4-1

90

Evaluating each node in the A* search space involves the combination of two measures: (1)

the quality of the partial solution up to the current node and (2) an estimate of the cost of

achieving a solution from the current node. This combination of measures is called the A* cost

function and is implemented in SIROCCO as follows:

f (n) = g(n) + h'(n)

Where n is a node at depth d in the search tree
g(n) is a measure of the degree of mismatched Facts at d
h'(n) is the best possible score to complete the mapping

More specifically, g(n) is equal to the “mismatch cost” at n divided by d. The mismatch cost

is a summation of the degree of mismatch at each node up to and including n. The mismatch

costs at different levels of abstraction are: 0 for an exact Fact Primitive match, 0.4 for a match at

the Fact Group level, 0.6 at the Sibling Group level, 0.9 at the Fact Root level, and 1.0 for a

“failed” match. Thus, for a search path at a depth of d = 2 in which a Fact Primitive match and a

Fact Group match have been proposed, the mismatch cost is 0.4 (0 + 0.4) and g(n) = 0.2 (0.4 / 2).

Based on a parameter setting provided by the user, an adjustment of 0.1 may also be added to

mismatches between positive and negative Facts.

The h'(n) function is calculated by dividing the current mismatch cost (i.e., the mismatch cost

up to node n) by the fixed solution depth. The solution depth is always fixed to be the number of

Facts in the Instantiation (even if a Fact doesn’t match, an “empty” match node is created). Thus,

h'(n) provides the mismatch cost that would be attained by achieving an exact match (i.e., adding

0) at each node from n until the goal node is reached. For instance, using the example from the

previous paragraph and assuming a fixed depth of 4 (i.e., the current Instantiation has 4 Facts),

h'(n) = 0.1 (0.4 / 4). Because h'(n) is the most-optimistic possible completion of the mapping, it

satisfies the admissibility condition [Ginsberg, 1993, p. 78] and guarantees that the algorithm will

never return a suboptimal goal node. In particular, SIROCCO always returns the minimum f(n)

found at the fixed solution depth.

SIROCCO’s search is a variant of A* because the solution depth is always fixed to the

number of Facts in the Instantiation (see Solution-Depth in the algorithm of Figure 3-18), rather

than a variable, minimum depth, as in standard A*. The solution depth is fixed because the

“empty” node generated at each level acts as a catch-all; even if no successful mapping occurs at

that level the current path may be continued with this level counted as a “failed” match (i.e., a 1.0

mismatch cost).

91

Now let us examine a specific example of SIROCCO’s search. Figure 3-21 depicts a search

tree for the Code Instantiation of III.4. (“Do not Disclose Confidential Information Without

Consent”) of 76-4-1 (see Figure 3-20) mapped to the target case, 90-5-1. This Code Instantiation

represents the engineer’s actions relating to the protection of his client’s confidentiality. In

particular, the fact that the engineer performed a review (i.e., step 2, “reviews-and-analyzes” in

Figure 3-19), discovered a potential safety hazard (i.e., step 3, “discovers-that”), and then did not

report the hazard to the authorities (i.e., step 11, “does-not-inform-that”), indicates that he acted

to protect confidentiality. These actions, linked to Code Instantiation III.4., are ultimately

mapped to the target and are represented by the successful search path in the figure (i.e., circled

items 1, 2, 4, and 5).

In the figure, search nodes are represented by rectangles. The text inside each node describes

that node as: (1) the new mapping of a source Fact to a target Fact, (2) the Fact Primitives that are

mapped from source to target by this new mapping, and (3) the previous node mappings that also

hold at this node. Actor and Object mappings between source and target are not shown, due to

space constraints, but they are also contained in each node. The circled numbers indicate the

order in which nodes are expanded, and the number in italics below each node, next to the name

of the node, is the match score for that node.

The search in this example did not take long to focus on the optimal path. At the first tier the

“does-not-inform-that” Fact Primitive of the source case maps to the identical primitive of the

target, at Node 3. Although this is the best path because it matches the Questioned Fact of the

source with the Questioned Fact of the target, the search briefly focuses on another possibility,

the mapping of “does-not-inform-that” to “informs-that” at Node 2, when the second tier nodes

under Node 3 yield higher cost function values than Node 2. However, since this branch does not

yield the lowest-cost mapping, the search returns to the path beneath Node 3 and this ultimately

leads to the best solution.

Now let us trace the search process in somewhat more detail. The search begins with a

calculation of the solution depth. Because there are three Critical Facts in the Instantiation, and

the Questioned Fact is also a Critical Fact, the solution depth is 3. (Notice that the search tree of

Figure 3-21 has three tiers.) SIROCCO generates an initial search node containing only a

mapping between the Questioned Actors of the two cases (i.e., Engineer Doe of 76-4-1 and

Engineer A of 90-5-1) and places that node in a search list. An initial node constructed as such

assures that the primary protagonists are placed in correspondence in the graph mapping between

the cases.

92

Code
Instant.
III.4.

76-4-1
->
90-5-1

New Mapping:
76-4-1: Fact 11  90-5-1: Empty
(Does-Not-Inform-That  Empty)

Previous Mappings:
Mappings from Node 1

Node 4 1.33

Node 3 0.0

Node 2 0.13

Node 7 0.42

Node 8 0.92

Node 5 0.33

New Mapping:
76-4-1: Fact 11  90-5-1: Fact 12
(Does-Not-Inform-That 
 Does-Not-Inform-That)

Previous Mappings:
Mappings from Node 1

New Mapping:
76-4-1: Fact 11  90-5-1: Fact 10
(Does Not-Inform-That 
 Informs-That)

Previous Mappings:
Mappings from Node 1 New Mapping:

76-4-1: Fact 3  90-5-1: Fact 9
(Discovers-That  Knows)

Previous Mappings:
Mappings from Nodes 1, 3, 5

Node 9 0.53

New Mapping:
76-4-1: Fact 3  90-5-1: Fact 8
(Discovers-That  Discovers-That)

Previous Mappings:
Mappings from Nodes 1, 3, 5

Node 10 0.27

New Mapping:
76-4-1: Fact 3  90-5-1: Empty
(Discovers-That  Empty)

Previous Mappings:
Mappings from Nodes 1, 3, 5

Node 11 0.93

New Mapping:
76-4-1: F act 2  90-5-1: Fact 7
(Reviews-and-Analyzes  Inspects)

Previous Mappings:
Mappings from Nodes 1, 3

1 2

3

4 5

Node 1 0.0

New Mapping:
76-4-1: F act 2  90-5-1: Empty
(Reviews-and-Analyzes  Empty)

Previous Mappings:
Mappings from Nodes 1, 3

New Mapping:
76-4-1: F act 2  90-5-1: Fact 7
(Reviews-and-Analyzes  Inspects)

Previous Mappings:
Mappings from Nodes 1, 2

New Mapping:
76-4-1: F act 2  90-5-1: Empty
(Reviews-and-Analyzes  Empty)

Previous Mappings:
Mappings from Nodes 1, 2

Node 6 0.83

Figure 3-21: The Search Tree for 76-4-1’s Code Instantiation of III.4. and Case 90-5-1

The main loop of the search terminates when either the search list becomes empty, in which

case the search failed to find a mapping, or a goal node is encountered. A goal node is simply a

node at the front of the sorted search list that is at a depth equal to the solution depth. The node at

the beginning of the sorted search list is always the most promising node and is the one expanded

on each iteration.

A node is expanded by generating children nodes that represent each of the possible source-

to-target fact mappings from the next unmapped Questioned or Critical Fact. The Source-Target-

Mapping-List is ordered by Fact number (i.e., from the chronology) except that Questioned Facts

are always placed at the front of the list. This assures that if a Fact in the target can map equally

well to multiple Facts of the source, the mapping to the Questioned Fact is attempted first.

In the search example, three nodes are generated at the initial search ply. Two of the nodes

correspond to mappings of the source case’s Questioned Fact (i.e., Fact 11 in the Fact Chronology

of Figure 3-19) to equivalent target Fact Primitives (i.e., Facts 10 and 12 in the Fact Chronology

of Figure 3-6). The third node corresponds to the empty mapping. An empty mapping is

93

provided at each ply since a Fact later in the path begun by that node could potentially provide a

better overall mapping. In other words, the algorithm leaves open the possibility of later

expanding down a path that includes this node.

A schematic of the proposed mappings represented by Nodes 2 and 3 of Figure 3-21 is shown

in Figure 3-22. Fact Primitives are indicated by ovals, while Actors, Objects, and Internal Fact

Phrases are indicated by rectangles. On the left is Fact 11 of source Case 76-4-1. On the right are

two Facts from the Fact Chronology of target Case 90-5-1. The proposed mapping from Fact 11

to Fact 10, represented by Node 2, matches the “does-not-inform-that” Fact Primitive of Case 76-

4-1 to the “informs-that” Fact Primitive of Case 90-5-1, indicated by the lightly shaded arrow.

The corresponding Actors and Objects of the two Facts are also mapped to one another. The

proposed mapping from Fact 11 to Fact 12, the one that is ultimately selected by the search, is

represented by Node 3 and matches the “does not-inform-that” Fact Primitives of the two cases.

Again, the corresponding Actors and Objects of the two Facts are mapped to one another.

Both of the mappings in Figure 3-22 satisfy the four conditions of a valid mapping. A valid

mapping and the corresponding expansion of a new node implies that the following four

conditions hold on that node:

1. The Fact Primitive of the source case maps to the Fact Primitive of the target case at

one of the predefined fact abstraction levels.

2. The new mapping preserves one-to-one mapping between the source case and target

case. That is, each source Fact Primitive maps to only one target Fact Primitive and

vice versa along the path to the new node. Likewise, each Actor, Object, and

Internal Fact Phrase maps to only one Actor, Object, or Internal Fact Phrase, and

vice versa.

3. The new mapping preserves or extends existing Actor, Object, and Internal Fact

Phrase mappings. That is, Actor, Object, and Internal Fact Phrase mappings that

existed on the path to this node are preserved, and the node may introduce new such

mappings. Note, however, that by default mappings between Fact Primitives above

the Fact Primitive level preserve the existing mappings and do not introduce any

new mappings25.

25 Notice that this default allows imprecision in the mapping process. For instance, two Facts could map to one another
at the Fact Group level with Actor and Object mappings that are inconsistent with the prior set of mappings. The
reason for permitting this is simple. For anything other than an exact match, there is no general method for positionally
matching the arguments of matching Facts. Because abstract Fact matches anyhow provide less weight to the mapping

94

4. If temporal matching is turned on, the temporal relationships between the Facts in

the source are mapped to the corresponding relations between the Facts in the target.

Temporal relations are considered consistent across the cases if the Allen relations

of every pair of source Facts intersect with the Allen relations of the corresponding

pair of target Facts.

Control Authority

Discharge Fails …

Engineer A

Anyone-Else

Apartment Building Fails …

Engineer A

Owner’s Attorney

Apartment Building Fails …

<Does-Not-Inform-That>

<Informs-That>Source: Case 76-4-1

Fact 11

Target: Case 90-5-1

Fact 10

Fact 12

Engineer Doe

<Does-Not-Inform-That>

Fact-Primitive Mapping

Actor, Object, or Fact-Phrase Mapping

Key:

Figure 3-22: Mapping of Facts at the First Ply of the Search Tree

score and because these abstract mappings are quite often correct, due to effects of context, it was decided to accept this
imprecision and permit such mappings.

95

Condition 1 is met because the match occurs at the Fact Primitive level for the mapping

represented by both Node 2 and Node 3. Because none of the Actors, Objects, or Fact Primitives

have yet been mapped, condition 2, one-to-one mapping, is also met by both nodes. The Actor

mapping defined at Node 1 (i.e., Engineer Doe mapped to Engineer A) is preserved by both of

these mappings, so condition 3 is met. Finally, because this is the first Fact mapping of the

search, there are no temporal relations to match; thus condition 4 is trivially met.

The three nodes in the first ply are evaluated and sorted as depicted in the following table.

Node 3 is the best node (i.e., it has the lowest match score) because it represents an exact

mapping (i.e., “does-not-inform-that” to “does-not-inform-that”) from Fact 11 of the source to

Fact 12 of the target. The local mismatch cost of an exact mapping is 0.0 and, because this is the

first ply, the path mismatch cost is also 0.0. This yields an overall match score of 0.0. Node 2 is

not quite as good as Node 3, with a match score of 0.13, because it represents an exact Fact

Primitive mapping that is adjusted by a positive-negative difference between the target and source

Facts (i.e., “does-not-inform-that” to “informs-that”). Finally, Node 4, the empty mapping, has

the lowest match score at 1.33.

Node Local
Mismatch

Cost

Path
Mismatch

Cost

(Path-Mismatch-Cost / Current-Depth) +
(Path-Mismatch-Cost / Solution-Depth)

Match Score

Node 3 0.0 0.0 (0.0 / 1) + (0.0 /3) = 0.0

Node 2 0.1 0.1 (0.1 / 1) + (0.1 / 3) = 0.13

Node 4 1.0 1.0 (1.0 / 1) + (1.0 / 3) = 1.33

The algorithm continues by expanding Node 3, the best node on the first ply. Two nodes,

Node 5 and Node 6, are generated. Node 5 corresponds to the only possible mapping from the

next Critical Fact, Fact 2 of source Case 76-4-1, to the target. Note that this matching is inexact.

In particular, “reviews-and-analyzes” of Fact 2 maps to “inspects” of Fact 7 of the target. The

four mapping conditions are again met, so this is in fact a valid node. In particular, Engineer Doe

maps to Engineer A, which is consistent with the mapping from Node 1, and a new object

mapping, “Discharge” to “Apartment Building” is introduced. Since neither of these objects has

already been mapped, there is a consistent, one-to-one mapping between source and target.

Since there are now two nodes on this potential solution path, it is necessary to check

condition 4, i.e., preserving of consistent temporal relations across the source and target. In

particular, SIROCCO can now test whether the two mapped Facts in the source, 2 and 11, have an

analogous temporal relation to the two mapped Facts in the target, 7 and 12. A Fact in the source

96

is said to correspond to a Fact in the target if the source Fact maps to the target Fact. A pair of

Facts in the source is temporally analogous to a pair of Facts in the target if the following

condition holds:

ta (FS1 , FS2 , FT1 , FT2) = (FS1 ◊ FS2) Ω (FT1 ◊ FT2) ≠ ø

Where FS1, FS2 are Facts in the source case
FT1, FT2 are Facts in the target case
FS1 corresponds to FT1
FS2 corresponds to FT2
◊ is the temporal relationship between two facts, in
 terms of the Allen temporal relations
Ω intersection

In other words, given a pair of Facts in the source, FS1 and FS2, and a pair of corresponding

Facts in the target, FT1 and FT2, these pairs are temporally analogous if the temporal relationship

between FS1 and FS2 intersects with the temporal relationship between FT1 and FT2.

A set of Facts in the source is temporally analogous to a set of Facts in the target if the

following holds:

TA (FS, FT) = ta (FSx , FSy , FTx , FTy) for all x and y

Where FS is a set of Facts in the source case
FT is the set of corresponding Facts in the target case

In other words, given a set of Facts in the source, FS, and a set of corresponding Facts in the

target, FT, these sets are temporally analogous to one another if every pair of facts in FS is

temporally analogous to the corresponding pair of facts in FT.

Because temporal relationships between all Facts in a chronology are typically not provided

by the case enterer, it is necessary to compute these relationships when they are not defined.

SIROCCO does this by calling a time propagation and management system, TIMELOGIC

[Koomen, 1989]. TIMELOGIC determines the temporal relationship (i.e., the ◊ relation) between

any pair of Facts in a chronology through a process of forward-chaining over the Allen relations.

Returning to the example, the goal is to determine whether ta holds between the pairs of

corresponding source and target facts represented by Node 5. In particular, assuming FS2 = 76-4-

1, Fact 2; FS11 = 76-4-1, Fact 11; FT7 = 90-5-1, Fact 7; and FT12 = 90-5-1, Fact 12; ta takes the

following value:

ta (FS2 , FS11 , FT7 , FT12) = (B C Fi M O) Ω (B C Fi M O) = (B C Fi M O)

97

Neither (FS2 ◊ FS11) or (FT7 ◊ FT12) is explicitly defined in the chronology. Thus, TIMELOGIC

propagates the temporal relations provided by the case enterer and deduces these values. Because

ta is non-empty, the temporal condition holds and, thus, Node 5 is a valid node.

The sorted list of nodes after the expansion of Node 3 is shown in the following table. Node

5’s local mismatch cost is 0.4, since the source and target match at the Fact Group level, and this

yields a match score of 0.33. Node 6, the empty mapping generated at this ply, has a match score

of 0.83, a bit better than the previous empty mapping (i.e., Node 4), because of the match at the

parent node.

Node Local
Mismatch

Cost

Path
Mismatch

Cost

(Path-Mismatch-Cost / Current-Depth) +
(Path-Mismatch-Cost / Solution-Depth)

Match Score

Node 2 - 0.1 (0.1 / 1) + (0.1 / 3) = 0.13

Node 5 0.4 0.4 (0.4 / 2) + (0.4 /3) = 0.33

Node 6 1.0 1.0 (1.0 / 2) + (1.0 /3) = 0.83

Node 4 - 1.0 (1.0 / 1) + (1.0 / 3) = 1.33

Next, SIROCCO expands Node 2, since it is now the node with the top match score, and a

new ply is created that contains the mapping of “reviews-and-analyzes” to “inspects” (i.e., Node

7 in Figure 3-21) and a new empty mapping node (i.e., Node 8). The match scores at this ply are

slightly worse than the previous ply, since Node 2, the parent node, had a slightly worse match

score than Node 3, the parent of the previous ply. The new list of sorted nodes is as follows.

Node Local
Mismatch

Cost

Path
Mismatch

Cost

(Path-Mismatch-Cost / Current-Depth) +
(Path-Mismatch-Cost / Solution-Depth)

Match Score

Node 5 - 0.4 (0.4 / 2) + (0.4 /3) = 0.33

Node 7 0.4 0.5 (0.5 / 2) + (0.5 / 3) = 0.42

Node 6 - 1.0 (1.0 / 2) + (1.0 /3) = 0.83

Node 8 1.0 1.1 (1.1 / 2) + (1.1 / 3) = 0.92

Node 4 - 1.0 (1.0 / 1) + (1.0 / 3) = 1.33

The search reverts to the previous ply, as Node 5 is now the most fruitful node. Expanding

this node yields three new nodes: one corresponding to an exact match of the primitive

“discovers-that” in both the source and target (i.e., Node 10), one corresponding to a match at the

Fact Group level between “discovers-that” and “knows” (i.e., Node 9), and one corresponding to

the empty match (i.e., Node 11). All of the new nodes satisfy the four conditions of a valid

match. For instance, Node 10 satisfies the temporal condition (TA), because the three possible ta

98

functions at this node yield nonempty values. The previously discussed ta, computed at Node 5,

still holds here and, in addition, the following functions hold:

ta (FS3 , FS11 , FT8 , FT12) = (B) Ω (B) = (B)

ta (FS3 , FS2 , FT8 , FT7) = (A D F Mi Oi) Ω (D F S) = (F D)

At this stage a solution has been reached. Node 10 is the highest rated node and, because it is

at a search depth equal to the solution depth of 3, it is identified as a goal node by the Goal-Node-

P function of the Stage 2 algorithm (Figure 3-18). The final match scores are as follows:

Node Local
Mismatch

Cost

Path
Mismatch

Cost

(Path-Mismatch-Cost / Current-Depth) +
(Path-Mismatch-Cost / Solution-Depth)

Match Score

Node 10 0.0 0.4 (0.4 / 3) + (0.4 /3) = 0.27

Node 7 - 0.5 (0.5 / 2) + (0.5 / 3) = 0.42

Node 9 0.4 0.8 (0.8 / 3) + (0.8 / 3) = 0.53

Node 6 - 1.0 (1.0 / 2) + (1.0 / 3) = 0.83

Node 8 - 1.1 (1.1 / 2) + (1.1 / 3) = 0.92

Node 11 1.0 1.4 (1.4 / 3) + (1.4 / 3) = 0.93

Node 4 - 1.0 (1.0 / 1) + (1.0 / 3) = 1.33

Because 0.27 actually measures mismatch and the maximum possible mismatch is 2.0, the

match percentage of an Instantiation is calculated as (2.0 – match score) / 2.0. Thus, the match

percentage for 76-4-1’s Code Instantiation of III.4. is 1.73 / 2.0 = 86.7%. The match percentage,

rather than the match score, is conveyed to the user when SIROCCO explains its reasoning.

The following table summarizes the mapped solution. Note that this is the mapping

explained by SIROCCO in Figure 1-3. The first pair of matching Facts match at the Fact Group

level, while the other two pairs of matching Facts match at the Fact Primitive level. The Actors,

Objects, and Internal Fact Phrases are mapped consistently across all Fact correspondences (e.g.,

Engineer Doe maps to Engineer A, Control Authority maps to Anyone Else), and the steps are in

the same chronological order across the two cases.

99

Mapping Level Source Facts (Case 76-4-1) Mapped Target Facts (Case 90-5-1)

Fact Group 2. Engineer Doe <reviews and analyzes>
Discharge

7. Engineer A <inspects> Apartment
Building

Fact Primitive 3. Engineer Doe <discovers that> (Discharge
<fails standards and may be hazardous to
safety>).

8. Engineer A <discovers that>
(Apartment Building <fails standards
and may be hazardous to safety>).

Fact Primitive 11. Engineer Doe <does not inform> Control
Authority <that> (Discharge <fails
standards and may be hazardous to safety>)

12. Engineer A <does not inform> Anyone
Else <that> (Apartment Building <fails
standards and may be hazardous to
safety>).

At this point, the value of Code and Case Instantiations should be abundantly clear. First, the

focus on a small set of Facts, i.e., the Questioned and Critical Facts of an Instantiation, allows the

program to constrain its search to a relatively small search space, as shown by Figure 3-21.

Typically, two to six Facts are linked to an Instantiation. In addition, the Instantiations allow the

program to focus on those Facts that are most relevant to the cited code or case. If a source case’s

Instantiation provides a good match to the Facts of a target case, there is a good chance the

associated code or case is also relevant to the target case. This is one of the primary

underpinnings of the Analyzer, discussed in the next section.

After Stage 2 has found the best mapping for each of its Instantiations, the Instantiations are

sorted by ascending match score. That list, as well as the original top-rated N surface cases, is

passed on to the Analyzer for the final selection of codes, cases, and additional suggestions.

A couple important efficiency techniques used in the Stage 2 algorithm of Figure 3-18 bear

mentioning. First, a simple form of case-based reasoning was used to avoid performing the same

search multiple times. Because the Instantiations associated with a source case are often linked

with the same Critical Facts as other Instantiations of that source case, it is frequently possible to

reuse the results of a previous search. This reuse process is shown in the steps of Collect-and-

Sort-Instantiations of Figure 3-18. Whenever the algorithm recognizes that an identical set of

source steps have already been mapped to the target (i.e., Critical Facts are not unique), the

previous mapping is used instead of starting a new search. Reusing past structural mappings can

provide considerable computational benefit, since SIROCCO’s A* search is the most expensive

aspect of its architecture. Notice, however, that example Case 76-4-1 did not provide this

benefit, as each of the Code Instantiations related to this case are linked to a unique set of Facts

(see the Code Instantiations represented in Figure 3-20).

Second, SIROCCO achieves a significant computational saving during the search itself by

reusing the fact abstraction matching information computed during Stage 1. Recall that Facts are

100

matched at various levels of abstraction in Stage 1 in order to calculate the weighted dot product.

Since identical information is required to map Fact Primitives to one another during search (i.e.,

The source-to-target mappings at different levels of the Action/Event Hierarchy are used to

generate nodes in the search.) that information is dynamically cached in a hash table during Stage

1 and is accessible to the Stage 2 algorithm.

3.1.5. The Analyzer

The Analyzer phase of SIROCCO assesses the results of Stages 1 and 2 and produces the

final output of the program, i.e., lists of (1) suggested codes, (2) suggested cases, and (3)

additional relevant information. It achieves this by attempting to apply a series of heuristics that

are designed to identify the information most likely to be relevant to the user in assessing the

current problem situation. A specialized set of heuristics is used to generate each of the three lists

produced by the Analyzer.

The Analyzer algorithm is presented, in summary form, in Figure 3-23. The algorithm is

composed of three major steps, corresponding to each of the lists of information ultimately

produced by the program. The first two steps, which generate the lists of potentially relevant

codes and cases, are composed of analogous substeps: Select, Sort, Filter, and Display. These

first two steps process the Code and Case Instantiations collected during Stage 2 and the top

surface-matching cases from Stage 1 to produce a list of suggested codes and a list of suggested

cases. The final step of the algorithm applies heuristics to the suggested codes and cases of steps

1 and 2 to generate any additional suggestions indicated by operationalization knowledge not

involved in earlier stages of the program.

To illustrate the operation of the Analyzer, the processing of example case, 90-5-1, is once

again examined and discussed. Figure 3-24 shows an excerpt of the output produced by

SIROCCO after it analyzes the example target case. Notice that this output overlaps with that

shown in Figures 1-2 and 1-3, except that the excerpt shown here focuses on the heuristics used to

select one suggested code and two suggested cases. In this section, the application of these

heuristics and how they contribute to SIROCCO’s suggestions are explained.

101

SIROCCO Analyzer
INPUT: Target-Case, Code-and-Case-Instantiations, Top-Stage-1-Source-Cases, Analyzer-Parameters
OUTPUT: Display the codes, cases, and additional suggestions that are possibly relevant to the

Target-Case. If requested, provide explanations for selected codes and cases.

1. Apply Code-Selection Heuristics and Display the Possibly Relevant Codes
1(a). Select the Candidate-Codes by Applying Heuristics

For each Code-Instantiation in Code-and-Case-Instantiations
For each Code-Selection-Heuristic in Code-Selection-Heuristics (except “Frequent Occ…’)

If Code-Selection-Heuristic applies to Code-Instantiation Then
Push Code-Selection-Heuristic details onto Candidate-Codes [Code-Instantiation]

For each Candidate-Code in Candidate-Codes
If “Frequent Occurrences in Top Cases” heuristic applies to Candidate-Code Then

Push “Frequent Occurrences in Top Cases” details onto Candidate-Codes [Candidate-Code]
1(b). Sort the Candidate-Codes by

(1) descending # of applied heuristics,
(2) descending # of appearances in citations of Top-Stage-1-Source-Cases, and
(3) ascending match scores in Code-and-Case-Instantiations

1(c). Filter the Candidate-Codes
For each Candidate-Code in Candidate-Codes

If Candidate-Code statistically collocates with all higher rated Candidate-Codes Then
Push Candidate-Code onto Possibly-Relevant-Codes

1(d). Display the Possibly Relevant Codes.
For each Possibly-Relevant-Code in Possibly-Relevant-Codes

Display Possibly-Relevant-Code
If Heuristics-Exp-Flag is on Then, Display explanation of the applied heuristics
If Mapping-Exp-Flag is on Then, Display explanation of the structural mapping results.

2. Apply Case-Selection Heuristics and Display the Possibly Relevant Cases
2(a). Select Candidate-Cases by Applying Heuristics

For each Case-Instantiation in Code-and-Case-Instantiations
For each Case-Selection-Heuristic in Case-Selection-Heuristics

If Case-Selection-Heuristic applies to Case-Instantiation Then
Push Case-Selection-Heuristic details onto Case-Candidates [Case-Instantiation]

2(b). Sort the Candidates-Cases by
(1) descending # of applied heuristics,
(2) ascending match scores in Code-and-Case-Instantiations

2(c). Filter the Candidate-Cases
For each Candidate-Case in Candidate-Cases

If (Candidate-Case has sufficient citation overlap with Possibly-Relevant-Codes) and
 (Candidate-Case cites at least one highly rated code from Possibly-Relevant-Codes) Then

Push Candidate-Case onto Possibly-Relevant-Cases
2(d). Display the Possibly Relevant Cases.

For each Possibly-Relevant-Case in Possibly-Relevant-Cases
Display Possibly-Relevant-Case
If Heuristics-Exp-Flag is on Then, Display explanation of the applied heuristics
If Mapping-Exp-Flag is on Then, Display explanation of the structural mapping results.

3. Apply Additional Selection Heuristics and Display the Resulting Information
For each Code-or-Case-Citation in Possibly-Relevant-Codes and Possibly-Relevant-Cases

Apply heuristics to find (1) Positive-Negative Fact Primitive matches, (2) Define the Superior Code
operationalizations, (3) Apply a Hypothetical to a Code operationalizations, (4) Rewrite Code
operationalizations, (5) Define or Elaborate a General Issue or Principle operationalizations

Figure 3-23: SIROCCO’s Analyzer Algorithm

102

**
*** SIROCCO has the following suggestions for evaluating
*** '90-5-1: Failure To Report Information Affecting Public Safety'
**

*** Possibly Relevant Codes:
III-4: Do not Disclose Confidential Information Without Consent
 Heuristics Explanation:
 --
 o Cited by 4 of the 6 best surface matching cases.

o 86.7% match to 3 critical facts in case 76-4-1.
o 86.7% match and ques. fact match (Source and Target: FACT-PRIMITIVE) in case 76-4-1.
o > 50.0% match in multiple cases: 89-7-1, 76-4-1.
o Grouped with code I-4 in case 76-4-1; Good match to ques. facts.
…

 …

*** Possibly Relevant Cases:
 76-4-1: Public Welfare - Knowledge of Information Damaging to Client's Interest
 Heuristics Explanation:
 --
 o 100.0% match to 3 critical facts in code I-4.

o 100.0% match and ques. fact match (Source and Target: FACT-PRIMITIVE) in code I-4.
o 86.7% match to 3 critical facts in code III-4.
o 86.7% match and ques. fact match (Source and Target: FACT-PRIMITIVE) in code III-4.
…

 89-7-1: Duty To Report Safety Violations
 Heuristics Explanation:
 --

…
o 80.0% match to 5 critical facts (citation to 84-5-1).

 o 80.0% match and ques. fact match (Source and Target: FACT-PRIMITIVE) (citation to 84-5-1).

 84-5-1: Engineer's Recommendation For Full-Time, On-Site Project Representative
 Heuristics Explanation:
 --

o 80.0% match to 5 critical facts (citation of 89-7-1).
o 80.0% match and ques. fact match (Source and Target: FACT-PRIMITIVE) (citation of 89-7-1).

*** Additional Suggestions:
 o The codes II-1-A ('Primary Obligation is to Protect Public (Notify Authority if
 Judgment is Overruled).') and I-1 ('Safety, Health, and Welfare of Public is Paramount')
 may override codes III-4 ('Do not Disclose Confidential Information Without Consent'),
 I-4 ('Act as a Faithful Agent or Trustee'), and III-1 ('Be Guided by Highest Standards
 of Integrity') in this case. See case 76-4-1 for an example of this type of code
 conflict and resolution.

 …

Figure 3-24: An Excerpt of SIROCCO’s Output for Case 90-5-1

The general idea of both steps 1 and 2 is to try to apply all of the heuristics to each of the

Instantiations in order to collect a group of possibly relevant citations (i.e., codes and cases).

Each applied heuristic is treated as a single piece of evidence that the associated “candidate”

103

citation may be relevant. The codes (or cases) are sorted by the number of heuristics that were

successfully applied to each, as well as by additional information used to break ties. The codes

(or cases) are then filtered using contextual, domain-specific knowledge. For instance, a code is

dropped from the candidate’s list if it is not frequently cited together with a higher-rated code,

according to historical information. In the final substep, the candidate codes (or cases) remaining

after filtering are displayed, along with explanation information, if it has been requested by the

user. Because the citations are sorted by number of applicable heuristics, the order in which they

are displayed roughly corresponds to SIROCCO’s relative degree of belief in their relevance.

The Analyzer is highly parameterized. Each heuristic can be individually turned on or off

and has various threshold levels that are user specified. In addition, the filter mechanisms used

in steps 1 and 2 have parameterized thresholds. All of the settings used in the example, and

subsequently in the experiments discussed in Chapter 4, were empirically established, through

experimentation with the foundational cases.

Now let us consider how the Analyzer generates the partial output of Figure 3-24. First,

consider the list of possibly relevant codes. Code III.4., the single code shown in the figure out of

a total of 10 actually suggested, is suggested because it has a total of eight heuristics that apply to

it, five of which are displayed. Code III.4.’s location as second on the list indicates that the

program has strong evidence of its relevance. Only Code I.4. (“Act as a Faithful Agent or

Trustee”), with ten applicable heuristics, ranks higher. (To see the entire list of possibly relevant

codes, refer to Figure 1-2.)

All of SIROCCO’s code-selection heuristics, along with a brief explanation of each, are

shown in Figure 3-25. The items in italics beneath the explanation of some of the heuristics are

the parameters and parameter values used by that heuristic. The assigned value for each

parameter is the empirically established default used by SIROCCO.

The algorithm attempts to apply all of the code-selection heuristics to the input data it

receives from Stage 2. For instance, the heuristic “Frequent Occurrences in Top Cases” is

successfully applied to Code III.4. The rationale behind this heuristic is that frequent citations

provide accumulated evidence of relevance and, in this particular situation, four of the top-rated

six cases from Stage 1 cite Code III.4. Notice that this heuristic specifically employs an

operationalization technique, Reuse an Operationalization. In particular, it accesses the top-rated

cases to determine whether a sufficient number of these cases operationalized (i.e., cited) the code

in question, a form of reuse26.

26 Notice also that the first heuristic is the only code or case selection heuristic that doesn’t directly or indirectly involve
an Instantiation evaluated by Stage 2. Rather, the heuristic is applied directly to a code and uses the list of top-rated

104

Frequent Occurrences in Top Cases Satisfied by a code that is cited by a high percentage of the top-rated N
cases from Stage 1.
[Occurrences-Pct-Thresh = 0.33]

Good Match to Critical Facts Satisfied by a Code Instantiation from Stage 2 that has a low match score
of Code Instantiation and at least a minimum number of Critical Facts.

[CF-Match-Score-Thresh = 0.5; CF-Minimum-Facts-Thresh = 2]

Good Match to Questioned Facts Satisfied by a Code Instantiation from Stage 2 that has a low match
of Code Instantiation score and a match of Questioned Facts at or below a specified

abstraction level..
[QF-Match-Score-Thresh = 1.0; QF-Abstraction-Thresh = 3]

Multiple Occurrences of Good Match Satisfied when multiple Code Instantiations of the same code from
Stage 2 have low match scores.
[Instantiations-Thresh = 2; Multiple-Match-Score-Thresh = 1.0]

Grouped with Good Match Satisfied by a code that is grouped with a good matching Code
of Code Instantiation Instantiation from Stage 2.

Figure 3-25: The Code-Selection Heuristics

The second and third items shown beneath Code III.4. in Figure 3-24 are due to successful

application of the heuristics “Good Match to Critical Facts of Code Instantiation” and “Good

Match to Questioned Facts of Code Instantiation.” These heuristics are intended to reward Code

Instantiations that have reasonably good match scores and that also match well to Critical and

Questioned Facts, respectively. Recall that Case 76-4-1’s Code Instantiation of III.4., discussed

in the previous section, was mapped to the target case with a match score of 0.27 (equivalent to a

match percentage of 86.7%). This match percentage is above the threshold for both heuristics,

and the Critical and Questioned Fact match criteria are also met27. Thus, both of these heuristics

are successfully applied to candidate Code III.4.

The fourth heuristic applied to Code III.4. is “Multiple Occurrences of Good Match.” The

rationale behind this heuristic is that when multiple cases contain a Code Instantiation to the

same code, each with a good match score, there is evidence that the corresponding code is

relevant. In particular, the heuristic gives credit to a code that is cited by more than one of the

top-rated cases, and for each of the citations the corresponding Instantiation is above a specified

match percentage threshold. For instance, quality matches to Case 76-4-1’s and Case 89-7-1’s

Code Instantiation of III.4., lead to the application of this heuristic. Notice that this heuristic,

cases from Stage 1 to decide if the heuristic applies. This detail is shown in step 1(a) of Figure 3-23. This is important
because, as we shall see in Chapter 4, this heuristic was employed by two of the competitor methods in the experiment,
namely NON-OP-SIROCCO and EXTENDED-MG. This would not have been possible if the heuristic relied on
Instantiations, something that is unique to SIROCCO.

105

unlike the prior two, is based solely on the quality of the match score, irrespective of whether the

match includes the Questioned Fact or a certain number of Critical Facts.

The final heuristic supporting the selection of Code III.4. is an application of “Grouped with

Good Match of Code Instantiation.” The idea is that Code III.4. accrues evidence of its

relevancy due to its association with another code that is potentially relevant. This heuristic

represents a direct application of the Group Codes operationalization technique. The heuristic is

applied in this instance because another of 76-4-1’s Code Instantiations, one applied to Code I.4.,

matched well to the target, and Code I.4. is grouped with Code III.4. in the analysis representation

of Case 90-5-1.

After the heuristics have been applied to all of the Code Instantiations, and the Analyzer has

sorted the resultant list of codes, a filter is applied to delete codes from the candidates list that do

not collocate well with higher-rated codes. The Analyzer uses historical data collected from all of

the cases decided between 1958 and 1992, a total of 475 cases, to determine collocation.

Essentially, the filter checks the percentage of times code 1 is cited when code 2 is cited and vice

versa. If both values are below a user-specified threshold (default = 0.02), then the lower-rated

code is dropped from the candidates list. In the analysis of Case 90-5-1, one code, Code III.3.

(“Avoid conduct that will discredit the profession or deceive the public”) is filtered from the list

at this step, because it does not collocate well with a number of higher-rated codes. (Note that

this action is not visible in the output.) The board, in fact, does not cite this code, so this is

arguably a correct move by SIROCCO.

After displaying and explaining (if requested) the selected codes, the Analyzer applies a

similar sequence of steps to the Case Instantiations (step 2 of Figure 3-23). The code-selection

heuristics are listed in Figure 3-26. Perhaps the most critical heuristic – certainly the one that is

applied most frequently – is “Case Cites Matching Code.” This heuristic relies on the codes that

were selected in step 1 of Figure 3-23. That is, for every Code Instantiation that is well matched,

the Analyzer adds some heuristic evidence that the citing case is also relevant. In SIROCCO’s

output depicted in Figure 3-24, this heuristic is responsible for all four of the pieces of evidence

shown beneath Case 76-4-1. These satisfied heuristics refer to the Code Instantiations of I.4. and

III.4. that have already been discussed.

The second and third heuristics in Figure 3-26 are analogous to the similarly named code-

selection heuristics. As per their code counterparts, these heuristics are intended to reward Case

27 Evaluation of a Questioned Fact mapping is based on a predefined list that orders all of the match possibilities by
“goodness” of match. For instance, an exact match between the Questioned Facts of the source and the target yields the
best match, a match between the Questioned Facts at the Fact Group level yields the next best match, and so on.

106

Instantiations that have reasonably good match scores and that also match well to Critical and

Questioned Facts, respectively.

Case Cites Matching Code Satisfied by a case that cites a Code Instantiation from Stage 2
that is a good match.

Good Match Critical Facts Satisfied by a Case Instantiation from Stage 2 that has a low match
of Case Instantiation score and at least a minimum number of Critical Facts.

[CF-Match-Score-Thresh = 0.5; CF-Minimum-Facts-Thresh = 2]

Good Match Questioned Facts Satisfied by a Case Instantiation from Stage 2 that has a low match
of Case Instantiation score and a match of Questioned Facts at or below a specified

abstraction level.
[QF-Match-Score-Thresh = 1.0; QF-Abstraction-Thresh = 3]

Good Match Critical Facts Satisfied by a case from Stage 1 that cites a Case Instantiation
of Citing Case with a low match score and at least a minimum number of

Critical Facts.
[CF-Match-Score-Thresh = 0.5; CF-Minimum-Facts-Thresh = 2]

Good Match Questioned Facts Satisfied by a case from Stage 1 that cites a Case Instantiation
of Citing Case with a low match score and a match of Questioned Facts at

or below a specified abstraction level..
[QF-Match-Score-Thresh = 1.0; QF-Abstraction-Thresh = 3]

Grouped with Good Match Satisfied by a case that is grouped with either (1) a good
of Case Instantiation or matching Case Instantiation from Stage 2 or (2) a case that cites
Citing Case a good matching Case Instantiation from Stage 2.

Figure 3-26: The Case-Selection Heuristics

If a case cites another case, and the cited case is found to be relevant to a new fact situation,

there is some reason to believe that the citing case may also be relevant. The heuristics “Good

Match Critical Facts of Citing Case” and “Good Match Questioned Facts of Citing Case”

represent this notion. In particular, if one of the top-rated cases from Stage 1 contains a well-

matched Case Instantiation, both the citing case and the Instantiated case accumulate evidence of

relevance. This is shown in the output of Figure 3-24 under the selections of Cases 84-5-1 and

89-7-1. The fact that Case Instantiation 84-5-1 of Case 89-7-1 is well matched, provides

evidence of Case 84-5-1’s relevance to the present case. At the same time, Case 89-7-1

heuristically is assigned evidence of its relevance for the same reason.

Recall that Case 84-5-1 involved the overruling of an engineer’s judgment by a client in a

situation in which safety was at issue. The ethical review board actually cites 84-5-1 in its

analysis of Case 90-5-1, but it was not highly rated by Stage 1 of SIROCCO and thus dropped

from the analysis until this point. The fact that it is ultimately suggested by the program

illustrates that SIROCCO is not totally dependent on the results of its surface retrieval stage. It

107

also shows how SIROCCO is flexible in its use of operationalization knowledge. In particular,

the program can bring relevant knowledge to bear at any stage of the process.

The filtering process for cases (i.e., step 2(c) of Figure 3-23) involves, in part, the use of a

similarity measure called the citation overlap. The citation overlap is based on the principle that

when two cases cite the same code or codes from the same category, there is a strong indication

that the cases are relevant to one another. Likewise, when one case directly cites another, or

when two cases share a citation to a third, there is a strong indication of relevance. Aside from its

usage here, this measure is integral to the SIROCCO experiments, and it is discussed in detail and

formally defined in Chapter 4.

The Analyzer uses the citation overlap measure to determine when candidate cases have

sufficient overlap with the set of possibly relevant codes, suggested in step 1. If a case has

sufficient overlap with the set of possibly relevant codes – above a user-specified threshold – and

the case cites at least one code from the possibly relevant codes that is highly rated, the Analyzer

proposes it as a possibly relevant case. A case that does not sufficiently overlap with the set of

possibly relevant codes or that does not cite at least one highly rated code is filtered from the

suggested cases list.

In step 2 (d), the Analyzer displays the suggested cases, together with explanations of each

individual case (if requested by a user-specified parameter).

The final step of the Analyzer, step 3 in Figure 3-23, is designed to provide qualitative

suggestions beyond the possibly relevant codes and cases. This step of the process explicitly

brings to bear four of the operationalization techniques, Define the Superior Code, Apply a

Hypothetical to a Code, Rewrite a Code, and Define or Elaborate a General Issue or Principle.

For each of the possibly relevant codes and cases, an attempt is made at this stage to find

information, in the form of operationalizations applied in past situations, that may be relevant in

the present circumstances. The additional suggestions heuristics used for this task are shown in

Figure 3-27.

For instance, consider the additional suggestion made by the Analyzer at the bottom of Figure

3-24. Basically, the program suggests that two codes dealing with public safety (II.1.a. and I.1.)

may override, in the circumstances of target case 90-5-1, a code dealing with confidentiality

(III.4.), a code dealing with loyalty to one’s employer (I.4.), and a code dealing with standards of

integrity (III.1.). This suggestion is made because Case 76-4-1, a case cited as possibly relevant

to 90-5-1, is an example of such a conflict (see the “Overrides” column in Figure 3-20 to verify

this), and all of the same codes are suggested by SIROCCO in the present case.

108

It is instructive to observe that the ethical review board actually did employ a Define the

Superior Code operationalization in their analysis of Case 90-5-1. To see this, refer to the

analysis representation of case 90-5-1 in Figure 3-10. Although the specific code conflict they

denote (i.e., Code II.1.a. overrides Code II.1.c., “Do not reveal confidential information without

consent”) is different, the issue is essentially the same: that of deciding between an obligation to

public safety and an obligation to a client’s confidentiality.

Suggest Positive-Negative Fact Whenever a Fact of a possibly relevant source case matches a Fact of
Primitive Matches the target case in positive-negative fashion, suggest that this mismatch

may be important to the analysis of the case.

Suggest Define the Superior Code Whenever a Code Instantiation that is a good match overrides or is
Operationalizations overridden by another code that is also considered possibly relevant,

suggest that a code conflict may exist in this case.

Suggest Apply Hypothetical to Whenever a Code Instantiation that is a good match has a
a Code Operationalizations hypothetical applied to it, suggest that this hypothetical may be

relevant to the present case.

Suggest Rewrite a Code Whenever a possibly relevant past case cites a changed code, suggest
Operationalizations that the change made to the code may be relevant to the current case.

Suggest Define or Elaborate a Whenever a possibly relevant past case defines or elaborates a general
General Issue or Principle issue, suggest this definition or elaboration as possibly relevant to the
Operationalizations present case.

Figure 3-27: The Additional Suggestions Heuristics

3.2. How Does SIROCCO Use the Operationalization Techniques?

Now that the complete architecture of SIROCCO has been described, it is possible to discuss,

in more concrete terms, how and to what degree the computational model implements the

operationalization techniques. Figure 3-28 provides a summary of how code operationalizations

are implemented in SIROCCO, while Figure 3-29 provides a summary of how case

operationalizations are implemented.

Each of the operationalization techniques first introduced in Figure 1-1 is listed in one of the

two figures along with: (1) a brief description of the technique’s representation within SIROCCO,

(2) an explanation of how SIROCCO reasons using that technique within each stage of the

program, and (3) an indication of whether the technique contributes to the generation of

suggested codes and cases (designated by a “C” in the final column) or whether the technique is

focused solely on providing additional, qualitative suggestions (designated by an “S” in the final

column).

109

The Instantiation techniques are the most central and important operationalization techniques

employed by SIROCCO. Not only are Instantiations utilized by all stages of the program, but a

number of the other techniques rely on Instantiations in order to perform their task. For instance,

Define the Superior Code, used to generate the additional suggestion shown in Figure 3-24,

would not have been invoked if the Code Instantiation of Code II.1.a. had not first been

established. The central role of Instantiations in SIROCCO squares with the observed reasoning

of the review board. The board typically relies on cited codes and cases as “anchors” for

performing further analysis. In other words, it is typical for the board to “link” the facts of a case

to potentially relevant codes and past cases before applying other techniques to those citations,

such as posing hypotheticals or elaborating general issues.

Code Operationalizations
Operationalization

Technique
Representation in SIROCCO Reasoning in SIROCCO

Code Instantiation

Defined by the linking of Critical and
Questioned Facts to a code citation in the
“Why Relevant?” and “Why Violated…?”
columns of the analysis representation. A
Code Instantiation represents the
interpretation of a code and the linking of
that code to the facts of a case.

Stage 1. The weighted dot product of a source
case is improved if Questioned Facts and Critical
Facts match the target.

Stage 2. Focuses Stage 2’s structural mapping
search. SIROCCO attempts only to map the
Critical and Questioned Facts of Instantiations to
the target case.

Analyzer. The Analyzer’s code-selection
heuristics strongly favor codes that have numerous
strongly matched Code Instantiations.

C

Apply a Hypothetical to a
Code

Defined by the use of a Hypo as a
supporting element of a code citation in the
“Why Relevant?” or “Why Violated…?”
columns of the analysis representation. A
quote (or quotes) from the board’s analysis
supplies the hypothesized facts.

Analyzer. The Analyzer proposes that a
hypothetical may be relevant whenever a strongly
matched Code Instantiation has a Hypo as a
supporting element. The hypothetical is proposed
as possibly relevant in the “Additional
Suggestions” section of SIROCCO’s output.

S

Rewrite a Code

Defined by the use of the "Changed" value
in the “Code Status” column of a code
citation in an analysis representation. This
status denotes that the code has either
recently changed or that a change is
suggested in the present case.

Analyzer. The Analyzer proposes that a code
rewrite may be relevant whenever one is associated
with a possibly relevant case. The code rewrite is
proposed as possibly relevant in the “Additional
Suggestions” section of SIROCCO’s output.

S

Define the Superior Code

Defined by the inclusion of other codes in
the “Overrides” column of a code citation in
an analysis representation. Supplying codes
in this column denotes that the present code
takes precedence over the others in the
current context.

Analyzer. The Analyzer proposes that one code
may override others whenever a strongly matched
Code Instantiation exhibits such an override and
all of the same codes are possibly relevant in the
present context. The code conflict is proposed in
the “Additional Suggestions” section of
SIROCCO’s output.

S

Group Codes

Defined by the inclusion of other codes in
the “Grouped With” column of a code
citation in an analysis representation.
Supplying codes in this column signifies
that this code is grouped with the other
codes for force of argument in the current
context.

Analyzer. The Analyzer’s code-selection heuristic
“Grouped with Good Match of Code Instantiation”
selects codes as possibly relevant when they are
grouped with strongly matched Code
Instantiations.

C

Figure 3-28: How the Code Operationalizations are Implemented in SIROCCO

110

Case Operationalizations
Operationalization

Technique
Representation in SIROCCO Reasoning in SIROCCO

Case Instantiation

Defined by the linking of Critical and
Questioned Facts to a case citation in the
“Why Relevant?” and “Why Violated…?”
columns of the analysis representation.

Stage 1. The weighted dot product of a case is
improved if Questioned Facts and Critical Facts
match.

Stage 2. Focuses Stage 2’s structural mapping
search. SIROCCO attempts only to map the
Critical and Questioned Facts of Instantiations to
the target case.

Analyzer. The Analyzer’s case-selection heuristics
strongly favor cases that have numerous strongly
matched Case Instantiations. In addition, the cases
that cite strongly matched Case Instantiations are
also strongly favored.

C

Define or Elaborate a
General Issue or
Principle

Defined by case citations supplied in the
“Background Information” category with a
citation type of “Relevant, But Not
Controlling” in an analysis representation
Such case citations typically introduce or
define general scenarios, issues, or
principles.

Analyzer. The Analyzer proposes that a general
scenario, issue, or principle may be relevant
whenever a possibly relevant case cites a case that
employs this operationalization. The general
scenario, issue, or principle is proposed in the
“Additional Suggestions” section of SIROCCO’s
output.

S

Reuse an
Operationalization

Not explicitly defined in SIROCCO’s
representation. Implicitly defined whenever
a case is cited, since virtually every cited
case provides operationalizations that are
reused by the computational model.

Stage 1, Stage 2, Analyzer. This technique is
implicitly employed in SIROCCO's overall
strategy of selecting codes, cases, and additional
suggestions. Because SIROCCO takes a case-
based approach, all of its suggestions rely on
operationalizations used in past cases.

C

Group Cases

Defined by the inclusion of other cases in
the “Grouped With” column of a case
citation in an analysis representation.
Supplying cases in this column signifies
that this case is grouped with the other cases
for force of argument in the current context.

Analyzer. The Analyzer’s case-selection heuristic
“Grouped with Good Match of Case Instantiation”
selects cases as possibly relevant when they are
grouped with strongly matched Case
Instantiations.

C

Figure 3-29: How the Case Operationalizations are Implemented in SIROCCO

Reuse an Operationalization is the most general and all-encompassing technique. It relies on

the application of operationalizations in past cases and the analogical transfer of those

applications to new cases. Because SIROCCO takes a case-based approach, Reuse an

Operationalization is arguably the core implementation idea of the architecture. It is also fair to

say that in connection with this technique the computational model diverges from the review

board in behavior. While SIROCCO relies completely on its case base to identify suggestions to

provide to the user – in other words, it is a pure case-based reasoner – the board is capable of

reasoning from first principles when, for instance, it interprets codes or applies hypotheticals.

A specialized application of Reuse an Operationalization is important in connection with the

experiments discussed in Chapter 4. Two of SIROCCO’s competitor methods, namely NON-OP-

SIROCCO and EXTENDED-MG, effectively use a form of Reuse an Operationalization to

111

generate suggested codes. In particular, both of these methods employ the first heuristic shown in

Figure 3-25, “Frequent Occurrences in Top Cases,” to generate code suggestions. Thus, it can be

said that both methods use at least a weak form of the operationalization techniques. Because

EXTENDED-MG outperforms the system it is based upon, MG, this is significant: it provides

additional evidence that the operationalization techniques do make a difference in supporting

accurate suggestions.

Five of the nine operationalization techniques support SIROCCO in suggesting possibly

relevant codes and cases. Those five techniques are Code Instantiation, Group Codes, Case

Instantiation, Reuse an Operationalization, and Group Cases (indicated by a “C” in the final

column of Figures 3-27 and 3-28). These techniques ultimately have the goal of suggesting,

indicating, or pointing to particular codes and cases. The other four techniques are used

exclusively for providing additional, qualitative suggestions (denoted by a “S” in the final

column). In other words, the latter four techniques imply that some explanation or discussion of

the codes and cases is required. Consider, for instance, that Apply a Hypothetical to a Code

requires language to “fill in” unstated facts. This distinction between the two sets of

operationalizations is critical because it is only the former techniques that are objectively

verifiable through a direct comparison of SIROCCO’s output to that of the review board28.

Fortunately, the five verifiable operationalization techniques include the techniques that are

most central to operationalization, the Code and Case Instantiations. Thus, testing this core

group of techniques is highly indicative of how the operationalization techniques fare as a whole.

The experiments reported in Chapter 4 directly test the accuracy of this critical subset of the

operationalization techniques.

3.3. How Does SIROCCO Use Temporal Knowledge?

As discussed in Section 3.1.4, SIROCCO uses temporal relations as one component of the

graph matching process of Stage 2. In particular, during node expansion of the Stage 2 search

algorithm, SIROCCO checks that the temporal relations between the Critical and Questioned

Facts of the source case are consistent with the (proposed) corresponding Facts of the target case.

If the relations are consistent, SIROCCO allows node expansion and investigation of the

particular mapping represented by that node. If the relations are inconsistent, SIROCCO

disallows the expansion of this node.

28 Strictly speaking, the other operationalizations could be compared to the explanations provided by the board. I
contend, however, that such a process would drastically impact objectivity because of the need for extensive language
interpretation.

112

In order to illustrate how temporal relations can benefit SIROCCO in its task, this section

presents a brief example in which the time relationships between Facts play an integral role in the

suggestions produced by the program29. Consider the two cases shown in Figure 3-30.

Facts of Case 91-6-1:
Facts: Engineer A contracts to serve as a consultant to a federal environmental agency for the development of
an overall hazardous waste remedial strategy. Under the contract with the federal agency, Engineer A agrees
to provide basic consulting services along with an understanding that the federal agency may request
additional services at a later date. Nothing is contained in the contract between Engineer A and the agency
concerning other work for other clients. Two years following completion of basic services to the federal
agency, Engineer A is retained to provide environmental consulting services by a major industrial corporation
which has been deemed by the federal agency to be responsible in a dispute over the clean-up of a hazardous
waste site. Following the execution of its contract with the corporation, Engineer A is contacted by the
federal environmental agency and is asked to provide consulting services to the agency per Engineer A's
original understanding with the agency in connection with the specific hazardous waste site of the major
industrial corporation which is now a client of Engineer A. Engineer A informs the federal agency that the
performance of such services would constitute a conflict of interest and declines to perform the services
requested.
Question:
Was it unethical for Engineer A to agree to perform services to the industrial corporation under the facts
without the prior consent of the federal agency?

Facts of Case 62-7-1:
Engineer Z, an engineering consultant, has been retained by a County Metropolitan Commission to perform
all necessary engineering and advisory services. The Commission does not have an engineering staff, so
Engineer Z acts as the staff for the Commission in the preparation of sewerage and water studies, the
establishment and financing of sanitary districts, and reviews and approves plans submitted by other
engineers.
Engineer Z has also been retained by a private company to perform the engineering design for a development
of several thousand housing units. Involved are extensive contract negotiations between the Commission and
the developer for the construction and financing of sanitary and water facilities for the development. As
consultant to the Commission, Engineer Z will under the circumstances have a key role in the negotiations.
Question:
Does the dual role of Engineer Z constitute a conflict of interest?

Figure 3-30: An Example Target Case, 91-6-1, and an Example Source Case, 62-7-1

Both of these cases deal with a conflict of interest, a common issue faced by many

professional engineers. The first case, 91-6-1, is SIROCCO’s target case for the example. In this

case, Engineer A provides and completes engineering consulting services for a federal agency

regarding the development of a hazardous waste strategy. There is an “understanding” between

Engineer A and the agency that Engineer A may be required to perform additional services in the

future. However, there is no stipulation in the contract regarding Engineer A’s work for other

clients. Two years later, Engineer A performs and completes consulting services for a

corporation that has been cited by the federal agency for violation of hazardous waste policy.

29 The example in this section was actually generated by SIROCCO; it is not hypothetical.

113

Subsequently, the federal agency contacts Engineer A, cites the original understanding between

the engineer and the agency, and asks that Engineer A provide consulting services to the agency

in connection with the hazardous waste of the corporation. Engineer A declines the agency’s

request, citing a conflict of interest. The question raised by this scenario is whether it was ethical

for Engineer A to have provided services for the private corporation without having first received

approval of the federal agency.

In Case 62-7-1, Engineer Z is retained by a governmental body to provide all engineering and

advisory services in connection with sewerage and water studies. This service includes the

review and approval of plans submitted by other engineers. At the same time, Engineer Z is also

retained by a private development company to perform design services for a new housing

development. The sanitary and water facilities of the new development ultimately must be

approved by Engineer Z’s other employer, the governmental body, and Engineer Z himself.

Thus, Engineer Z is placed in the position of both designing (for the private company) and

approving (for the governmental body) the new facilities.

A conflict of interest appears to be present in both cases. In fact, the review board found the

actions of both Engineer A and Engineer Z to be unethical, citing several conflict of interest

codes. SIROCCO is also capable of identifying the presence of a conflict of interest in Case 91-

6-1, in part by retrieving and mapping the target case to source Case 62-7-1. However, because

of a critical difference between 91-6-1 and 62-7-1 – a difference based on mismatched temporal

relations between the cases – SIROCCO is also capable of correctly rejecting the following code

cited by the board in their analysis of Case 62-7-1:

“Code III.1.c. Engineers shall not accept outside employment to the detriment of their regular

work or interest. Before accepting any outside employment they will notify their employers.”

The intent of this code is to avoid a special type of conflict of interest, the kind that arises

when an engineer has an on-going job or assignment and at the same time accepts other work that

may be detrimental to the regular assignment. Notice how the two cases differ significantly on

this particular issue. In Case 91-6-1, Engineer A’s employment with the corporation begins long

after his contract with the agency concludes. Although there is an informal understanding that the

agency may need his services at a later date, a long period of time passes without Engineer A

providing any services for the agency. Thus, the board concluded that engineer A’s work for the

agency was not “regular work or interest” and was thus outside the scope of Code III.1.c. On the

other hand, the board does cite Code III.1.c. in their analysis of Case 62-7-1. In this case,

Engineer Z has a “regular” assignment for a governmental body and, at the same time, accepts a

114

conflicting assignment with a private company. Engineer Z’s assignment with the company is

detrimental to his role with the governmental body, because will be asked to approve what he

himself has designed.

By citing Code III.1.c. in their analysis of Case 62-7-1, but not in their analysis of 91-6-1, the

review board acknowledges at least some difference between the two cases. That is, although

62-7-1 and 91-6-1 clearly raise conflict of interest issues, the specific nature of the conflict is

somewhat different between the two cases.

Now let us examine how SIROCCO is able to identify this difference between the cases.

First, consider a version of the program that does not take temporal considerations into account.

Shown below is a structural mapping between Code Instantiation III.1.c. of source Case 62-7-1

and target Case 91-6-1 that does not impose temporal constraints.

Mapping Level Source Facts (Case 62-7-1) Mapped Target Facts (Case 91-6-1)

Fact Group 2. Engineer Z <is employed by> County
Metropolitan Commission <as> Engineer &
Advisor.

1. Federal Environmental Agency <hires
the services of> Engineer A <for>
Hazardous Waste.

Fact Primitive 3. Engineer Z <is hired to provide services
for> Developer D.

6. Major Industrial Corporation <hires the
services of> Engineer A <for>
Hazardous Waste.

Fact Group 4. Engineer Z <in his capacity as> Advisor
<takes the action> (Engineer Z
<negotiates with> Developer D <for>
Housing Development H).

8. Engineer A <provides engineering
services on> Hazardous Waste <for>
Major Industrial Corporation.

In this structural mapping the key mappings between the Facts of the source and the target are

the first two. These are the Facts that indicate that each engineer worked for two separate clients.

If temporal considerations are disregarded, i.e., if the fourth condition of a valid mapping,

discussed in Section 3.1.4, is dropped, the above table represents a valid mapping from the source

to the target. Because of the resulting favorable match score of this Code Instantiation, a version

of SIROCCO that does not take temporal considerations into account would ultimately, but

incorrectly, propose III.1.c. as a possibly relevant code.

Now, consider how the enforcement of temporal relationships changes the structural

mapping. Below is a mapping of the same Instantiation, except that it is generated by a version of

SIROCCO that does take temporal considerations into account.

115

Mapping Level Source Facts (Case 62-7-1) Mapped Target Facts (Case 91-6-1)

Fact Primitive 3. Engineer Z <is hired to provide services
for> Developer D.

6. Major Industrial Corporation <hires the
services of> Engineer A <for>
Hazardous Waste.

Fact Group 4. Engineer Z <in his capacity as> Advisor
<takes the action> (Engineer Z <negotiates
with> Developer D <for> Housing
Development H).

8. Engineer A <provides engineering
services on> Hazardous Waste <for>
Major Industrial Corporation.

Notice that the mapping between Fact 2 of the source and Fact 1 of the target, the Facts

corresponding to the engineers’ first employment, is no longer part of the structural mapping.

This is so because the temporal relations between Facts 2 and 3 of the source do not overlap with

the temporal relationships between corresponding Facts 1 and 6 of the target. In particular, we

have

ta (FS2 , FS3 , FT1 , FT6) = (E) Ω (B) = ø

In other words, Facts 2 and 3 of the source occur at the same time30, while Facts 1 and 6 of

the target occur in non-overlapping sequence. Because these pairs of Facts are not temporally

analogous with one another, the node representing a structural mapping of all of these Facts is

rejected as invalid. Ultimately, the “lesser” mapping, shown in the table immediately above, is

identified as the best possible mapping by a version of SIROCCO that enforces temporal

constraints. Because this mapping is assigned a relatively poor match score, the Instantiation is

ultimately rejected and Code III.1.c. is not proposed as a possibly relevant code. This is the

correct action, and note that it is only taken by the version of SIROCCO that enforces temporal

constraints.

This example illustrates how SIROCCO is able fruitfully to use temporal relationships to help

in its assessment of new cases and in proposing possibly relevant citations. Because of a number

of such examples uncovered during my analysis of the NSPE BER cases (see Section 2.2.3),

combined with some early results of the computational model, I came to the conclusion that

temporal relationships are important to the assessment of engineering ethics cases. In particular, I

proposed the secondary thesis of this dissertation, that SIROCCO’s temporal knowledge makes a

difference in the accuracy of its predictions.

30 In this example, I use the Time Qualifiers actually supplied by an independent case enterer. Arguably, Facts 2 and 3
do not occur at precisely the same time. More likely, Fact 3 occurs during Fact 2. Notice, however, that this would not
affect the example, as the calculation of ta would still yield the empty set for such a time specification.

116

As a side note, it is worthwhile mentioning that this example also illustrates the wide range of

engineering ethics cases that can be addressed by SIROCCO. Although conflicts of interest are

not one of the Selected Topics for which SIROCCO was specifically designed to address, in this

instance the program capably handled a case involving that issue. In other words, this is an

example of SIROCCO addressing an issue outside its primary scope of knowledge.

3.4. Explanation in SIROCCO

One of the key aspects of SIROCCO, particularly in comparison to the alternative methods

with which the program is empirically compared in this dissertation, is its capability to explain its

reasoning. Explanation is particularly important when one considers the engineering ethics

domain and the ultimate intended use of the tool. In engineering ethics, and perhaps in any

professional ethics domain, it is important for the decision maker to be able to carefully deliberate

on his or her decisions. This involves, at a minimum, identifying which facts are relevant in light

of applicable principles, resolving conceptual issues by defining terms of the principles and their

application to case facts, and engaging in moral reasoning (e.g., use past cases for "line-drawing"

comparisons, employ creative middle-way solutions) [Harris et al., 1999].

To support a human engaged in these analytical steps, a computational model must provide

more than lists of relevant codes and cases. For instance, it is important that the human user

understand which of the Facts of a target case are morally relevant and which codes (i.e.,

principles) these relevant Facts relate to. This is precisely the type of information provided in

SIROCCO’s explanations of its structural mappings (see, for instance, Figure 1-3). Displaying

the steps of the target that match to possibly relevant codes allows the user to discern the facts

that might be considered “critical” in the context of the new case. More specifically, the Code

and Case Instantiations of past cases allow the human interlocutor to focus on and assess relevant

facts and pay less attention to those facts that may not be relevant.

SIROCCO’s structural mapping explanations also help the user with conceptual issues.

Although the program is not capable of directly defining open-textured terms, such as those

discussed in the Boisjoly example of Chapter 1, its retrieval and structural mapping capability

effectively allows it to retrieve exemplars of such definitions in the context of past cases. In some

sense, an Instantiation’s extensional representation – that is, the links from a code or case to the

Facts of past cases – provides an exemplar definition of the terms that are relevant to the code or

case. By comparing and contrasting the Facts of the current target to exemplars of past

Instantiations, it is possible for the user to deduce, at least to a rudimentary degree, the board’s

intended definitions of various terms.

117

SIROCCO’s “additional suggestions” can also be helpful in supporting the user’s moral

deliberation. For instance, the suggestion that a conflict between codes might exist in Case 90-5-

1 (see the bottom of Figure 1-2 and Figure 3-24) provides the user with potentially important

information for understanding the moral issues involved in a scenario. Without such

explanation, the user might tend to look at the codes in isolation. Or, even if they recognize that

there is a conflict between codes, they may not know of an example of its resolution, something

that SIROCCO’s explanation provides by indicating the past case or cases that exhibited such a

conflict.

Ultimately, the user of SIROCCO is responsible for performing the actual moral reasoning

and coming to a conclusion about new cases. However, SIROCCO, equipped with a rudimentary

explanation capability, provides valuable support in focusing attention on the relevant factual and

conceptual issues of an engineering ethics case.

118

4. The SIROCCO Experiments
The previous chapter described the architecture of SIROCCO, showing how the program

implements and reuses the operationalization techniques that were observed in the NSPE BER’s

analyses of engineering ethics cases. As discussed above, a core subset of these techniques, in

particular the Code Instantiations and Case Instantiations, is very important. Also, the use of

temporal knowledge within SIROCCO was described, formalized, and demonstrated. The

question now is whether the proposed architecture and implemented functionality of SIROCCO

can be shown empirically to verify the theses proposed in this dissertation.

This chapter presents a series of experiments performed with SIROCCO. The experiments

were designed to test: (1) the primary thesis, that is, whether the core set of operationalization

techniques lead to accurate suggestions of relevant codes and past cases, (2) the secondary thesis,

that is, whether SIROCCO’s temporal knowledge similarly supports accurate suggestions, and (3)

computational characteristics of the program, for instance, trade-offs between accuracy and

efficiency and the scalability of the program.

4.1. The Experimental Design

As with any formal evaluation, the SIROCCO experiments required a series of design

choices, summarized in Figure 4-1. As discussed below, making these choices provided a general

framework for all of the experiments.

4.1.1. The Top Level Experimental Approach

The most fundamental aspect of the experimental design is the use of a benchmark function

to score SIROCCO, ablated versions of SIROCCO, and the competitor methods. In this approach

the output of a method31 is compared to a hand-coded representation of the actual NSPE BER

analyses. The hand-coded representation is the analysis representation of a case, discussed in

Section 3.1.2. The goal of the benchmark is to quantify the degree with which the method

simulates the analysis produced by the board. To the degree that a method’s output agrees with

the review board’s opinions, that method is deemed successful.

31 Henceforth, the term “method” is used in a general sense to include SIROCCO and all of the computational methods
with which it is compared.

119

Top-Level Experimental Benchmarking, followed by external system comparisons and ablation
Design Approach: comparisons.

Benchmarking – Evaluation of a single method by comparing the output of that
method with the hand-coded analyses of the ethical review board (i.e., the
NSPE BER) for the same cases.
External System Comparison – Comparison of SIROCCO with other
computational methods by benchmarking each and then comparing the
benchmark results.
Ablation Comparison – Comparison of a fully featured version of SIROCCO
with versions of the program from which functionality is excised. Again, the
benchmark is used as the basis of comparison.

Comparison Points: Specific items of comparison, for purposes of calculating the benchmark, are
the suggested codes and cases of SIROCCO (or one of the other methods)
compared with the codes and cases cited by the ethical review board for the
same cases.

Experiment Metric: The F-Measure, an information retrieval metric that combines precision and
recall, is used to quantify the benchmarks. Informally, the F-Measure
computes a form of overlap of the codes and cases between methods, and that
overlap can be either exact or inexact. Exact overlap occurs when the identical
code or case is found in both methods. Inexact code overlap is computed using
the Code Hierarchy as a basis. Inexact case overlap is calculated using a
citation overlap metric.

Parameter Settings: SIROCCO and each of the other computational methods has its own unique set
of parameters. The experiment parameter settings for SIROCCO were
established using informal, but extensive, pre-tests. The experiment parameter
settings for each of the other methods were decided by choosing the best run of
pre-tests in which parameters were varied over a large number of runs (i.e., for
each method 100 runs of the 184 foundational cases using the benchmark
comparison).

Test Cases: A trial set of 58 trial cases were chosen randomly from two categories of cases
decided between 1993 and 1998 by the ethical review board. The first category
was the Selected Topics and the second category was the Non-Selected Topics.
A majority of the cases (44) were chosen from the Selected Topics category.
Additional test results were obtained from the foundational set of cases, the 184
cases decided between 1958 and 1992 used to develop, debug, and pre-test
SIROCCO.

Statistical Model: Because of the non-Gaussian nature of the F-Measures obtained for every
benchmark, a nonparameteric bootstrap procedure was used to compare pairs
of methods.

Figure 4-1: Summary of the Experimental Design of the SIROCCO Experiments

Using the benchmark as a basis, two general tactics were used to test SIROCCO’s capabilities

and the hypotheses of this dissertation. First, several other computational methods were

identified as baselines, or competitors, to SIROCCO and those other methods were implemented

or obtained to process the NSPE BER cases. Second, the parameters of SIROCCO were used to

create ablated versions of the program.

The competitor methods were first presented in Figure 1-4 and described in Section 1.3.4.

The first two competitor methods, RANDOM and INFORMED-RANDOM, essentially represent

120

worst-case baselines. RANDOM uses purely random selection of codes and cases. INFORMED-

RANDOM selects randomly from a pre-computed distribution of cited codes and cases that

mirrors the frequency with which codes and cases were cited by the review board in decisions

between 1958 and 1992. In addition, INFORMED-RANDOM limits its selected citations to only

the 20 most-frequently cited codes and the 40 most-frequently cited cases.

Finding a computational method or methods that are more competitive with SIROCCO than

the random approaches was not easy, since engineering ethics is a novel AI domain that provides

no directly comparable computational model. However, because engineering ethics is a heavily

linguistic domain – as we have seen, its cases and analyses are in complex natural language – full-

text retrieval, a computational approach that calculates similarity between a target and a source

document based on similar language or similar concepts, seemed a likely area in which to find a

strong competitor to SIROCCO. The use of such an approach is well understood and established

in the information retrieval field [Frakes and Baeza-Yates, 1992; Korfhage, 1997]. A further

advantage of full-text retrieval is that it requires no knowledge representation, thus making it

relatively straightforward to apply. In recent years, much attention has been given to improving

upon this technology within the case-based reasoning literature [Burke et al., 1997; Lenz, 1998;

Brüninghaus and Ashley, 1998; Brüninghaus and Ashley, 1999]. If SIROCCO can be shown to

outperform such a system, there is evidence that a representation-intensive approach to case-

based reasoning, such as that implemented in SIROCCO, is still viable.

MG [Witten et al., 1999], a public-domain full-text retrieval system based on the vector space

model, was selected as one competitor. An extension of that method, EXTENDED-MG, which I

developed, was also included. MG retrieves possibly relevant cases and codes using a pure full-

text-retrieval approach, in particular, by applying vector comparisons between the target text,

represented as a n-dimensional term vector, and the text of all of the cases and codes, also

represented as n-dimensional vectors. In a term vector, the terms or concepts are assigned

weights proportional to the frequency of the term or concept in the document and inversely

proportional to the frequency of the concept in the corpus. To calculate similarity, the direction,

or more specifically the angle of direction, of the target vector and source vectors are compared.

The smaller the angle, the more similar the cases. EXTENDED-MG also uses this approach in

order to retrieve cases, but codes are selected from the retrieved cases based on the SIROCCO

heuristic “Frequent Occurrences in Top Cases” (see Figure 3-25). Recall that this heuristic

implements an aspect of the operationalization technique Reuse an Operationalization; thus,

EXTENDED-MG employs operationalization knowledge, albeit only weakly, to help in its

retrieval.

121

Two ablated versions of SIROCCO were used in the experiments. To test the primary thesis,

a version of SIROCCO that only very weakly employs operationalization techniques, NON-OP

SIROCCO, was included in the first experiment along with the competitor methods described

above. NON-OP SIROCCO uses Stage 1 and the dot product calculation to retrieve and score

cases, but it does not use Questioned Facts, Critical Facts, structural mapping, or most of the

heuristics of SIROCCO’s Analyzer to perform its task. To select codes, NON-OP SIROCCO, as

EXTENDED-MG does, uses the heuristic “Frequent Occurrences in Top Cases.” To test the

secondary thesis, an ablated version of SIROCCO, sans the temporal knowledge, was tested.

This version of the program, called NON-TEMP SIROCCO, provides the full functionality of

SIROCCO with the exception that it doesn’t check the consistency of temporal relations across

matched cases, i.e., condition 4 of a valid mapping discussed in Section 3.1.4.

4.1.2. The Comparison Points

The comparison points for the experiment were the code and case citations of the methods

and the review board. Each of the methods discussed in Section 4.1.1, as well as SIROCCO,

accepts a target case and produces two output lists: (1) a list of possibly relevant codes and (2) a

list of possibly relevant cases. These lists, in turn, were compared to the corresponding citation

lists produced by the review board, as hand-coded by the case enterers, for the same cases.

Although SIROCCO also produces “additional suggestions” that could theoretically be

compared to the opinions and analyses of the review board, the suggestions are in natural

language. Thus, they would need to be interpreted and somehow compared to the language of the

board’s analyses, unlike the suggested codes and cases that can be directly compared. Such an

interpretive process is highly subjective, so this aspect of SIROCCO was not evaluated in the

experiments reported in this dissertation. It is worth mentioning, however, that SIROCCO is the

only method that produces such suggestions. Thus, SIROCCO produces potentially helpful

information not provided by any of its competitors.

4.1.3. The Experiment Metric

To calculate overlap between a method’s solution and the board’s solution, an information

retrieval metric known as the F-Measure [van Rijsbergen, 1979, p. 173-176; Lewis et al., 1996]

which combines precision and recall, was used. Informally, the F-Measure was used to compute

a form of overlap of the codes and cases between two methods. A Venn diagram depicting the

overlap and the equations for precision, recall, and the F-Measure are shown in Figure 4-2.

122

Method x Review Board

 Additional Overlap Missed

Method x = The code and case suggestions produced by SIROCCO or one of the other methods.
Review Board = The code and case citations of the ethics review board.
Overlap = The code and case citations shared by both Method x and the review board.
Additional = The extra code and case suggestions made by Method x but not cited by the review board.
Missed = The set of code and case suggestions lacking in Method x but cited by the review board.
Precision (P) = Overlap / (Overlap + Additional) Recall (R) = Overlap / (Overlap + Missed)

F-Measure32 (Method x, Review Board) =
2β +1()PR
2β P + R

Figure 4-2: Calculation of the F-Measure in the SIROCCO Experiments

Two F-Measures were calculated for each method for each case, one representing combined

exact matches of codes and cases between the method’s solution and the board’s, and one

representing combined inexact matches of codes and cases. Codes and cases were combined to

focus and simplify the comparisons between methods. The combined exact F-Measure was

calculated by comparing codes and cases separately but treating them as being in one group for

purposes of calculating precision and recall. In other words, the corresponding numerators and

denominators for the precision and recall calculations of the code and case comparisons were

added together. For instance, if Method x suggested Code A, Code B, and Case X, and the

review board cited Code A and Case X for the same case, then, assuming ß = 1.0, the F-Measure

calculation would be:

P (Method x, Review Board) = (1 + 1) / (2 + 1) = 0.67

R (Method x, Review Board) = (1 + 1) / (1 + 1) = 1.0

F-Measure (Method x, Review Board) = (2 * 0.67 * 1.0) / ((1 * 0.67) + 1.0) = 0.8

The combined inexact F-Measure required different treatment of the codes and cases. Codes

were considered matched if they resided in the same category of the Code Hierarchy. Exact code

matches were first identified, tallied, and removed. The remaining codes in the “Additional” and

“Missed” categories (see the Venn diagram of Figure 4-2) were then pairwise compared to check

for matches at higher abstraction levels of the Code Hierarchy. Any abstractly matching pairs

were considered “equal” for the purposes of the inexact F-Measure calculation. An abstractly

32 ß < 1.0 gives greater weight to precision; ß = 1.0 gives equal weight to recall and precision; ß > 1.0 gives greater
weight to recall. ß = 1.0 was used for all experiments reported in this dissertation.

123

matched pair is any pair that shares the same top-level abstraction category. There are a total of

22 such categories.

Calculating the case-matching component of the combined inexact F-Measure was more

complicated. Cases were not grouped by a predefined knowledge structure such as the Code

Hierarchy, and so there was no static means of computing equivalence or relevance between pairs

of cases. Yet it was also true that if the board did not cite a case, say Case A, this did not

necessarily imply that Case A was irrelevant. Rather, it might indicate that the board was unable,

or perhaps did not have the time, to find such a case for their analysis. Because there are

significantly more cases to choose from than codes, it is far less likely that the board will cite a

given case than a given code. Alternatively, the board might have simply believed they had made

themselves clear without citing the case. The board cited, on average, significantly fewer cases

than codes per case. For the 475 cases decided between 1958 and 1992, the board averaged 2.24

code citations per case and 1.44 case citations per case. It was not unusual, in fact, for the board

to cite no cases in their analyses – this happened in 40% (73 out of 184) of the foundational case

analyses – while only very few of the board’s case analyses had no code citations.

Anyhow, it was necessary to find a fair way of assigning credit to each method for finding

cases that seemed to be (or are) relevant, even if they did not show up in the board’s opinions. In

other words, credit was required to be given for a relevant case suggestion, even if there was no

corresponding case cited by the target case. With respect to Figure 4-2, this notion was quantified

as follows: For each case suggestion made by Method x, credit was given for an inexact match to

either (a) the target case or (b) one of the cases the board cited in its analysis of the target. There

might be multiple matches to the target, but each cited case could match only once. For the

purposes of the F-Measure calculation, therefore, each inexact match increased “Overlap” by 1

and decreased “Additional” and “Missed” by 1. When “Missed” reached 0, it was no longer

decremented. Notice that in the relatively common circumstance of the board citing no cases, the

calculation amounted to simply incrementing “Overlap” by 1 for each inexact match. If a target

case cited at least one case, the “Overlap” for the recall calculation would have a maximum value

equal to the number of cases cited by the target.

The altered version of the F-Measure metric used to handle inexact matching – particularly

that of case citations – is a reasonable and fair metric with which to benchmark the computational

methods. While the precise definitions of precision and recall were slightly altered, the spirit and

intent of the metrics remain intact. In particular, the altered versions of the F-Measure, precision,

and recall capture the “correctness” of a method’s selections with respect to both the board’s

124

citations and additional knowledge sources (i.e., the Code Hierarchy and the citation overlap

metric).

To calculate the combined inexact F-Measure, the corresponding numerators and

denominators of code and case precision and recall were added, as with the exact calculation. As

an example, suppose Method x suggested Code A, Code B, Case X, and Case Y, while the review

board, for the same case, cited Code C and Case Z. If Code A and Code C inexactly matched,

Case X inexactly matched the target case, but Case Y did not inexactly match either Case Z or the

target, then the F-Measure calculation would be:

P (Method x, Review Board) = (1 + 1) / (2 + 2) = 0.5
R (Method x, Review Board) = (1 + 1) / (1 + 1) = 1.0

F-Measure (Method x, Review Board) = (2 * 0.5 * 1.0) / ((1 * 0.5) + 1.0) = 0.67

Implementing Inexact Case Matching

The above calculation depends, of course, on a means for identifying inexact matches

between cases. In the NSPE BER corpus, it was clear that citation overlap – a measure of code

citation overlap combined with case citation overlap – is the most objective and feasible measure

of similarity. When two cases cite the same code, or codes from the same category (i.e., code

citation overlap), there is a strong indication that the cases are similar, or at least relevant, to one

another. Likewise, when one case directly cites another, or when two cases share a citation to a

third case (i.e., case citation overlap), there is again a strong indication that the cases are similar

or relevant to one another. There is also evidence from the literature that citation overlap is a

viable means of comparison. For instance, it has been used as a basis for comparing and ranking

AI research journals [Cheng et al., 1996].

As part of the calculation of inexact matching between cases, the F-Measure was again used,

but in a different capacity, as the metric to calculate the code citation overlap between the cases.

Intuitively, the F-measure was a good choice because it measures the degree with which "issues"

are shared between cases. Shared codes represent, roughly speaking, common issues between

cases, while unshared codes represent issues relevant to one case but not the other. The more

issues two cases share, proportionally speaking, the more likely they are to be relevant to one

another. The F-measure effectively computed this through a form of intersection that also

imposed a penalty for lack of intersection (i.e., missing relevant codes, including irrelevant

codes). Matching, or overlap, between two codes was calculated by taking 1 divided by the level

125

at which they share an ancestor in the Code Hierarchy. ß was set to 1.0 to give equal weight to

precision and recall in the F-Measure calculation.

With respect to case citation overlap, a shortest path algorithm was applied between cases.

Viewing the case base as a network, with cases as nodes and case citations as edges, the shortest

path between Case 1 and Case 2 was defined as the minimum number of edges between Case 1

and Case 2. Case citation overlap was computed as follows:

 Case Citation Overlap (Case1, Case2) =
1

ShortestPath(Case1,Case2)
 or 0.0, if there is no path

Thus, for instance, a direct citation between two cases resulted in case citation overlap = 1.0

(1/1), and a case citation shared by two cases (i.e., a case node existing between the two cases)

resulted in case citation overlap = 0.5 (1/2).

The final step in computing citation overlap is combining code citation and case citation

overlap. Citation overlap was defined as the weighted sum of the constituent overlap functions:

 Citation Overlap (Case1, Case2) =
α − 1()CodeCitationOverlap(Case1,Case2) + CaseCitationOverlap(Case1,Case2)

α

For the experiments,α was fixed at 5.0, favoring the code citation overlap by a 4-1 ratio over

the case citation overlap. In other words, while the presence of case citation overlap is a strong

indicator of relevance, the absence of case citation overlap is not a strong indicator of irrelevance.

While it is impossible objectively and precisely to define the citation overlap threshold, a

value ≥ 0.35 was taken to be high enough to consider two cases relevant to one another. This

threshold was determined based on a sampling of approximately 30 pairs of foundational cases.

Some Comments Regarding the Suitability of the F-Measure

The board’s analyses provide a useful benchmark for comparing the output of the various

methods. The NSPE BER is an established, authoritative committee, and its published opinions

appear to be highly regarded within the engineering profession. Thus the board’s opinions

provide, arguably, the best available and objective benchmark. And although the F-Measure may

not be a perfect tool to evaluate SIROCCO’s performance against a benchmark, it certainly

approximates overlap. Further, it is not clear that there is a better tool to use for the types of

objective experiments reported in this dissertation. Perhaps more importantly, the metric is used

to calculate the benchmark for all of the methods compared in the experiments and only evaluates

the features common to all methods (e.g., there is no advantage to longer explanations). Thus,

126

any slight advantage or disadvantage that may result from the altered metrics applies uniformly

across all methods.

However, the use of the F-Measure, precision, and recall to evaluate SIROCCO’s

performance against some quantifiable benchmarks in this experiment does not come without

disadvantages. As pointed out by Edwina Rissland and colleagues, the “traditional IR assumption

of an unequivocal master answer key is a weighty one” [1997, p. 17]. Because of inherent

inconsistencies (e.g., changes in the composition of the board over time lead to different opinions

and citations), the board’s analyses are somewhat uneven: some are excellent and highly

analytical, some are less thoughtful and somewhat shallow. The altered F-Measure applied to

inexact matches partially addresses this by supplementing the board’s opinions with additional

knowledge, but it does not solve the problem altogether. Another issue is the relative sparseness

of citation lists. As previously mentioned, the board averages less than 3 code citations and less

than 2 case citations per case; many of the board’s analyses have only a single citation. This

means, of course, that very small numbers are used in the precision and recall calculations,

leading to widely ranging values. For instance, if the board cites only two codes and a method

suggests neither of them, both precision and recall are 0. However, if the method suggests just

one code and that code matches one of the two board citations, the precision score rises

dramatically to 1.0, while the recall score increases to 0.5.

4.1.4. Parameter Settings

SIROCCO and all of the other methods have parameter settings that control program

functionality. The parameter settings of SIROCCO used in the experiments were decided based

on extensive, but informal, pre-tests. Because SIROCCO has a large number of parameters (over

30), some of which accept a wide range of values, it was impossible to exhaustively pre-test the

program in search of optimal settings. Instead, small ranges of values for each parameter were

identified as the most likely to be successful and various tests were run with these settings.

Most of SIROCCO’s parameters and the particular settings used in the experiment were

discussed in Chapter 3. The key settings are shown in Figure 4-3. Notice that the flag for

temporal matching, Temporal-Match-P, was turned on for all experiments except for Experiment

#3, the one specifically designed to test the absence of temporal matching.

127

The flag to check for positive-to-negative Fact Primitive matching, Positive-to-Negative-

Match-P, was turned off33. SIROCCO’s Analyzer module has a large number of parameters, not

shown in Figure 4-3, corresponding to turning each of the heuristics on and off and providing

thresholds for each. For the experiments, all of the heuristics were turned on and the threshold

settings used were those shown in Figures 3-24, 3-25, and 3-26.

Method Parameters Experiment Setting Explanation of Parameter

N 6 The number of top-rated source cases to
retrieve.

CV-Weight-List (1.0, 0.5, 0.25, 0.125) Combine content vectors at 4 abstraction
levels according to these weights.

QF-Weight-List (1.0, 0.5, 0.25, 0.125) Apply questioned fact weight according
to the 4 abstraction levels.

CF-Weight-List (0.333, 0.111, 0.036, 0.012) Apply critical fact weight according to
the 4 abstraction levels.

Temporal-Match-P T (Except for Experiment #3) Turn on/off temporal reasoning.

Positive-to-Negative-
Match-P

NIL Turn on/off positive-to-negative fact
matching.

SIROCCO

Date-Filter-P T Specify whether only earlier-decided
cases may be cited.

Figure 4-3: The Key Parameters and Experiment Settings of SIROCCO

A date filter flag, Date-Filter-P, is used to specify when SIROCCO may cite only earlier-

decided cases for the target versus citing any case, earlier or later. In all of the experiments, the

date filter was turned on for SIROCCO, as well as for all of the other methods, meaning that only

earlier cases could be cited. Turning the date filter on provided more realistic output and also

allowed each method to be more equitably compared to the benchmark. In other words, since the

board obviously could not cite future cases, neither should the methods.

In fact, the key reason why all of the trial cases were chosen from a later time period (i.e.,

1993-1998) than the foundational cases (i.e., 1958-1992) was to set up this more realistic

evaluation and to assure that a reasonably large pool of cases could be cited by each and every

trial case. The evaluation was more realistic since a case from, say 1993, could not cite a case in

the future from, say 1994. And the large pool of cases was assured because only later cases, i.e.,

those that can cite a large number of earlier cases, were used in the tests.

33 This parameter, discussed briefly in section 3.1.4 and illustrated in the search tree of Figure 3-21, controls whether
SIROCCO checks for positive-to-negative matches of Fact Primitives and accordingly reduces the match score for such
matches. A positive-to-negative match occurs when the base form of a Fact Primitive (e.g., “employs”) is matched
with a negative form of that primitive (e.g., “does not employ”). The parameter-tuning pre-tests showed that positive-
to-negative matching provides only marginal improvement in SIROCCO’s accuracy. This finding, combined with the
fact that checking for positive-to-negative matches is computationally expensive, since it is applied at every new search
node, led to the decision to turn the parameter off for the experiments.

128

To assure that each of the methods compared to SIROCCO in the experiments was run with

optimal parameter settings, extensive parameter-tuning pre-tests were executed. Each method

was run 100 times on all 184 foundational cases, with different settings used for each execution

run. To determine the best run for each method, the mean F-Measure of exact matches was

added to the mean F-Measure of inexact matches for each run. The highest sum of F-Measures

over the 100 runs was taken to be the best for that method and the corresponding parameter

settings were then used in all of the experiments. Figure 4-4 provides a summary of the five

competitor method’s parameters and settings as determined by the parameter-tuning pre-tests.

The date filter flag, Date-Filter-p, is not shown in Figure 4-4 as it took the same value for all

methods. The flag was turned on (i.e., set to “T”), meaning that only earlier cases could be cited,

as discussed above.

The MG program has a few additional parameters, not shown in Figure 4-4, mostly dealing

with print features [Witten et al., 1999, p. 464]. Although vector space models, of which MG is

an example, can often be parameterized for performance along a number of dimensions, such as

the use of different combining functions, term weight calculations, and relative term frequency

functions, the public-domain version of the software tested in these experiments came with pre-

set, fixed defaults which provide good performance on average. This means that optimizing the

internal algorithm for this particular problem was not possible. On the other hand, research has

shown that it is extremely difficult to identify particular settings that provide the best overall

performance [Zobel and Moffat, 1998]. Optimizing along one dimension often means

suboptimizing along another.

In the experiments, MG’s vector space model is applied separately to the database of textual

cases and to the database of textual codes, the former for case retrieval, the latter for code

retrieval. EXTENDED-MG uses MG to perform case retrieval but then applies the heuristic

technique “Frequent Occurrences in Top Cases” to the retrieved cases in order to retrieve codes.

In MG’s vector space representation, the weight of each term is inversely proportional to its

frequency in the entire corpus. In other words, terms that appear frequently are valued less in the

match process, while terms that appear seldom are highly valued in the match process. MG

automatically computes this when it compiles the corpus.

In the parameter-tuning pre-test, three corpora were tested, each covering the entire set of

foundational cases but containing different textual information per case. One corpus contained

only the textual description and question raised of each case (FACTS); one contained the textual

description, question, and textual code citations (FACTS-CIT); and one contained the textual

description, question, citations, and the full analysis provided by the review board (ALL). The

129

pre-tests established that the last of these textual databases, ALL, produced the most accurate

results for MG.

Method Parameters Experiment
Setting

Explanation of Parameter

Max-Code-Citations-Per-Case 8 Suggest a random number of codes, between 1 and
Max-Code-Citations-Per-Case, per target case.

RANDOM
Max-Case-Citations-Per-Case 1 Suggest a random number of cases, between 1 and

Max-Case-Citations-Per-Case, per target case.

Max-Code-Citations-Per-Case 10 Suggest a random number of codes, between 1 and
Max-Code-Citations-Per-Case, per target case.

Max-Case-Citations-Per-Case 9 Suggest a random number of cases, between 1 and
Max-Case-Citations-Per-Case, per target case.

Number-of-Top-Codes 20 Suggest codes only from the most frequently cited
Number-of-Top-Codes.

INFORMED-
RANDOM

Number-of-Top-Cases 40 Suggest cases only from the most frequently cited
Number-of-Top-Cases.

MG-Case-Base-Type ALL Search textual database of facts only (FACTS), facts
and citations (FACTS-CIT), or facts, citations, and
analysis (ALL).

Max-Cases-to-Consider 10 The maximum number of case citations suggested per
target case. The exact number of suggested cases is
based on MG-Case-Threshold.

MG-Case-Threshold 0.5 Suggest all cases with scores within MG-Case-
Threshold percent of the top-rated case.

Max-Codes-to-Consider 8 The maximum number of code citations suggested per
target case. The exact number of suggested codes is
based on MG-Code-Threshold.

MG
(Managing
Gigabytes)

MG-Code-Threshold 0.5 Suggest all codes with scores within MG-Code-
Threshold percent of the top-rated code.

MG-Case-Base-Type ALL Search textual database of facts only (FACTS), facts
and citations (FACTS-CIT), or facts, citations, and
analysis (ALL).

Max-Cases-to-Consider 2 The maximum number of case citations suggested per
target case. The exact number of suggested cases is
based on MG-Case-Threshold.

MG-Case-Threshold 0.25 Suggest all cases with scores within MG-Case-
Threshold percent of the top-rated case.

Max-Cases-to-Consider-for-
Codes

10 Suggest codes only from those cited in the top-rated
Max-Cases-to-Consider-for-Codes

EXTENDED-
MG

MG-Code-Threshold 0.25 Suggest all codes that are cited in at least MG-Code-
Threshold percent of the top-rated Max-Cases-to-
Consider-for-Codes.

N 10 The number of top-rated source cases to retrieve.

CV-Weight-List (1.0, 0.5, 0.25,
0.125)

Combine content vectors at 4 abstraction levels
according to these weights. Same as SIROCCO.

Non-Op-Case-Threshold 0.8 Suggest all cases in the top N cases with a Match
Score ≥ Non-Op-Case-Threshold

NON-OP
SIROCCO

Non-Op-Code-Threshold 0.25 Suggest all codes that are cited in at least Non-Op-
Code-Threshold percent of the top-rated N cases.

Figure 4-4: The Parameters and Experiment Settings of the Five Competitor Methods

130

4.1.5. The Test Cases

SIROCCO and the other methods were evaluated using a trial set of 58 cases34. To ensure

objectivity – in particular, to avoid criticism that the experiment was biased because test cases

were hand-coded by the experimenter – two independent case enterers were enlisted to hand-code

all of the trial cases. The trial cases encoded by the case enterers were used in unedited form in

the experiments.

Before the trial cases were selected, 20 cases from the grand total of 97 cases decided by the

NSPE BER between 1993 and 1998 were eliminated. Those that were eliminated were either

clearly not transcribable into EETL (because of ambiguous or vague language, scenarios that did

not involve actions or events, or heavy reliance on Actors, Objects, or Fact Primitives not yet

provided in the language) or they contained citations to codes that were encountered either never

or very rarely within the analyses of the foundational cases

The trial cases were then chosen randomly from two subsets of the remaining 77 cases.

Forty-four were chosen at random from 52 Selected Topics cases, and 14 were chosen at random

from 25 Non-Selected Topics cases. Two of the 44 original Selected Topics cases were rejected

by one case enterer as not transcribable and these were replaced by two other Selected Topics

cases chosen at random. Four additional cases were transcribed but not included in the trial set

because they did not cite any codes that were cited a minimal number of times in the foundational

set of cases.

As explained in Chapter 1, the Selected Topics cases are those cases that cite at least one

code related to one of the following subject areas: public safety, confidential information, duty to

employer, credit for engineering work, proprietary interests, and honesty in reports and public

statements. Examples of Non-Selected Topics are conflicts of interest, competence, and unfair

competition. The main reason for using such a ratio was to select a significant majority of cases

from SIROCCO’s supposed area of expertise, since a similar majority of the foundational cases

also come from this category, while at the same time selecting at least some cases outside of that

area of expertise. Such a distribution of cases allowed for significant testing of the program on

what it should “know” but also allowed for at least limited testing of the program outside of its

main area of expertise.

Despite the deletions for cases that cannot be represented in EETL or that only cite seldom-

used codes, the remaining trial set actually covers 60% of the entire, available population of cases

34 Originally, there were 62 trial cases , but 4 were dropped from the experiment because the review board did not cite
any supporting or conflicting code or case citations, meaning that the F-Measure would be guaranteed to be 0,

131

decided between 1993 and 1998 (58 / 97). All conclusions and generalizations drawn from the

experiments of course exclude the two categories of cases that were deleted from the population.

4.1.6. The Statistical Model

The data generated by benchmarking each method against the review board’s citations using

the F-Measure turned out to be highly non-Gaussian. In other words, the data did not exhibit

anything approaching the bell-shaped distribution required for the application of standard

Gaussian statistics. The F-Measures of all data sets distributed widely between 0 and 1, instead

of clustering around the mean, as in a well-behaved bell curve. This is not surprising in light of

earlier comments (see Section 4.1.3.) which stated that the relatively sparse analyses of the board

lead to highly variable and distributed precision and recall values.

Thus, it was necessary to apply nonparametric statistical methods in order to compare the

benchmarks of SIROCCO with the other methods. In particular, the nonparametric bootstrap

procedure [Efron and Tibshirani, 1993; Davison and Hinkley, 1997] was applied. This procedure

requires only that the data observations be independent and identically distributed from the

population to be studied. The data observations, i.e., the F-Measures, are independent because

the value of one observation has no effect on or relationship with any of the other observations. It

is also reasonable to assume that the data observations are identically distributed, i.e., the

likelihood of seeing any particular F-Measure is the same from observation to observation and

matches the population distribution.

The nonparametric bootstrap procedure is executed as follows. A data set comprises all of

the F-Measure readings of one method for either the exact or the inexact comparisons. Thus, in

the SIROCCO experiments, a data set contained 58 readings. For each data set, 58 readings were

drawn at random. When a reading was drawn, it remained in the set, eligible to be drawn again;

this process is known as “sample with replacement.” The mean after drawing 58 elements was

then calculated. This process of drawing 58 readings and calculating the mean is repeated X

times, with X empirically set to 100,000 for these experiments35. Summary measures (95%

Confidence Interval (CI), p-value) are then calculated from the 100,000 estimates of the mean. In

these experiments, the summaries corresponded to the 2.5 and 97.5 percentiles36, obtained by

sorting the 100,000 estimated means and then taking the 2,500th and 97,500th values. The p-value

regardless of method applied. These 4 cases were included in Experiments #4, #5, and #6 to pad the size of the case
base and are referred to as the “discarded trial cases.”
35 Testing of the SIROCCO data with the nonparametric bootstrap indicated that 100,000 repetitions was sufficiently
large enough to achieve accurate and stable results.
36 The 2.5 and 97.5 percentiles are traditionally used to calculate a 95% CI.

132

for a hypothesis of a mean difference = 0 is calculated by doubling the proportion37 of the

100,000 mean differences between two methods that are less than or equal to zero. Method x is

considered significantly better than Method y if the p-value for a mean difference = 0 is less than

0.05 (5%).

Any two methods can also be visually, but informally, compared using a paired differences

plot. Since all of the methods operate on an identical sample set, such a plot is created simply by

subtracting the corresponding F-Measures obtained for the two methods and accumulating the

results in various “differences” buckets. If a concentration of differences with relatively high

amplitudes is clearly shown on one side or the other of the 0 difference hash, then the method

corresponding to that region is obviously superior for that data set.

The fact that the experiment ultimately yielded so many significant findings indicates that the

sample size of 58 was sufficiently large to grant adequate statistical power. Statistical power

measures the ability of a test to detect differences from the null hypothesis, and in 9 out of 10 of

the comparisons in the first experiment, this was achieved. In other words, the conclusions

reached through testing with the 58 trial cases indicate a real effect and not one due to statistical

fluctuations inherent in small sample sizes.

The nonparametric bootstrap procedure is the primary quantitative tool for experiments #1,

#2, and #3, in which the primary and secondary theses of the dissertation were tested.

Experiments #4, #5, and #6, which tested accuracy versus efficiency and the ability for

SIROCCO to scale up, are evaluated in a less-formal manner, through inspection and

interpretation of various data plots.

4.2. Testing the Primary Thesis

Two experiments were run to test the primary thesis. These experiments are discussed and

the results reported in this section. In the first experiment, SIROCCO’s accuracy over the trial

cases, as benchmarked against the board’s citations and gauged by the F-Measure, was compared

to the accuracy of the five other methods, i.e., EXTENDED-MG, MG, NON-OP SIROCCO,

INFORMED-RANDOM, and RANDOM. In the second experiment, the accuracy of SIROCCO

was also compared to EXTENDED-MG over the trial cases, but in this experiment both methods

were given credit for additional code and case citations not made by the board, but deemed

reasonable by two experienced ethical reasoners. For both experiments, accuracy of both exact

and inexact citation matching is reported.

37 Because this is a two-sided test i.e. the alternatives are equal and not equal.

133

4.2.1. Experiment #1: Comparison of SIROCCO to Other Methods

Experiment #1 Process

In Experiment #1, each of the six methods, including SIROCCO, was run against each of the

58 trial cases. For each run of a single trial case, each method had at its disposal a database of

approximately, but no more than, 241 cases that could be used to help decide cases and codes to

suggest. More specifically, each method had access to the 184 foundational cases, plus the 58

trial cases, minus the target case and each of its sibling cases38. The date filter was turned on for

all trial runs, meaning that each method could cite only those cases decided earlier in time. Both

earlier and later cases could, however, be used by each method as supporting data in selecting

codes to suggest. This choice was made simply to provide each method with an identical pool of

cases from which to make its code selections.

For each method run against each trial case, the exact and inexact F-Measures were

calculated by comparing that method’s output to the citations made by the review board for

corresponding cases, as discussed in Section 4.1.3. The mean exact and inexact F-Measure over

all trial cases per method were calculated, and the nonparameteric bootstrap procedure was

applied pairwise to comparisons of SIROCCO with each of the five other methods.

Quantitative Results

As can be seen in Figure 4-5, SIROCCO attained the highest mean F-Measure for both exact

(0.21) and inexact (0.46) matching over the 58 trial cases. The closest competitor to SIROCCO

for exact matching was EXTENDED-MG, at 0.14, and the closest competitor for inexact

matching was MG, at 0.38. NON-OP SIROCCO’s mean F-Measure for exact matching was third

best, while for inexact matching it was fourth best. Not surprisingly, both of the random selection

methods, i.e., INFORMED-RANDOM and RANDOM, performed worse than any of the other

methods, according to the mean F-Measure.

Although the mean F-Measure is a useful approximation of the relative accuracy of

SIROCCO versus the other methods, it does not say whether the differences between SIROCCO

and the other methods are statistically significant. The nonparametric bootstrap procedure

38 Sibling cases share the same fact situation. Deleting the sibling cases of a target case corrects for the anomalous
situation in which a target cites its own sibling or uses its sibling’s analysis, which very likely overlaps with its own
analysis. A case with one sibling would have access to 240 cases, one with two siblings would have access to 239, etc.
None of the trial cases has more than 3 sibling cases.

134

provides this information. The results of the procedure applied to pairs of methods for exact

matching is shown in Table 4-1,

Figure 4-5: Mean F-Measures for all Methods over all of the Trial Cases

Table 4-1: Experiment #1, Exact Matching Comparisons Using the Nonparametric Bootstrap

Methods Compared 95% Confidence
Interval for mean

difference

p-value for mean
difference=0

SIROCCO vs. EXTENDED-MG (0.018, 0.121) 0.008

SIROCCO vs. MG (0.074, 0.180) < 0.001

SIROCCO vs. NON-OP SIROCCO (0.039, 0.126) < 0.001

SIROCCO vs. INFORMED-RANDOM (0.116, 0.210) < 0.001

SIROCCO vs. RANDOM (0.139, 0.240) < 0.001

The information in the table is interpreted as follows. Each row represents a pairwise

comparison of two of the methods. The first column contains the compared methods. In our

case, we are interested in how SIROCCO compares to each of the other methods, so there are five

rows in the table. The second and third columns show the results of the nonparametric bootstrap

procedure applied to that comparison. The first value in the second column represents the 2,500th

mean difference of Method 1 minus Method 2, while the second value in the second column

represents the 97,500th mean difference. Because the 100,000 differences for each method are

sorted, these two values demarcate the 95% Confidence Interval for mean difference. Roughly

speaking, this is a range estimate of the average difference in F-Measure between Method 1 and

0.21

0.46

0.14

0.37

0.09

0.38

0.13

0.31

0.05

0.27

0.02

0.16

0

0.1

0.2

0.3

0.4

0.5

Exact Matching Inexact Matching

SIROCCO EXTENDED-MG MG NON-OP SIROCCO INFORMED-RANDOM RANDOM

135

Method 2 for exact matching. For instance, the average mean difference between SIROCCO and

EXTENDED-MG, shown in row 1 of Table 4-1, is between +0.018 higher for SIROCCO and

+0.121 higher for SIROCCO. The p-value is calculated by first subtracting the corresponding

100,000 means of the compared methods. Then the proportion of those calculations (x / 100,000)

that are less than or equal to zero is multiplied by two. The resulting value is the probability of a

mean difference = 0; in other words, the probability that Method 1 is no more accurate than

Method 2, according to the F-Measure.

Table 4-1 shows that SIROCCO is clearly superior to all five of the other methods on the

exact matching criteria. For each comparison, the interval for mean difference is positive, in

favor of SIROCCO, and the probability of SIROCCO having a higher mean is greater than 99%.

Taking 95% to be the threshold, as is customary, all five of the findings in this table are

statistically significant.

Table 4-2 shows the results of the nonparametric bootstrap procedure applied to pairs of

methods (i.e., SIROCCO versus each of the other methods) for inexact matching. In this analysis,

SIROCCO is superior, in a statistically significant way, to MG, NON-OP SIROCCO,

INFORMED-RANDOM, and RANDOM. The only exception is the comparison of SIROCCO to

EXTENDED-MG, for which the probability of a mean difference = 0 is 94.3%, a marginally

significant result.

Table 4-2: Experiment #1, Inexact Matching Comparisons Using the Nonparametric Bootstrap

Methods Compared 95% Confidence Interval for
mean difference

p-value for mean
difference=0

SIROCCO vs. EXTENDED-MG (-0.003, 0.188) 0.057

SIROCCO vs. MG (0.016, 0.149) 0.015

SIROCCO vs. NON-OP SIROCCO (0.090, 0.224) < 0.001

SIROCCO vs. INFORMED-RANDOM (0.113, 0.266) < 0.001

SIROCCO vs. RANDOM (0.211, 0.386) < 0.001

These results indicate that SIROCCO is clearly superior to MG, NON-OP SIROCCO,

INFORMED-RANDOM, and RANDOM with respect to the trial cases. Further, the results

strongly suggest that SIROCCO is also superior to EXTENDED-MG with respect to the trial

cases. SIROCCO’s superiority to EXTENDED-MG on exact matches is significant, and its

superiority on inexact matches, while not quite significant, is very nearly so.

136

The comparisons between SIROCCO and the other methods can be visualized by inspecting

Figure 4-6 and Figure 4-7. The bar charts in these figures correspond to the same method

comparisons found in Tables 4-1 and 4-2 (i.e., SIROCCO vs. EXTENDED-MG, SIROCCO vs.

MG, etc.), respectively, but the data that is plotted is closer to the raw data (i.e., the original F-

Measure readings). In particular, each chart shows an accumulation of the differences in F-

Measure readings between SIROCCO’s performance on each trial case versus the other method’s

performance on the same case. The pairwise differences are accumulated in “buckets” and

plotted. For instance, the first chart at the top of Figure 4-6, comparing SIROCCO with

EXTENDED-MG, shows that for 16 trial cases there was no difference (i.e., difference = 0)

between SIROCCO’s F-Measure and EXTENDED-MG’s F-Measure. Bars to the right of the 0

hash provide tallies of cases for which SIROCCO’s F-Measure was greater than EXTENDED-

MG’s F-Measure. Bars to the left of the 0 hash indicate tallies of cases for which EXTENDED-

MG’s method yielded a higher F-Measure.

The charts provide intuitive visual support of the nonparametric bootstrap results. For

instance, it is clear that a higher concentration and amplitude of bars is on the right side of the 0

hash, indicating SIROCCO’s superiority, in virtually every chart of Figures 4-5 and 4-6. One

visible exception is the first chart of Figure 4-7, the one representing the comparison of

SIROCCO to EXTENDED-MG on inexact matching. Here, there is quite a dispersion of results;

thus it is not visually obvious that SIROCCO’s method outperforms EXTENDED-MG’s. In

fact, as has been discussed, this is the only comparison in which statistical significance was not

achieved. Another chart in which it is somewhat difficult to see a clear distinction is the second

one of Figure 4-7. In this chart, which compares SIROCCO and MG on inexact matching, there

is a fair concentration of bars on both sides of the 0 hash. This is also consistent with the results

shown in Table 4-2. SIROCCO is superior to MG in inexact matching with respect to the trial

cases, but with a somewhat less decisive p-value than other comparisons.

The dispersion of results in the first chart of Figure 4-7 compared to the less-dispersed results

of the second chart of that figure also explains why SIROCCO is less convincingly superior to

EXTENDED-MG on inexact matching than it is to MG on inexact matching, even though

EXTENDED-MG’s mean F-Measure for inexact matching (0.37) is lower than MG’s (0.37) over

the trial cases (see Figure 4-5). A wide dispersion of results, particularly outliers at either end of

the x-axis, correlate more strongly with higher p-values than do less disperse results. In other

words, the variability and wide dispersion of results in the first chart of Figure 4-7 are strong

visual indicators of the less than significant p-value found in row 1 of Table 4-2.

137

Figure 4-6: Experiment #1, Paired Differences of the F-Measures for Exact Citations

SIROCCO vs. EXTENDED-MG Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. MG Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. NON-OP SIROCCO Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. INFORMED-RANDOM Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. RANDOM Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

138

Figure 4-7: Experiment #1, Paired Differences of the F-Measures for Inexact Citations

SIROCCO vs. EXTENDED-MG Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. MG Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. NON-OP SIROCCO Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. INFORMED-RANDOM Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. RANDOM Paired Differences

0
5
10
15
20
25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

139

Additional Results Related to Experiment #1

As a follow-up to Experiment #1, and as a way to informally verify the findings, a test was

run in which all of the methods were given the 184 foundational cases, instead of the trial cases,

as input. In this test, only the foundational cases (minus the target case and any sibling cases)

were made available to each method as a database from which to identify relevant cases and

codes. As in Experiment #1, F-Measures were calculated and the nonparametric bootstrap was

applied to pairwise comparisons of SIROCCO to the other methods. The results mostly

confirmed the statistical results of Experiment #1. In particular, SIROCCO performed

significantly better than MG, NON-OP SIROCCO, INFORMED-RANDOM, and RANDOM on

both exact and inexact matching, as in Experiment #1. However, it was not confirmed that

SIROCCO was superior (i.e., p-value <= 0.05) to EXTENDED-MG with respect to the

foundational cases for either exact or inexact matching, even though SIROCCO produced a better

mean F-Measure for both data sets.

While this finding certainly does not support the claim that SIROCCO outperforms

EXTENDED-MG, it is consistent with it. Experiment #1 is more of an objective indicator of the

comparison between the methods, since cases were randomly selected in that experiment. On the

other hand, the results of this follow-up test were still somewhat surprising and not obviously

explainable. One possible explanation as to why EXTENDED-MG closed the gap in

performance between itself and SIROCCO on the foundational cases is that many of these cases,

which I hand-picked, may have certain linguistic characteristics that both encouraged me to select

them and were somehow advantageous to EXTENDED-MG’s algorithm.

Finally, the results of both Experiment #1 on the trial cases and the follow-up test with the

foundational cases were informally evaluated with respect to performance on the Selected Topics

cases and the Non-Selected Topics cases (see Table 1-1). The results are shown in Figure 4-8.

The upper bar chart shows the mean exact and inexact F-Measures obtained for SIROCCO

processing the trial cases. The statistics are further subdivided in this chart by the 44 Selected

Topics cases versus the 14 Non-Selected Topics cases in the trial set. The lower chart displays

analogous data that relates to SIROCCO’s processing of the foundational cases (i.e., 135 Selected

Topics cases and 49 Non-Selected Topics cases).

140

Figure 4-8: Mean F-Measures for SIROCCO Processing the Selected Topics Cases versus the Non-
Selected Topics Cases

Because SIROCCO was developed using the Selected Topics cases as the primary focus, it is

not surprising that the program is more accurate in processing cases in this category in both the

trial and foundational sets and for both exact and inexact matching. However, the margin of

improvement in a couple of the comparisons is certainly not overwhelming. For example, notice

that the differences in SIROCCO’s mean F-Measures in processing Selected Topics cases with

respect to inexact matching, as compared to its mean F-measures in processing Non-Selected

Topics cases, is relatively small for both the trial and foundational sets.

Of course, such comparisons are clearly informal, since there are far fewer Non-Selected

Topics cases in both the trial and foundational sets. Nevertheless, the charts in Figure 4-8 provide

at least some evidence that SIROCCO is capable of addressing a relatively wide range of

engineering ethics cases. In particular, the charts provide evidence that the program does almost

as well with cases outside of its primary area of expertise as it does with cases within that area of

expertise.

SIROCCO run with the Trial Cases

0.23

0.47

0.15

0.44

0

0.1

0.2

0.3

0.4

0.5

Exact Matching Inexact Matching

Selected Topics Cases Non-Selected Topics Cases

SIROCCO run with the Foundational Cases

0.32

0.49

0.21

0.43

0

0.1

0.2

0.3

0.4

0.5

0.6

Exact Matching Inexact Matching

Selected Topics Cases Non-Selected Topics Cases

141

4.2.2. Experiment #2: Expert Evaluation of Extra Citations

Experiment #2 Process

In Section 4.1.3 it was argued that the NSPE BER’s case analyses provide the most-objective

available benchmark for the SIROCCO experiments. On the other hand, using the review board’s

analyses as a gold standard is not without detractions. One could claim, for instance, that the

NSPE BER’s opinions do not always cite all of the relevant codes and cases. For instance, the

board may not have had the time to collect all of the relevant codes and cases to support a

particular argument or they may have believed they had enough supporting material. But the fact

that certain codes and cases are not cited does not necessarily imply these materials are not

relevant. Thus, in this experiment, the board’s analyses were supplemented by the opinions of

experienced ethical reasoners to help correct for this suspected incompleteness and to provide,

arguably, a more precise comparison of SIROCCO with its nearest competitor in the first

experiment, EXTENDED-MG.

The experienced ethical reasoners enlisted for the experiment were two graduate students

with extensive backgrounds in ethics. One was a Ph.D. student in the philosophy of mathematics

who has taught ethics courses, and the other was a Ph.D. student in bioethics.

Because the results of Experiment #1 indicated, quite decisively, that SIROCCO is superior

to MG, NON-OP SIROCCO, INFORMED-RANDOM, and RANDOM in retrieval accuracy, all

of these competitor methods were not evaluated in this experiment. On the other hand, because

the comparisons between SIROCCO and EXTENDED-MG were less conclusive, EXTENDED-

MG was included with SIROCCO in this experiment.

The data generated in Experiment #1 was used as the basis for the data evaluated in

Experiment #2. Specifically, the code and case suggestions of SIROCCO and EXTENDED-MG

for the 58 trial cases that did not match, either exactly or inexactly, with the board’s citations for

the same cases were collected and organized by case (called a case group). Up to two of the

review board’s code citations and up to two of their case citations were randomly added to each

case group. This assured that the evaluators would not know which citations were made by the

programs and which were made by the review board.

The evaluators were presented, on a web page, with the original case texts and questions for

all of the 58 trial cases, together with the corresponding case groups of cited codes and cases.

They were instructed to read each case and to evaluate whether each of the codes and cases in the

corresponding case group could be considered reasonably relevant to the facts and could be used

142

to support an argument answering the question raised in the scenario. The evaluator’s responses

were provided in an answer form also included on the web site.

More specifically, the evaluators were instructed to fill in the answer form as follows:

“Provide an answer of 'R' for the citation if you believe it is reasonably relevant to the scenario.

By reasonably relevant, I mean, would it be reasonable for an experienced ethical reasoner to

reference the cited item in an argument answering the question raised by the case… Provide an

answer of 'N' for the citation if it is not reasonably relevant to the scenario in the sense defined

above.”

Each evaluator was asked first to assess all of the citations on his/her own. After each had

completed the initial evaluation, they were instructed to meet, discuss the differences in their

respective answers, and to arrive, if possible, at a consensus for each differing citation. In other

words, for every answer about which the evaluators individually disagreed (i.e., one evaluator

provided an ‘R’ while the other provided an ‘N’), they were told to either agree on either ‘N’ or

‘R’ for that response or to indicate with an ‘NA’ if they could not agree.

Three answer forms were collected from this process, one from each evaluator individually

and one from the evaluators working together. The individual forms were used to calculate inter-

rater reliability. The consensus form was used to recalculate the F-Measures for SIROCCO and

EXTENDED-MG over the 58 trial cases. Specifically, for each code and case citation that was

not originally cited by the review board, but for which the evaluators, by consensus, assigned an

‘R,’ that citation was added to the list of the review board citations for purposes of the F-Measure

recalculation. This implies, of course, that SIROCCO and EXTENDED-MG would receive exact

(and inexact) match credit for suggesting one of the citations rated as ‘R’ by the evaluators. Each

‘NA’ response was conservatively treated as an ‘N’ response for the purposes of the F-Measure

recalculations, since its relevance was obviously controversial.

Quantitative Results

To confirm inter-rater reliability, the individual responses of the two evaluators were

compared. They agreed on 77.4% (369 out of 477) of the responses. This percentage of

agreement is typically considered fair-to-good39.

A total of 75 of the additional code citations and 15 of the additional case citations were rated

as ‘R’ by the evaluators in the consensus answer form. Of these additional citations, SIROCCO

39 Here, “typically” refers to the use of inter-rater reliability in other academic disciplines, such as psychology. The use
of this metric in case-based reasoning – and in AI more generally – is relatively rare.

143

cited 63 of the codes and 7 of the cases, while EXTENDED-MG cited 34 of the codes and 9 of

the cases.

For SIROCCO, the recalculated mean F-Measures were 0.359 for exact matching and 0.581

for inexact matching. For EXTENDED-MG, the recalculated mean F-Measures were 0.251 for

exact matching and 0.456 for inexact matching.

Table 4-3: Experiment #2, Comparison of SIROCCO and EXTENDED-MG using Nonparametric
Bootstrap after Expert Evaluation

Methods Compared 95% Confidence
Interval for mean

difference

p-value for mean
difference=0

SIROCCO vs. EXTENDED-MG, Exact Matching (0.048, 0.168) < 0.001

SIROCCO vs. EXTENDED-MG, Inexact Matching (0.030, 0.220) 0.010

Table 4-3 displays the results of the nonparametric bootstrap procedure applied to the

recalculated F-Measures. Notice that there is now a significant difference between the accuracy

of SIROCCO and EXTENDED-MG on both the exact and inexact match criteria. For both

criteria, the confidence level of a difference (in favor of SIROCCO) is now at least 99%.

Figure 4-9: Experiment #2, Paired Differences of the F-Measures for Exact and Inexact Citations

SIROCCO vs. EXTENDED-MG Exact Paired Differences after Expert Evaluation

0

5

10

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. EXTENDED-MG Inexact Paired Differences after Expert Evaluation

0

5

10

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

144

The difference between SIROCCO’s and EXTENDED-MG’s performance after recalculating

the F-Measures can also be easily visualized in the paired differences charts of Figure 4-9.

Notice that a clear concentration of bars is on the right side of the 0 hash of both charts, indicating

that SIROCCO is significantly better than EXTENDED-MG based on the recalculated measures.

4.2.3. Discussion

The combined results of Experiment #1 and Experiment #2 provide compelling evidence that

SIROCCO is superior to EXTENDED-MG, MG, NON-OP SIROCCO, INFORMED-RANDOM,

and RANDOM in accurately retrieving codes and cases. More importantly, these experiments

provide very strong evidence in support of the primary thesis of this dissertation. In particular,

the evidence suggests that a computational model, such as SIROCCO, that implements a critical

subset of the operationalization techniques (i.e., Code Instantiation, Group Codes, Case

Instantiation, Group Cases, and Reuse an Operationalization) can make accurate predictions of

the principles and past cases that are likely to be important in the analysis of new cases.

Experiment #1 provides convincing statistical data to support the claim that SIROCCO

outperforms MG, NON-OP SIROCCO, INFORMED-RANDOM, and RANDOM. However,

SIROCCO’s superiority over EXTENDED-MG is not decisively demonstrated in the first

experiment, as SIROCCO’s improvement on the exact matching criteria is significant, but its

improvement on the inexact matching criteria is only marginally significant. However, the

second experiment, in which the additional citations of SIROCCO and EXTENDED-MG were

evaluated, does demonstrate, quite clearly, the superiority of SIROCCO. On both the exact and

inexact matching criteria in the second experiment, SIROCCO performs significantly better than

EXTENDED-MG. Outperforming EXTENDED-MG – as well as MG – strongly indicates that

SIROCCO is a powerful retrieval method, as the full-text retrieval methods are arguably highly

competitive alternatives for performing SIROCCO’s task.

SIROCCO’s significant improvement over NON-OP-SIROCCO goes right to the heart of the

primary thesis, as it provides direct evidence of the benefit of using operationalization techniques

(or, more precisely, a subset of the operationalization techniques) compared to not using the

techniques. NON-OP SIROCCO actually depends on a weak version of one of the techniques

(i.e., Reuse an Operationalization), so the difference between the two methods would likely have

been even more decisive had the experiment compared SIROCCO to an ablated version of itself

completely devoid of the operationalization techniques.

145

The fact that SIROCCO outperforms EXTENDED-MG which, in turn, tentatively

outperforms MG40 in Experiment #1 is also significant with respect to the primary thesis . Notice

that the difference between MG and EXTENDED-MG involves the use of an operationalization

technique in the latter method. That is, while MG performs its task using a pure full-text retrieval

approach, EXTENDED-MG uses full-text retrieval augmented with Reuse an Operationalization

(i.e., cases are retrieved by full-text retrieval, codes are selected based on frequency of occurrence

in the retrieved cases). This again demonstrates the value of the operationalization techniques.

While SIROCCO clearly outperforms the full-text retrieval system, it less clearly outperforms

that same system when it employs an operationalization technique. However, the preponderance

of operationalization techniques used by SIROCCO eventually proved, in Experiment #2, to

perform more accurately than even the extended, operationalized version of the full-text retrieval

system.

An Example of SIROCCO Providing a More Accurate and Complete Retrieval Than Either
the NSPE BER or EXTENDED-MG

For some of the trial cases, SIROCCO’s performance was more accurate and complete than

either the review board or EXTENDED-MG due to its unique retrieval approach and case base.

Such results are interesting because they indicate that SIROCCO has the capability to at least

occasionally outperform even the board in retrieving relevant materials.

For instance, consider trial Case 96-8-1 shown in Figure 4-10. This case involves Engineer A

who agrees to serve as a “peer reviewer” as part of an organized program designed to improve the

“professional practice” of fellow engineers. As part of the program, Engineer A signs a

confidentiality agreement that stipulates that she may not disclose the confidential information of

peer-reviewed engineers and firms. Engineer A subsequently reviews the work of Engineer B’s

firm and discovers that some of the firm’s work may violate safety codes and could place public

safety in jeopardy. Engineer A attempts to resolve this issue by speaking with Engineer B but

when no resolution is attained, she reports the potential violation to the appropriate authorities.

The question raised by this case is whether it was ethical for Engineer A to violate the

confidentiality agreement and report the potential safety violation.

40 Results of the nonparametric bootstrap comparison of EXTENDED-MG and MG : On the exact matching criteria,
EXTENDED-MG performed significantly better than MG. On the inexact matching criteria, the results were
inconclusive.

146

Facts of Case 96-8-1: Peer Review - Confidentiality Agreements
Engineer A serves as a peer reviewer as part of an organized peer review program developed to assist
engineers in improving their professional practice. When originally selected as a peer reviewer, Engineer A
was asked to sign a “confidentiality agreement” whereby she agreed not to disclose confidential information
involving peer-reviewed firms.
As part of a peer review visit, Engineer A visits Engineer B’s firm. Following a review of the technical
documentation in connection with a series of recent design projects involving Engineer B’s firm, Engineer A
discovers that Engineer B’s work may be in violation of state and local safety code requirements and could
endanger public health, safety, and welfare. Engineer A immediately discusses these issues with Engineer B
in an effort to seek clarification and early resolution. Engineer A and Engineer B are unable to resolve the
issue, and Engineer A subsequently informs the appropriate authorities about Engineer B’s potential violation
of the safety code.
Question:
Was it ethical for Engineer A to inform the authorities about Engineer B’s potential violation of the safety
code?
References:
Code II.1.e. – “Engineers having knowledge of any alleged violation of this Code shall report thereon to
appropriate professional bodies and, when relevant, also to public authorities, and cooperate with the proper
authorities in furnishing such information or assistance as may be required.”
Code III.4. – “Engineers shall not disclose, without consent, confidential information concerning the business
affairs or technical processes of any present or former client or employer, or public body on which they
serve.”

Figure 4-10: The Fact Situation, Question Raised, and Relevant Codes (according to the NSPE BER) in
Case 96-8-1

 According to the NSPE BER’s cited references (see the bottom of Figure 4-10) and analysis

(not shown), this case involves a conflict between Engineer A’s obligation to report potential

code violations (i.e., Code II.1.e.) and her obligation to maintain confidentiality (Code III.4.).

The board concluded that Engineer A’s obligation to report the possible code violations

predominated in this circumstance and thus Engineer A’s action was ethical. Although the facts

clearly indicate that “public health, safety, and welfare” might have been at risk – and the board

referred to this issue in their analysis, even citing public safety Case 76-4-1 (One of the example

cases from Chapter 3, see Figure 3-3) – notice that they did not cite any codes related to the

protection of the public.

During the Experiment #1 trial run of Case 96-8-1, SIROCCO was able to identify the

relevance of Code III.4. (i.e., the confidentiality code) and also the relevance of Case 76-4-1. The

program did not however cite Code II.1.e. (i.e., the code specifying an obligation to report code

violations) as possibly relevant. On the other hand, SIROCCO was able to identify six codes that

the evaluators in Experiment #2 deemed to be relevant but yet were not cited by the board. For

instance, SIROCCO cited Codes I.1., II.1.a., and III.2.b., all of which relate to the issue of public

health and welfare. As mentioned above, the board failed to cite any of the public safety codes,

147

even though the facts indicated that they were relevant to the case. SIROCCO also cited an

additional code dealing with confidentiality (i.e., Code II.1.c.) that was not cited by the board.

Perhaps most interestingly, SIROCCO cited Code III.1. (“Engineers shall be guided in all their

professional relations by the highest standards of integrity.”) as relevant, while the board did not.

The evaluators found this code to be relevant and one commented as follows: “Engineer A had

the duty to report possible violations of the code, hence according to III.1 his actions were

justified.” In summary, SIROCCO cited two of the three codes and cases cited by the NSPE BER

for Case 96-8-1, but the program also cited a significant number of codes that were deemed

relevant by the evaluators yet were not cited by the board.

SIROCCO also provided a more accurate and comprehensive retrieval than EXTENDED-

MG did for Case 96-8-1, according to the evaluators. While EXTENDED-MG managed to

identify both of the board’s cited codes (see Figure 4-10), it did not cite Case 76-4-1 nor did it

cite two of the codes suggested by SIROCCO and sanctioned by the evaluators, i.e., Codes III.1.

and III.2.b. In short, while EXTENDED-MG did a reasonably good job at identifying the codes

relevant to Case 96-8-1, it missed an important case citation and was not as comprehensive as

SIROCCO was in citing relevant codes.

4.3. Testing the Secondary Thesis

A single experiment was run to test the secondary thesis of the dissertation. In this

experiment, SIROCCO’s accuracy over the trial cases is compared to an ablated version of the

program, called NON-TEMP SIROCCO, in which the temporal component of the program was

turned off. More specifically, NON-TEMP SIROCCO represents a version of SIROCCO in

which condition 4 of a valid structural mapping (see the discussion of Figure 3-22) is not

enforced. In other words, in NON-TEMP SIROCCO structural mapping is based only on a

consistent mapping of Actors, Objects, Fact-Phrases, and Fact-Primitives but not on temporal

relations, as in SIROCCO.

The goal in comparing these two methods was to determine whether SIROCCO performs

significantly better, in a statistical sense, than its counterpart lacking the temporal knowledge.

Such a result would strongly support the hypothesis that SIROCCO’s temporal knowledge assists

it in making accurate predictions of the principles and past cases that are relevant to the analysis

of new cases.

148

4.3.1. Experiment #3: SIROCCO with and without Temporal Reasoning

Experiment #3 Process

In Experiment #3, NON-TEMP SIROCCO, the ablated version of SIROCCO that does not

apply temporal knowledge, was run in similar fashion as were SIROCCO and the five competitor

methods in Experiment #1 (described in Section 4.2.1). That is, NON-TEMP SIROCCO was run

against each of the 58 trial cases with the date filter turned on. As before, for each run of a single

trial case, the program had access to the 184 foundational cases, plus the 58 trial cases, minus the

target case and each of its sibling cases, for purposes of selecting citations. The only difference

in this test run was that the Temporal-Match-P flag was turned off, meaning that NON-OP

SIROCCO did not test mapping condition 4, discussed in Section 3.1.4. All other parameter

settings of NON-TEMP SIROCCO in Experiment #3 were identical to those applied to

SIROCCO in Experiment #1.

For each trial case, the exact and inexact F-Measures were calculated by comparing NON-

TEMP SIROCCO’s output to the citations made by the review board for corresponding cases.

The mean exact and inexact F-Measure over all trial cases were calculated, and the

nonparameteric bootstrap procedure was applied to these results, comparing them to the results of

SIROCCO from Experiment #1.

Quantitative Results

The results of running NON-TEMP SIROCCO on all of the trial cases were as follows. The

mean F-Measure for exact matching was 0.213 and the mean F-Measure for inexact matching

was 0.461. Recall that the mean F-Measures for SIROCCO in Experiment #1 were 0.212 for

exact matching and 0.462 for inexact matching.

As shown in Table 4-4, the results of the nonparametric bootstrap indicate that SIROCCO

was not significantly more accurate than NON-TEMP SIROCCO with respect to the trial cases.

Table 4-4: Experiment #3, Comparison of SIROCCO and NON-TEMP SIROCCO using Nonparametric
Bootstrap

Methods Compared 95% Confidence Interval for
mean difference

p-value for mean
difference=0

SIROCCO vs. NON-TEMP
SIROCCO, Exact Matching

(-0.017, 0.011) 0.909

SIROCCO vs. NON-TEMP
SIROCCO, Inexact Matching

(-0.021, 0.025) 0.926

149

This result can be visualized by inspecting the paired differences charts of Figure 4-11. For

both the exact and inexact matching criteria, a very high percentage of the F-Measures were

identical, as witnessed by the large bar at the 0 hash mark of both charts. Only a small percentage

of the cases led to different F-Measures and most of these are found close to the 0 hash mark,

meaning that the absolute differences were slight.

A similar, informal test was also run with the foundational cases. In this test, the mean F-

Measures for exact matching were 0.292 for NON-TEMP SIROCCO and 0.285 for SIROCCO;

the mean F-Measures for inexact matching were 0.473 for NON-TEMP SIROCCO and 0.479 for

SIROCCO. Although the p-value for a mean difference = 0 for exact matching was slightly more

favorable on this data set (i.e., 0.148), it was still far less than significant. In addition, the p-value

for inexact matching was not significant, as shown by the p-values in the table. Thus, this test

tended to confirm the results of Experiment #3 – that SIROCCO’s temporal knowledge did not

improve retrieval accuracy.

Figure 4-11: Experiment #3, Paired Differences of the F-Measures for Exact and Inexact Citations

4.3.2. Discussion

It is clear from the results of Experiment #3, as well as from the informal follow-up test with

the foundational cases, that SIROCCO’s application of temporal knowledge did not make a

SIROCCO vs. NON-TEMP SIROCCO Exact Paired Differences

0
10
20
30
40
50

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

SIROCCO vs. NON-TEMP SIROCCO Inexact Paired Differences

0
10
20
30
40
50

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

150

difference in the overall accuracy of code and case retrieval. In other words, the secondary thesis

of this dissertation is not supported by the results of this experiment.

Why didn’t SIROCCO’s temporal knowledge make a statistical difference? As discussed and

illustrated in Section 3.3 there are clearly specific instances in which SIROCCO’s temporal

knowledge can be used to identify important distinctions between cases and thereby lead to the

correct selection of relevant codes and cases. However, Experiment #3 shows that while specific

instances may benefit from the application of temporal knowledge, accuracy in general is not

improved by SIROCCO’s current implementation and use of temporal knowledge.

One possible reason for this is evident in the charts found in Figure 4-11. As discussed

above, a significant majority of the trial cases exhibited no difference in the F-Measures attained

by SIROCCO versus those attained by NON-TEMP SIROCCO. This suggests that a large

number of the trial cases simply did not involve temporal considerations, or at least did not

involve them in a critical fashion. A cursory reading of a subset (10) of the trial cases indicated

that this may be generally true. While most of the 10 cases involved temporal events, only a

couple appeared to turn specifically on event sequence. In most of the cases, the mere existence

of certain facts was more critical than the order of those facts.

However, such an explanation cannot fully explain why temporal knowledge also did not

play a significant role in the test executed with the foundational cases. As discussed in Section

2.2.3, the analysis of the NSPE BER cases seemed to indicate that temporal knowledge did play a

role in the decision making of the review board and many of those cases were included in the

foundational case base. On the other hand, even if a fair number of the foundational cases did

rely on temporal considerations, this number may not have been significant enough when

compared to the cases that did not rely on temporal considerations.

Other explanations are also possible. It might be relatively rare that pairs of cases exist such

that (1) a difference in temporal ordering leads to two different ethical interpretations and (2) both

cases are found in the NSPE BER case base. For instance, it certainly only makes sense that one

would report a dangerous situation after they learn of it, not before. In other words, SIROCCO’s

opportunities to identify important differences in cases, based on temporal differences, may be

rare. Thus, it may be the case that the only way to truly test SIROCCO’s capability to discern

differences in cases based on temporal considerations is to modify hypothetically cases such that

the time ordering changes and a case that once involved an ethical obligation no longer does.

Running SIROCCO on a test set of such cases could test whether the program successfully

distinguishes among the meaningful and unmeaningful scenarios.

151

On the other hand, some facts are indicative of the relevance of specific codes regardless of

temporal considerations and would thus be unaffected by any differences in temporal ordering.

For instance, consider example case 90-5-1, discussed in Chapters 1, 2, and 3. The fact that the

safety of the tenants in the apartment building was at risk is indicative of the relevance of a public

safety code. While deciding whether such a code is violated may depend on the sequence of

temporal events, the relevance of the code probably requires less specific knowledge of the order

of events.

Another possible explanation for the results of Experiment #3 is that certain Facts typically

occur in approximately the same temporal position in Fact Chronologies, thus producing less

variability and perhaps less temporal distinction between the chronologies. For instance,

primitives dealing with employment, such as “hires the services of” or “is employed by,” tend to

be at the beginning of Fact Chronologies and, in addition, are quite often assigned the Time

Qualifier “Pre-existing fact.” Such a Fact designated as a Critical Fact of a Code Instantiation or

Case Instantiation is less likely to produce a differentiating effect in the structural mapping

process.

Inaccuracies in the assignment of Time Qualifiers by case enterers is another possible

explanation. As discussed in Section 3.1.2, the task of assigning temporal relations between Facts

is not easy for people and although the Time Qualifiers – disjunctive groups of Allen’s temporal

relations – are intended to somewhat ease this difficulty, the task is still hard and prone to error.

In fact, a substantial portion of the post editing of the foundational cases provided by independent

case enterers involved the correction of Time Qualifiers.

Finally, the particular implementation and use of temporal knowledge within SIROCCO may

be a contributing factor. First, the underlying use of disjunctive groups of Allen’s temporal

relations between Facts tends to lead to a somewhat “forgiving” approach in accepting structural

mappings. Because SIROCCO’s algorithm performs an intersection of the temporal relations

between pairs of Facts, there may be situations in which only a single, common possible relation

allows a mapping to succeed. While this is strictly correct, it may lead to the acceptance of

unlikely mappings. Second, temporal knowledge may simply not have a big enough role in

SIROCCO’s structural mapping scoring algorithm and selection heuristics. For example, a

critical subsequence of steps in a Code Instantiation may be rejected according to SIROCCO’s

algorithm, but the Code Instantiation itself may still succeed if other Facts match well enough for

the Instantiation to receive a relatively high score. Consider the example discussed in Section

3.3. It showed how the enforcement of temporal relations led to a structural mapping of only two

Facts, instead of three. Although this sufficiently reduced the match core so that SIROCCO

152

correctly eliminated the associated code in this particular example, it is possible in other

situations that the code might still achieve a high enough score to be considered relevant. Also,

recall that the selection of codes and cases by SIROCCO’s Analyzer is based on an accumulation

of evidence supporting individual codes and cases and not on the success of individual mappings.

This implies that the failure (or success) of individual mappings may not always be enough to

alter the suggestions made by the program. A final implementation issue is that all temporal

relations are treated equally when, in fact, certain temporal relations might be critical, while

others are not. If the case enterer had a means of designating critical temporal relations, and

SIROCCO’s algorithm was sensitive to these, this might make a difference in SIROCCO’s

accuracy.

Most likely, some combination of the above reasons underlies SIROCCO’s failure to

gainfully use temporal knowledge in the selection of codes and cases. Although the results of this

experiment do not support the secondary thesis of the dissertation, it is possible that addressing

some of the case-acquisition and implementation issues discussed above might make a difference.

This difference might occur if a significant number of the cases do, in fact, rely on temporal

considerations, as was conjectured from the analysis of the NSPE BER cases. An investigation of

these issues remains for future work (see Section 6.3.1).

153

4.4. Testing Accuracy, Efficiency, and Scalability

Ultimately, SIROCCO is intended to be a practical tool to be used by engineers and

engineering students. Thus, accuracy must be balanced with computational efficiency. In

addition, it is important to understand the impact of an ever-increasing case base size on

SIROCCO’s computational efficiency. In practical use, one would expect SIROCCO’s case base

to increase beyond its current size, particularly if it were to cover the Non-Selected Topics as well

as the Selected Topics. This section presents empirical results that explore these issues.

All of these experiments were run on a 400 Megahertz Power Macintosh with 128 megabytes

of RAM.

4.4.1. Experiment #4: Accuracy versus Efficiency as Case Base Size Increases

Experiment #4 Process

Experiment #4 was executed to evaluate the impact on SIROCCO’s accuracy, as measured by

the F-Measure, as the case base gradually increased from a minimal size to its current maximum

size. The experiment involved 20 separate test runs in which SIROCCO processed all 58 trial

cases. The default SIROCCO parameter settings, as applied in earlier experiments, were also

applied in this experiment. With each test run SIROCCO was provided access to a case base 10

cases larger than the prior test. In the initial test, SIROCCO had access to a case base of 62 cases

(i.e., the 58 trial cases, plus the 4 unused trial cases). For each subsequent test, 10 cases were

chosen at random from the foundational cases and added to the case base (except for the final test,

in which only 4 cases remained to be added), up to a total of 246 cases. As in the earlier

experiments, the exact and inexact F-Measures were calculated per case and as a mean over all 58

cases per test run. In addition, the overall run time for all 58 cases per test run was captured.

Quantitative Results

Figure 4-12 depicts the results of Experiment #4. As the case base size increases, mean

inexact matching gradually grows, from an F-Measure of 0.315 at case base size 62 to an F-

Measure of 0.462 at case base size 246. Although the nonparametric bootstrap was not applied to

this data, note that such a difference in F-Measure was enough to grant statistical significance to

comparisons in the earlier experiments.

154

Figure 4-12: Experiment #4, SIROCCO’s Accuracy Compared to Its Efficiency as Case Base Size
Increases

As can be seen in the bottom two charts, the increase in slope of the inexact F-Measure curve

is very similar to the increase in slope of the run-time curve (although the scales obviously

differ). Interestingly, both curves do not monotonically increase, with increases and decreases at

almost identical readings. For instance, notice the increase in both the inexact F-Measure curve

and the run-time curve between a case base size of 142 and a case base size of 152. The

nonmonotonicity and similarity between the curves may be explained by a correlation between

more-complex cases, with respect to the cases’ EETL representations, and improved accuracy.

That is, cases with more Critical Facts linked to Code and Case Instantiations may lead to better

solutions, but such cases also require more search time.

The mean exact F-Measure increases over the first couple of readings but then generally

levels off for the remainder of the tests. This may be explained by the relative infrequency of

exact matches together with the vagaries of random selection. That is, since in general exact

Mean F-Measure

0.3

0.35

0.4

0.45

0.5

62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 212 222 232 242 246
Case Base Size

Inexact Match

Total Run Time in Secs.

350
400
450

500
550
600

62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 212 222 232 242 246
Case Base Size

Mean F-Measure

0.15

0.2

0.25

0.3

62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 212 222 232 242 246
Case Base Size

Exact Match

155

matches do not occur frequently, the relatively few situations in which they do occur just

happened to be supported by the initial random groups of source cases.

From these charts it can be concluded that accuracy, at least in terms of inexact matching, in

general increases with case base size. However, the marginal increase in mean inexact F-

Measure after a case base size of 202 and, in fact, the decrease in mean F-Measure for the last

reading may indicate that the benefit of continued increase in the case base is close to leveling

off. However, without testing a greater number and wider range of unique cases, which would

require substantially more case acquisition, one cannot be definitive about such a claim.

The run-time characteristics of SIROCCO also appear to be quite reasonable. The bottom

chart of Figure 4-12 suggests that SIROCCO’s run time is no worse than linear, and may be as

low as log N, with respect to case base size. (However, this can of course only be established by

theoretically analyzing the asymptotic time complexity.) For a case base of size 246, each of the

58 trial cases ran for an average of 10.1 seconds. From a user’s point of view, such a run time is

very reasonable.

4.4.2. Experiment #5: Accuracy versus Efficiency as Search Increases

Experiment #5 Process

Experiment #5 was executed to evaluate the impact on SIROCCO’s accuracy, as measured by

the F-Measure, as N gradually increases. The goal was to determine the value of N that

maximizes SIROCCO’s accuracy without requiring excessive computation. Recall that N is the

user-specified parameter that designates the number of top-rated cases that are passed from

SIROCCO’s Stage 1 retrieval algorithm to its Stage 2 algorithm. This is a critical parameter,

since Stage 2 applies the relatively expensive structural mapping algorithm to all of the

Instantiations of the cases supplied to it.

The experiment involved 15 separate test runs in which N was varied from 1 to 15 with all

other parameter settings fixed, as in earlier experiments. For each test run, SIROCCO processed

all 58 trial cases using a case base of size 246 (i.e., the full case base, including the 58 trial cases,

the 184 foundational cases, and the 4 unused trial cases). Also for each test run, the exact and

inexact F-Measures were calculated per case, the mean exact and inexact F-Measures over all 58

cases were computed, and the overall run time per test run was recorded.

156

Figure 4-13: Experiment #5, SIROCCO’s Accuracy Compared to its Efficiency as N Increases

Quantitative Results

The results of Experiment #5 are shown in Figure 4-13. The mean exact F-Measure reaches a

peak at N = 2 (0.213) and then stays relatively flat for the rest of N, with a slight decrease over

the last several readings. This indicates that when SIROCCO does find the best possible case –

at least as judged by the review board – quite often that case is one of the top two cases according

to Stage 1. Thus, by increasing N above 2, one does not improve the odds that SIROCCO will

find the exact codes or cases cited by the review board.

The mean inexact F-Measure reaches a peak at N = 6 (0.462). The mean inexact F-Measure

gradually (but not monotonically) increases from N = 1 to N = 6. After N = 6 the mean inexact F-

Mean F-Measure

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

Inexact Match

Total Run Time in Secs.

100

300

500

700

900

1100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

Mean F-Measure

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

Exact Match

157

Measure gradually decreases. Also note that the mean exact F-Measure at N = 6 (0.212) is the

second best of the 15 exact readings.

In summary, the results of Experiment #5 indicate that the best cases from which to select

codes and cases are usually found within the top 6 cases selected by Stage 1. All of the N > 6

cases produce less-accurate results at an increasing run-time cost. Thus an N value of 6 is

tentatively considered optimal for this domain. Note that this result and conclusion are

informally confirmed by the experiment pre-tests, in which N = 6 was also found to be the

optimal setting.

4.4.3. Experiment #6: Efficiency as Case Base Scales Up

Experiment #6 Process

Experiment #6 was executed to evaluate SIROCCO’s capability to scale up. Because Stage

1’s dot product potentially retrieves all cases in the case base, SIROCCO’s run time is a function

of case base size. The goal of this experiment was to determine whether SIROCCO could

perform within reasonable run-time parameters even with a very large case base.

The experiment was somewhat tricky to conduct because SIROCCO’s case base was limited

by the number of cases that had been transcribed into EETL (246: 184 foundational cases plus 58

trial cases plus the 4 unused trial cases). Since the task of transcribing cases is labor-intensive, an

alternate means of scaling up the case base was required. This was achieved by running a PERL

script over the source files of the foundational cases, changing the names of all fact situations,

cases, and related objects, and generating a series of 10 new files, each composed of all the

foundational cases and assorted objects with new names. Such a tactic allowed each new file to

be loaded into SIROCCO and interpreted as a unique set of cases. A total of 2,086 cases were

now available for testing, including the original foundational cases and the trial cases.

SIROCCO was first run using the standard 246 cases as a case base. Ten additional test runs

were subsequently executed in which, for each test run, the case base was increased by one of the

new files, or 184 cases. For each test run, SIROCCO processed all 58 trial cases and the overall

run time per test run was recorded.

Note that F-Measures were not calculated in this experiment. Because of the duplication of

cases, the F-Measures in this context would not provide sensible and realistic data. The primary

concern in this experiment was to gauge how fast SIROCCO would run with increasing case base

size.

158

Quantitative Results

The results of Experiment #6 are shown in Figure 4-14. The run time of SIROCCO over the

58 trial cases increases in approximately linear time. Note, however, that the increase is not

monotonic. At case base size 614, and again at case base size 1166, there is a downward spike.

There is no obvious explanation for the two decreases, but probably these are a result of the

duplication of cases in the case base and unusual computational effects that results from it.

With a case base size of 2,086, SIROCCO took approximately 29.4 seconds to process each

of the 58 trial cases. This average run time is reasonable in the intended domain of use, in which

a response is not required, or needed, in real time. When one considers the run time of a search

query over the Internet, this performance does not compare unfavorably. Moreover, 2,000

represents the upper limit of the number of cases that SIROCCO is likely to require to be

successful. SIROCCO’s case base probably would not – or should not – grow larger than 2,000

cases. This question is addressed in the following section.

Figure 4-14: Experiment #6, SIROCCO’s Efficiency as Case Base Size Increases

4.4.4. Discussion

The combined results of Experiments #4, #5, and #6 indicate that SIROCCO is a

computationally feasible approach for suggesting codes and cases in the domain of engineering

Total Run Time in Secs.

500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

246 430 614 798 982 1166 1350 1534 1718 1902 2086
Case Base Size

159

ethics. The program appears to run in no worse than linear time with respect to the size of the

case base, and the average run time, approximately 10 seconds per case for a case base of size

246, is within reasonable limits for SIROCCO’s intended use as a support tool for an engineer or

engineering student.

SIROCCO’s performance against a significantly larger case base, in particular of one with

slightly over 2,000 cases, is slower at approximately 30 seconds per case, but it is still acceptable.

Considering that not much time was spent in tuning SIROCCO for speed, as well as the fact that

processors continue to get faster, this result suggests that SIROCCO could be used in practical

application, even with a much larger case base.

The question remains whether SIROCCO actually requires – or would ever require – a case

base of as many as 2,000 cases. Considering the intended use of the tool, it may be unnecessary

for the program to access such a large case base. Consider, for instance, that in the NSPE BER

domain there are a total of 46 relevant “subjects” [1996, p. 8]. That is, the review board has

stated that there are 46 primary issues that its codes and cases must address. The current set of

572 NSPE BER cases decided between 1958 and 1998 is cross-referenced to this subject list, and

every subject is covered by at least two of the existing cases with some subjects covered by many

cases. Thus, for any new target case there are theoretically at least two cases that are relevant to

the new case. Since the goal is not to solve the ethical dilemma, but rather to find relevant codes

and cases related to the dilemma, this is at least adequate domain coverage.

Thus, a case base considerably smaller than 2,000 cases (of carefully represented cases) could

provide appropriate coverage for a wide range of scenarios, in terms of case “competence,” as

described by Smyth and McKenna [1999]. Even conservatively estimating the need for covering

200 separate issues – many more than the 46 used by the NSPE BER – a case base of 2,000 cases

would provide on average 10 exemplars of each issue, certainly more than SIROCCO requires to

make good suggestions. In addition, since SIROCCO is expected to retrieve generally relevant,

but perhaps imprecise, cases that humans then interpret, analyze, and adapt, there is perhaps less

of a requirement for a comprehensive, detailed coverage of possible scenarios.

Because SIROCCO’s Stage 2 algorithm can produce results only if it is provided with

appropriate candidate cases with which to perform structural mapping, it is tempting to believe

that one should increase N as much as possible to produce accurate results. However, the results

of Experiment #5 clearly show that increasing N above the value of 6 does not improve accuracy

yet greatly increases run time. As the second chart of Figure 4-13 shows, the accuracy of

SIROCCO does not increase above N = 6; in fact, it steadily decreases. This is a result of what

might be called “flooding” Stage 2. By providing Stage 2 with many cases to process, the

160

chances increase, of course, that relevant codes and cases will be identified but, at the same time,

more marginally relevant codes and cases are also found. In most of the cases in which

SIROCCO at N = 6 outperforms SIROCCO at N > 6, it is because the latter run suggests not only

the codes and cases that bolster the F-Measure score (i.e., exact or inexact matches to review

board citations), but also additional codes and cases that do not.

4.5. Experiment Summary

This chapter described a series of experiments performed to test the primary and secondary

theses of the dissertation. In particular, the experiments were designed to test whether a core set

of SIROCCO’s operationalization techniques allow the program to make accurate predictions of

the principles and past cases that are relevant to the analysis of new cases (i.e., the primary thesis)

and to test whether SIROCCO’s temporal knowledge similarly supports accurate predictions (i.e.,

the secondary thesis). Also, several additional experiments were performed to test the efficiency

and scalability of the computational model.

To test the primary thesis, SIROCCO was compared to five competitor methods, including a

full-text retrieval system and a version of SIROCCO that does not employ operationalization

techniques. The experimental results showed that a critical subset of SIROCCO’s

operationalization techniques (i.e., Code Instantiation, Group Codes, Case Instantiation, Group

Cases, and Reuse an Operationalization) allow the program to make accurate predictions of the

principles and past cases that are likely to be important in the analysis of new cases.

Furthermore, the evidence convincingly showed that SIROCCO provided significant

improvement in retrieval accuracy over all of the competitor methods. It was also shown that, in

some instances, SIROCCO was able to make appropriate code and case suggestions that even the

board did not make. These results support the primary thesis.

To test the secondary thesis, SIROCCO was compared to the performance of an ablated

version of the program, NON-TEMP SIROCCO, that did not employ temporal knowledge. The

experimental results of this portion of the experiments were surprising, and with respect to the

secondary thesis, disappointing. The differences between SIROCCO with and without its

temporal knowledge were essentially negligible. Some possible reasons why this result was

obtained were discussed, including there being a limited number of trial cases involving temporal

considerations and possible shortcomings of the representation and reasoning of SIROCCO.

Finally, some experiments were run to test SIROCCO’s computational characteristics and to

gauge how well the program scales up. These experiments indicated that SIROCCO’s

computational performance was clearly acceptable, performing satisfactorily with a case base of

161

over 2,000 cases. It was argued that SIROCCO would probably not require such a large case

base to make accurate predictions, so this “worst-case” result provides solid support for the

practicality of SIROCCO’s implementation41.

41 After all of the experiments had been run, the data analyzed, and a final draft of this chapter written, it was
discovered that two infrequently cited NSPE BER codes were misclassified in the Code Hierarchy. Since this could
have potentially changed the experimental results, as regards inexact F-Measures, Experiment #1 was re-run on both
the trial and foundational cases to assess the impact. The quantitative results of the re-test revealed that the minor
representation error had no impact on all tests except for MG running against the trial cases and, for this test, MG
actually performed 0.005 worse after the correction. Thus, the minor representation problem led to only one
insignificant quantitative discrepancy and no differences in the qualitative analysis reported in this chapter.

162

5. Related Work

5.1. Related Work in Interpretive Case-Based Reasoning

Interpretive case-based reasoning [Kolodner, 1993, p. 86-92] is a subarea of CBR in which

computational methods are developed to interpret, evaluate, decide, and justify arguments

through reference to past cases. As was discussed in Section 1.1, weak analytic domains are

particularly appropriate for the application of interpretive CBR. These domains are governed by

abstract laws, policies, principles, or theories, but often there are no authoritative or readily

available intermediate rules that can connect the abstract rules to the specific facts of cases.

Nevertheless, human decision makers apply the abstract rules in deciding actual cases. The record

of such applications generates reusable information that can help bridge the gap between abstract

rules and specific facts. The past cases help to frame a new problem. By evaluating similarities

and differences between the new problem and the past cases, one is often able to appropriately

interpret or resolve the new problem and reapply abstract rules that were applied in the past cases.

Interpretive CBR Applied to the Legal domain: A Contrast with Engineering Ethics

The majority of interpretive CBR work has been applied to the legal domain [Ashley, 1990;

Branting, 1991; Rissland and Skalak, 1991; Rissland et al., 1996; Aleven, 1997]. Interpretive

CBR is well-suited to this domain for two primary reasons. First, legal reasoning involves

argumentation: creating arguments, justifying arguments, and comparing arguments. In fact, the

Anglo-American legal system essentially institutionalizes the concept of adversarial arguments.

In a legal proceeding, two parties, the plaintiff and defendant, are pitted against one another and

each presents arguments for a position and interest while refuting the opponent’s position.

Second, legal arguments are usually supported by previously decided cases [Llewellyn, 1930].

Laws, like ethical principles, are typically quite abstract and difficult to directly apply to specific

cases. Because of the open-textured and abstract nature of laws, attempts to computationally

address legal problems in a deductive fashion have had limited success [Sergot et al., 1986;

Berman and Hafner, 1986]. On the other hand, previously decided cases provide a way of

interpreting laws and indirectly linking laws to new cases. In particular, comparing a new case to

a previously decided case may allow one to draw an analogy that guides how the laws governing

the previous case apply to the new case.

In an important and influential book, Twining and Miers [1976] analyze the difficulties of

bridging the gap between abstract, legal rules and specific facts given the way problems are

163

described in the legal domain. For instance, the authors discuss a structure called a “ladder of

abstraction” that can be used to represent legal issues in cases by “a continuous sequence of

categorizations from a low level of generality up to a high level of generality” [1976, p. 40, p. 45-

46]. The ladder of abstraction idea appears to be a means of circumventing the problem of a lack

of intermediate rules in the legal domain. The general idea is that laws and legal theories are

applied to the abstract facts at higher levels of the ladder, leading eventually to the resolution of

the more-specific facts at lower rungs. On the other hand, the approach appears to focus on the

application of these “ladders” to specific, noteworthy cases, rather than on the development of a

general-purpose representation. The Twining and Miers work could also be said to be an

important precursor to the AI and Law work, as it suggests the possibility of resolving legal

issues in a computational fashion by casting complex legal rules as algorithms and flowcharts

[1976, p. 182-196].

As compared to legal reasoning, engineering ethics involves a less-explicit model of

argumentation. There is no authoritative approach to resolving engineering ethics problems.

Ethical arguments are typically more free-form in style and structure. An organization such as

the NSPE BER provides one example of how engineering ethics problems can be argued and

resolved, but their opinions are purely educational; by no means are they binding, in the same

sense as legal decisions. A second distinction is that the decision-making process in engineering

ethics does not always (or even typically) involve two adversaries who present arguments and

counter-arguments. Also, decisions in engineering ethics cases are not constrained to binary

conclusions (e.g., plaintiff winning or losing) but may suggest multiple actions and outcomes.

For instance, in deciding whether a particular action is ethical or unethical in a case, the NSPE

BER often suggests ways in which the protagonist might have avoided the ethical dilemma

altogether or ways to correct an unjust action after the fact. The goal in evaluating engineering

ethics problems is not to assign blame and/or punishment for unethical actions; rather, it is to

provide an opportunity for interested parties to learn more about the ethical ramifications of

various actions and to consider what could have been done differently in the given circumstances.

It is also important that engineering practitioners recognize and understand the conflicting values

in specific fact situations and learn to apply “creative middle way” solutions to those situations

(i.e., resolutions that at least partially meet each of the conflicting values) [Harris et al., 1999, p.

64-72]. Finally, the two domains differ in terms of access to case data. The legal domain has an

extensive body of on-line cases, available through services such as Westlaw, while engineering

ethics provides far fewer case examples and opinions to work with. For instance, the NSPE BER

case set is very small in comparison to legal case libraries.

164

The codes and principles used to resolve dilemmas in engineering ethics are abstract, open-

textured rules, and the domain clearly requires techniques to bridge the gap between these rules

and the specific circumstances of cases. Harris and colleagues summarize this as follows: “No

code of ethics (in engineering ethics) is self-interpreting. Its principles and rules are stated in

general terms and need to be applied thoughtfully to particular circumstances; and some parts of a

code might potentially conflict with another.” [1999, p. 21] In other words, engineering ethics is

a weak analytic domain, as discussed in Sections 1.1 and 2.1.1. Techniques that are applied to

bridge the gap between abstract rules and the particular facts of cases are, in effect, a substitute

for the lack of intermediate rules in the domain.

Summary of the Comparison Between SIROCCO and Other Interpretive CBR Work

In the following sections, various interpretive CBR programs, in both ethics and the legal

domain, are discussed and compared to SIROCCO.

In summary, SIROCCO generally differs from the other CBR programs in the following

ways. First, SIROCCO attempts to bridge the gap between abstract, open-textured rules and

specific facts by using a detailed, narrative representation of cases, including temporal

relationships between facts, and the application of the operationalization techniques to that

representation. A couple of the interpretive CBR programs discussed below also attempt to

bridge this gap, in particular GREBE and BankXX, but the approach they employ is somewhat

different than SIROCCO’s. GREBE’s primary tool in bridging the gap between abstract rules

and specific facts is the representation and reuse of a judge’s justification in applying a law to a

fact situation. While this tactic is similar to a Code Instantiation in SIROCCO, the other

operationalization techniques discussed in this dissertation are either absent or figure far less

prominently in GREBE’s approach. BankXX attempts to bridge the gap between theories and

facts by interlinking cases, legal theories, factors, and typical scenarios and by executing a

heuristic search over this heterogeneous structure. However, in BankXX, the facts of a case are

not represented in narrative detail and, as in GREBE, the full set of SIROCCO’s

operationalization techniques do not appear to support the program in bridging the gap.

Second, the use of a limited language to represent cases as narrative sets of temporally

ordered steps differentiates SIROCCO from most other interpretive CBR programs. GREBE’s

representation scheme is not wholely dissimilar from SIROCCO’s – actions and events of a

scenario are represented – but GREBE’s representation does not include formal temporal

considerations and provides far fewer actions and events. As discussed in the following sections,

none of the other interpretive CBR programs (i.e., TRUTH-TELLER, BankXX, and CATO) use a

165

representation that is a narrative description of the facts of a case, and none incorporate temporal

considerations in their representation and reasoning.

Some work in CBR has emphasized the use of limited languages, most notably projects

descended from Roger Schank’s conceptual dependency work [Lytinen, 1992; Schank, 1972], for

example, SWALE [Kass et al., 1986, Leake, 1991]. However, the main contrast between

SIROCCO and SWALE is that SIROCCO’s aim is very practical and functional: to achieve

structural similarity assessment for the purpose of retrieving relevant cases and codes from a

database of ethics cases. While the creators of SWALE were interested in generating detailed

comparisons and explanations of anomalous events in different domains, I have been more

concerned with applying SIROCCO over a wide variety of cases and testing this capability

empirically.

This contrast with SWALE highlights the final key distinctions between SIROCCO and other

interpretive CBR work. In this dissertation, SIROCCO has been shown to handle a relatively

wide variety of case types in retrieving codes and cases. All of the interpretive CBR programs

discussed below (i.e., TRUTH-TELLER, GREBE, BankXX, and CATO), as well as most other

work in this area, are focused on providing detailed analyses and comparisons between cases and

not on handling a wide variety of cases for purposes of retrieval, as is SIROCCO. Consequently,

the domain coverage of these systems is significantly less than that of SIROCCO, which

leverages its limited language, its case-acquisition web site, and matching techniques to provide a

relatively wide domain coverage. Finally, the SIROCCO experiments represent the capability of

the program more objectively than do the experiments and evaluations of the other interpretive

CBR systems. In particular, all of SIROCCO’s test cases – and a significant number of its

foundational cases – were transcribed by independent case enterers. The base and test cases for

TRUTH-TELLER, GREBE, BankXX, and CATO were all represented by the researchers

themselves.

5.1.1. TRUTH-TELLER

In many respects, SIROCCO was inspired by earlier work that Kevin Ashley and I did on

TRUTH-TELLER [1994a; 1994b; 1995a; 1995b; 1995]. TRUTH-TELLER is a program that

compares pairs of cases presenting ethical dilemmas about whether or not to tell the truth. The

program marshals ethically relevant similarities and differences between two input cases from the

perspective of the “truth teller” (i.e., the person faced with the dilemma) and reports them to the

user. In particular, it points out reasons for telling or not telling the truth that (1) apply to both

cases, (2) apply more strongly in one case than another or (3) apply to only one case. TRUTH-

166

TELLER employs two abstraction hierarchies to support its task: a Reasons Hierarchy, which

organizes reasons or rationales for telling the truth according to facets that are important in ethical

reasoning [Bok, 1989], and a Relations Hierarchy, which represents human relations (e.g.,

spouse, friend, business associate) and the incumbent level of duty and trust expected in such

relations [Aristotle, edited and published in 1924, Books VIII and IX; Jonsen and Toulmin, 1988,

p. 290-293]. The two hierarchies are used to classify and moderate the support for and against

telling the truth in each scenario. The hierarchies also help TRUTH-TELLER compare the cases

by matching reasons across the cases.

The TRUTH-TELLER work was a first step in implementing a computational model of

casuistic reasoning. SIROCCO, while not a direct descendant of TRUTH-TELLER, is

nevertheless a step closer to that goal. As mentioned in Section 2.1.1, casuistry is a form of

ethical reasoning in which decisions are made by comparing a problem to paradigmatic, real or

hypothetical cases [Jonsen and Toulmin, 1988; Strong, 1988; Arras, 1991]. The TRUTH-

TELLER project focused on comparing cases, but it ignored the problem of how potentially

relevant cases are retrieved in the first place. The program compares any pair of cases it is

provided, no matter how different they may be. SIROCCO, on the other hand, uses retrieval to

determine which cases are most likely to be relevant to a given target case. After it has retrieved

potentially relevant cases, SIROCCO compares the retrieved cases to the target and uses the

results of those comparisons to collect relevant information to present to the user.

The representation perspectives of the TRUTH-TELLER and SIROCCO projects are also

quite different. In TRUTH-TELLER, each case is focused on the main protagonist’s reasons for

and against telling the truth. For instance, Figure 5-1 depicts TRUTH-TELLER’s representation

of the case “Should Stephanie, a psychology researcher, lie to human subjects about the intent of

an experiment in order to study some aspect of the subject’s behavior?” In this case, Stephanie is

the “truth teller” and the actor(s) who may receive the truth, i.e., the “truth receivers,” are the

experiment subjects. Stephanie can take several possible actions: tell the experiment subjects the

truth, tell them a lie, or perhaps think of a compromise solution. Each of these possible actions

has reasons that support it. For instance, two reasons for Stephanie to tell the truth are (1) the

subjects have the right not to be deceived and (2) Stephanie may be professionally harmed if she

is caught lying. TRUTH-TELLER’s task is to compare one case to another by aligning and

comparing the reasons represented in each case.

167

Stephanie, the
Researcher

Stephanie

The Experiment
Subjects

The Citizenry

The Scientific
Community

Tell-the-Truth

Has-Truth-Teller

Has-Truth-Receiver

Experimenter-For

Has-Affected-Other

Premeditated-Lie

Achieve-Goal-in-
Alternate-Way

Has-Possible-Action

Reason1:
 Right-To-Not-Be-Tricked-Into-Disclosure
 Has-Beneficiary: The Experiment Subjects

Reason2:
 Avoid-Harm-to-Professional-Status
 Has-Beneficiary: Stephanie

Supported-By

Reason3:
 Strive-for-a-Greater-Good-or-Higher-Truth
 Has-Beneficiary: The Citizenry, The Scientific Comm.

Reason4:
 Produce-Benefit-For-Professional-Status
 Has-Beneficiary: Stephanie

Supported-By

Reason5:
 Compromise-of-Other-Actions

Supported-By

Has-Member

Figure 5-1: An Example of TRUTH-TELLER’s Case Representation [Ashley and McLaren, 1995]

The smallest representational element in TRUTH-TELLER is a reason. To represent a case,

case enterers must elaborate the ethical and nonethical reasons for (and against) telling the truth

by interpreting the text of the case. Such a representation, while quite useful for generating the

detailed and issue-focused comparison texts produced by the program, is constrained in its

general applicability. Essentially, TRUTH-TELLER is very good at comparing truthtelling

dilemmas in a sophisticated and meaningful way, but it cannot tackle other types of ethical

problems without considerable augmentation of its case representation and Reasons Hierarchy.

In SIROCCO, primitives that closely model some of the actual actions and events of a fact

situation are used to represent cases as complex narratives. In this sense, SIROCCO’s

representational approach is more general than TRUTH-TELLER’s. This is key to SIROCCO’s

ability to address a much wider range of cases than TRUTH-TELLER addresses; not only does

SIROCCO handle ethical issues regarding honesty, it can also handle scenarios regarding public

168

safety, confidentiality, conflict of interest and more. In addition, SIROCCO’s representation is

more appropriate for untrained case enterers to transcribe cases – it requires far less abstraction

from the actual facts of the case and thus enables the collection of a greater number and range of

cases. On the other hand, SIROCCO’s case comparisons are not nearly as precise and issue-

oriented as TRUTH-TELLER’s. This is the trade-off for addressing a wider variety of cases.

5.1.2. GREBE

GREBE classifies, resolves, and justifies new fact situations in the domain of worker’s

compensation law by retrieving explained legal precedents that are built, in part, from legal rules

and theories [Branting, 1991]. GREBE combines rule-based reasoning and case-based reasoning

by simultaneously applying both techniques to a new problem and then evaluating and comparing

the explanations produced by each. A case in GREBE is represented by both the raw facts of the

situation and the explanation of the court in reaching its conclusion. The program’s explanation

structures, exemplar-based explanations (EBEs), connect the criterial facts of a case to the legal

rules or theories applied by a judge in that case.

There are a number of similarities between SIROCCO and GREBE. First, SIROCCO’s

representation of raw facts is similar in some respects to GREBE’s. For instance, both SIROCCO

and GREBE model actions and events in their respective representations. Second, SIROCCO’s

Code Instantiations serve a similar function as GREBE’s EBEs. Both structures essentially

provide fact-specific justifications for the application of abstract rules to cases and help to focus

structural mappings between a target and a source case. Finally, both programs perform A*

search to find the best structural mappings and are able to gainfully use even those mappings that

do not match precisely.

There are also significant differences between SIROCCO and GREBE. SIROCCO’s

representation of actions and events is much more extensive than GREBE’s. SIROCCO provides

a total of 190 actions and events, while GREBE provides approximately 70 to 9042. While

SIROCCO’s representation emphasizes a narrative description of the facts of a scenario, GREBE

provides some elements of narrative description but more strongly emphasizes the explanation of

a scenario’s actions and events. Part of SIROCCO’s emphasis on narrative representation and

comparison are evident in the formally defined temporal relations and a well-defined algorithm

for matching such relations. GREBE provides an incomplete and informal set of temporal

relations (e.g., concurrent, occurred-during), and it does not include a temporal matching scheme

42 This is an estimate based on GREBE ’s 147 relations [Branting , 1991, Appendix]. Of the 147 relations, many are
clearly used to represent GREBE’s explanations and not the raw facts of a case.

169

as part of its structural mapping routine. Other than Code Instantiations, GREBE does not appear

to have equivalents to SIROCCO’s operationalization techniques, the foundational elements of

SIROCCO’s architecture. For instance, GREBE does not appear to have equivalents to the

operationalization techniques Group Codes, Group Cases, Rewrite a Code, Define or Elaborate a

General Issue or Principle, and Apply a Hypothetical to a Code. GREBE takes inexact structural

mappings and attempts to improve those mappings (i.e., the explanations) by hypothesizing facts

in the target case. SIROCCO, on the other hand, does not attempt to improve mappings but,

rather, uses inexact (but good) matches as accumulated evidence for the relevance of particular

codes and cases.

As previously discussed, one of the primary goals of the SIROCCO project was to address a

wider range of cases than predecessor interpretive CBR systems. GREBE, on the other hand,

focuses on reasoning over a much narrower range of cases in order to provide extensive

arguments and explanations of each. The greater number of actions and events available in

SIROCCO is one key to SIROCCO’s wider domain coverage. Another is the use of the case-

acquisition web site. The web site provides examples, guidelines, and implicit constraints on how

cases are to be represented. The web site also supported an objective evaluation of SIROCCO.

Twelve different case enterers represented foundational cases for SIROCCO and all of the trial

cases were represented by two of these case enterers. Branting represented his own cases to test

GREBE.

GREBE depends on consistency of representation without providing any practical means to

achieve it. That is, GREBE’s structural mapping approach fails unless cases are consistently

represented. In contrast, SIROCCO’s web site and limited language provide some means to

achieve consistency. In addition, SIROCCO’s generalized matching techniques attempt to reduce

the need for perfect consistency.

Yet GREBE also has advantages over SIROCCO. As discussed above, GREBE’s

representational focus on explanations of past decisions, in the form of causal and evidential

relations, allows GREBE to provide detailed analyses of target problems, something SIROCCO is

incapable of doing. The evidential relations of GREBE’s EBEs are richer and more various than

SIROCCO’s Instantiation links from Facts (i.e., the individual steps of a Fact Chronology) to

relevant codes and past cases. Also, as a system that combines rule-based reasoning and case-

based reasoning, GREBE provides alternative means for addressing new cases. SIROCCO

depends exclusively on cases for retrieving appropriate codes and cases.

170

5.1.3. BankXX

The BankXX program represents an attempt to model the process of a junior associate in a

law firm searching for, or “harvesting,” relevant information in developing an argument for a

given case [Rissland et al., 1993; 1996]. The program operates by performing heuristic search

over a highly interconnected network of cases, theories, and other relevant legal knowledge in the

domain of bankruptcy law. Its goal is to collect as much information as possible to support a

variety of “argument pieces” (e.g., supporting cases, leading cases, applicable legal theories),

given a limited run time. The argument pieces represent segments or portions of legal knowledge

that would prove useful to an attorney in developing an argument.

BankXX’s goal is very similar to SIROCCO’s. In both programs the aim is to collect

relevant information that could be used in arguing or justifying a conclusion. However, although

BankXX organizes its retrieved information according to the argument pieces and SIROCCO

provides explanation that could support an argument, neither program actually generates an

argument. The programs also similarly combine knowledge-base indexing and heuristic search.

Finally, Rissland and colleagues have performed a series of empirical experiments to test the

capabilities of BankXX [1997]. The design of those experiments provided the foundation for the

SIROCCO experiments presented in this dissertation.

A key difference between BankXX and SIROCCO is the way in which heuristic search is

used. In BankXX heuristic search is the primary tool for harvesting information. The program

starts at a node in its case graph and performs best-first search, iteratively collecting relevant

information until it runs out of allotted search time. SIROCCO, on the other hand, uses heuristic

search in a much more focused manner. SIROCCO performs heuristic search on only a handful

of potential mappings, those that are retrieved by its knowledge-base indexing procedure (i.e., the

combined dot product calculation). In addition, the search performed by SIROCCO is focused on

just a portion of each retrieved source case, in particular, the Critical and Questioned Facts of

each case.

An impressive aspect of BankXX is its capability to view and search cases from a number of

different perspectives. BankXX’s case graph is organized as a collection of “spaces,” including a

Fact Situation Space, a Legal Theory Space, a Legal Factor Space, a Legal Citation Space, and a

Legal Story Space. This structure is depicted in Figure 5-2. Objects in one space may be linked

to other objects in the same space, as Case A is linked to Case B in Figure 5-2, or to objects in

another space, as Case B is to Theory A. Searching in and between these different spaces allows

171

the program to harvest information that is relevant to the different perspectives. SIROCCO

provides no equivalent capability.

Theory B

Case A

Fact Situation Space Legal Theory Space Legal Factor Space

Legal Citation Space Legal Story Space

Case A
cites applies

Theory A
rejects

Case B

Factor 1

Factor 2

Case A see Case B
Case A see-eg Case C
Case A overrules Case D

Dishonest-Debtor
Student-Loan

Case B

Figure 5-2: An Example of BankXX’s Case Representation [Rissland et al., 1993]

Cases in BankXX are essentially clusters of objects from different perspectives that are

related to one another. However, unlike SIROCCO, BankXX’s representation does not address

the narrative description of a case, i.e., it does not model actions and events or the temporal

relations between those actions and events. BankXX bridges the gap between theories (i.e., the

abstract rules in this domain) and facts by providing links from the Fact Situation Space to the

Legal Theory Space. However, because (1) the nodes are not really a representation of the raw

facts and temporal relationships between those facts and (2) the links between these two spaces

do not relate to detailed facts and are not necessarily the emphasis of BankXX’s search it is less

clear that this approach makes the same impact in bridging the abstraction gap that, for instance,

SIROCCO’s focused Code Instantiations make.

Finally, BankXX also differs from SIROCCO in some of the same ways that GREBE differs

from SIROCCO. Again, other than Code Instantiations and perhaps Case Instantiations, BankXX

does not appear to have analogs to most of SIROCCO’s operationalization techniques. In

particular, BankXX does not appear to have equivalents to the operationalization techniques

Group Codes, Group Cases, Rewrite a Code, Define or Elaborate a General Issue or Principle,

and Apply a Hypothetical to a Code. Also, although the authors performed extensive experiments

with the program, the experiments did not demonstrate that BankXX is capable of handling cases

outside of its relatively narrow domain. The BankXX experiments were also arguably less

172

objective than the SIROCCO experiments because independent case enterers were not used to

define cases. In the BankXX experiments, the authors themselves represented all of the cases.

5.1.4. CATO

CATO is an intelligent tutoring system applied to the legal domain [Aleven, 1997]. CATO

makes a contribution to the case-based reasoning literature by applying abstract, background

knowledge to the task of similarity assessment. The program uses its background knowledge,

represented in a Factor Hierarchy, to assess and explain the significance of similarities and

differences between cases. CATO generates alternative arguments that a partially matched

source case is reasonably close (or not) to a target case.

As with TRUTH-TELLER, GREBE, and BankXX, CATO differs from SIROCCO in its

representation scheme. CATO’s core representation element is a factor. Inherited from Ashley’s

work [1990], a factor does not represent a detailed action or event of a scenario, but rather it

provides an interpretation as to whether certain facts favor one side or the other in a legal dispute.

In other words, it is an abstraction of the raw facts. For instance, consider Figure 5-3. This is the

representation of a case in which a bar owner, Mason, filed a legal claim against the Jack Daniel

Distillery. Mason, the plaintiff, claimed that the distillery had misappropriated his secret formula

for a mixed drink, backing out on a promise that Mason’s logo would be used in the distillery’s

sales promotion. The elements shown below the case title in Figure 5-3 are the factors of the

case. Three of those factors (i.e., F6, F15, and F21) favor Mason, the plaintiff, and two (i.e., F1

and F16) favor Jack, Daniels, the defendant.

Mason v. Jack Daniel Distillery
F1: Disclosure-In-Negotiations (d)
F6: Security-Measures (p)
F15: Unique-Product (p)
F16: Info-Reverse-Engineerable (d)
F21: Knew-Info-Confidential (p)

Figure 5-3: An Example of CATO’s Case Representation [Aleven, 1997]

The goal of CATO is to provide relatively detailed comparisons of cases, and such a

representation supports that goal. The factors summarize key facts in a way that makes it

possible for CATO to compare the issues of one case with those of another. On the other hand,

CATO’s factors tend to limit the possibility of representing a wide variety of cases. Widening

domain coverage would involve the careful identification and representation of the key issues of

173

other subdomains of the law. In contrast, many of SIROCCO’s actions and events are not

specific to a particular subdomain of engineering ethics (e.g., “employed-by,” “inspects,”

“informs”) and therefore support the representation of a wider range of case types. As a result,

SIROCCO’s domain coverage is significantly wider than is CATO’s. At the same time, this

feature limits SIROCCO’s capability to provide detailed comparisons, such as those generated by

CATO.

Like SIROCCO, CATO compares cases at multiple levels of abstraction. However, the

primary representational devices used by each program to support abstract comparisons – i.e.,

CATO’s Factor Hierarchy and SIROCCO’s Action/Event Hierarchy – are different in both

purpose and structure. Whereas the Factor Hierarchy is employed by CATO to develop

arguments and reason symbolically about similarities and differences between cases, SIROCCO’s

Action/Event Hierarchy is used to support the retrieval and (numeric) evaluation of cases.

CATO’s Factor Hierarchy is not used to support case retrieval. The Factor Hierarchy relates

basic concerns (represented as factors) to higher-level or more-abstract concerns and issues of the

legal domain. The links between nodes in the hierarchy are evidentiary, providing strong support,

weak support, weak refutation, or strong refutation from the lower to higher nodes. This also

contrasts with SIROCCO’s Action/Event Hierarchy, in which the links are more taxonomic in

nature. In particular, higher-level nodes of the Action/Event Hierarchy are simply more-abstract

actions or events than lower-level nodes. Finally, note that widening CATO’s domain coverage

would involve not only the representation of additional factors, as discussed above, but also

significant extensions and augmentation to its Factor Hierarchy.

In some respects, CATO’s Factor Hierarchy can be viewed as one approach to the problem

posed in this dissertation: relating abstract, open-textured rules to specific facts. At the top level

of the Factor Hierarchy are Legal Issues such as Confidential-Relationship and Info-Trade-Secret.

Below these are intermediate nodes, akin to intermediate hypotheses, while at the leaves of the

hierarchy are the base-level Factors (e.g., Knew-Info-Confidential, Agreed-Not-to-Disclose) used

to represent cases. Thus, a pattern of Factors representing a case in some sense “invokes” an

abstract rule (i.e., a Legal Issue) through a series of evidentiary links.

The difference between this and SIROCCO’s approach, however, highlights the key concept

of this dissertation: operationalization. CATO’s Factor Hierarchy, like SIROCCO’s Action/Event

Hierarchy, is strictly an intensional representation; it is a predefined knowledge structure

generalized from an analysis of the domain. On the other hand, SIROCCO’s primary problem

solving structures, the operationalization techniques, are purely extensional. The

operationalization techniques are represented and defined as patterns of specific facts and citation

174

information from the past cases that applied them. Thus, while CATO primarily uses generalized

abstraction knowledge to achieve its aims, SIROCCO partially uses such knowledge but

emphasizes the use of operationalized and specific knowledge in retrieving and analyzing cases.

5.2. Related Work in Analogical Reasoning

In many respects, work in analogical reasoning, a subfield of cognitive science, is similar to

work in case-based reasoning. Both analogical reasoning and case-based reasoning have roots in

early work by Thomas Evans [1968] and, somewhat later, in work by Patrick Winston [1980].

Evans was the first to write a computational model of analogy; his program solved problems of

proportional analogy, such as those typically found on an intelligence test (e.g., A is to B, as C is

to ?). Winston’s program was the first to use structured representations of analogs and also was

the first to emphasize the importance of both semantic similarity and purpose. In the present day,

much of analogical reasoning research, as in CBR research, is focused on how one can

understand and/or resolve a new problem or fact situation in terms of an established,

authoritative, or prototypical past fact situation. In essence, both CBR research and analogical

reasoning research stress and explicitly acknowledge the importance of analogy in intelligent

reasoning.

On the other hand, there are significant differences in the two fields of research. In analogical

reasoning, researchers are typically interested in specifically how humans create and use

analogies [Keane et al., 1994; Holyoak and Thagard, 1995]. While researchers in case-based

reasoning are also interested in human analogy – and they often take cues from human reasoning

in developing automated case-based reasoners [Kolodner, 1993, p. 27-29] – the goal in CBR,

especially in recent years, tends to be much more practical and computationally-oriented. That is,

researchers in case-based reasoning typically want to build computational models that address or

solve practical problems using cases, regardless of whether their programs directly model the

reasoning of humans. In contrast, analogical reasoning researchers usually build programs to test

whether, and how well, the programs model human reasoning.

Another key difference is that analogical reasoning research tends to emphasize cross-domain

analogies. For instance, a classic analogical reasoning problem is “The Tumor and the Fortress”

[Holyoak and Thagard, 1995, p. 110-116]. In this problem, participants in an experiment are

presented a scenario to solve in which a medical patient has an inoperable tumor. The only way

to destroy the tumor is to concentrate a special kind of ray on it that will unfortunately also

destroy the surrounding healthy body tissue. The participants are also provided with a solved

case in which an invading army attacked and overran a fortress by dividing into smaller units and

175

converging simultaneously on the fortress from different directions. This tactic was necessary

because the leader of the fortress planted land mines along roads leading to the bastion, and these

mines would detonate if a large number, but not a small number, of people passed over them. By

using a cross-domain analogy, the inoperable cancer problem could be solved by reapplying the

fortress solution. In particular, if the rays were aimed at the tumor in thin beams from many

angles, the life-threatening growth could be destroyed while at the same time the patient’s healthy

tissue was preserved.

Analogical reasoning researchers are primarily interested in studying and understanding the

mental processes that allow people to disregard surface features and perform creative cross-

domain analogies in problems like “The Tumor and the Fortress.” “Theoretical attention is

inevitably drawn to spontaneous analogy: That is, to structural similarity unsupported by surface

similarity, as in (a periodic table reminding one of octaves in music.)” [Forbus et al., 1994, p.

142] On the other hand, although there are exceptions, for instance, the SWALE work [Kass et

al., 1986, Leake, 1991], CBR researchers primarily focus on how analogy, or case similarity, is

used within a single domain.

There also tend to be differences in the types of computational models built by researchers in

these two fields. While analogical reasoning programs typically use structural representations

and implement analogical mapping techniques between these structures, CBR programs tend to

focus more on flat feature representations, fact summaries, and surface characteristics of cases.

Many CBR programs adapt retrieved analogs to guide current decision making and save solutions

for future reuse; most analogical reasoning programs focus strictly on retrieving analogs. These

differing approaches stem directly from the different objectives of each field: analogical

reasoning attempts to model humans and their ability to recognize cross-domain analogies, while

CBR attempts to provide computationally efficient solutions to practical problems.

The SIROCCO research, however, overlaps with analogical reasoning research perhaps more

than most other CBR work. First, the SIROCCO program is based on a study of how human

reasoners actually solve (or justify) problems in engineering ethics. The results of this study, in

particular the operationalization techniques, provided the framework for the design of SIROCCO.

Second, the underlying algorithm of SIROCCO has similarity to some of the better-known

analogical reasoning systems, in particular in their use of structural analogy. In the following

sections, two of these analogical reasoning systems are briefly discussed and compared to

SIROCCO.

176

5.2.1. MAC/FAC

MAC/FAC (Many Are Called but Few Are Chosen) is a computational model of analog

retrieval that attempts to represent psychological phenomena in a two-stage algorithm [Forbus et

al., 1994]. In particular, Forbus and Gentner purport to model the following human approach to

analogy: (a) superficial similarities are most important in retrieval, (b) structural similarities are

most important in analog comparisons, and yet (c) purely structural retrievals sometimes occur.

The program’s first stage (MAC) uses a computationally inexpensive “filter” algorithm that

focuses on surface features of a target case and retrieves a small number of the most-likely

candidates. The second stage (FAC) identifies the best analog among the first-stage candidates

by using structural mapping to compare the target to all of the candidates.

An obvious, but somewhat superficial, similarity between MAC/FAC and SIROCCO is the

two-stage algorithm. In fact, SIROCCO’s algorithm is inspired, in part, by MAC/FAC’s.

However, there are many differences in the particular two-stage algorithm implemented in the

two programs. First, MAC/FAC relies totally on exact matches in both its first and second stages.

SIROCCO, as we have seen, is capable of matching target and source cases at several levels of

abstraction, using its Action/Event Hierarchy. Second, MAC/FAC, unlike SIROCCO, does not

use “goals” as a means of focusing its retrieval. Forbus and colleagues make the following claim:

“By treating goals as just one of many kinds of higher-order structures, we escape making the

erroneous prediction of many case-based reasoning systems: that retrieval requires common

goals.” [1994, p. 192] The contention that CBR systems erroneously focus on goals is, at least in

the context of SIROCCO, not supported. SIROCCO’s focus on goals is a key to its retrieval

success. SIROCCO’s emphasis on questioned and critical facts – essentially, its retrieval “goals”

– is a critical reason why it outperformed EXTENDED-MG and NON-OP SIROCCO in the

experiments reported in this dissertation. Further evidence that the purpose or goals of retrieval

are important in analogical mapping is provided by Spellman and Holyoak [1993].

A third difference between MAC/FAC and SIROCCO is the particular way structural

mapping is deployed. In MAC/FAC, structural mappings are attempted between the complete

representations of the target and each of the source cases. In SIROCCO, structural mapping is

efficiently focused on only a portion of the target and source cases, i.e., those Facts that are part

of the source’s Code and Case Instantiations. Fourth, while MAC/FAC completely relies on its

first stage of processing to collect viable candidates, SIROCCO, as we saw in the program trace

of Chapter 3, can select cases as reasonable analogs even if the first stage happens to miss them.

177

Finally, while SIROCCO’s architecture includes a formal notion of temporal relations and their

structural mapping across cases, MAC/FAC’s does not.

It should also be mentioned that the programs differ markedly in their objectives, as do most

analogical reasoning and CBR programs. While MAC/FAC is designed to model and test

cognitive psychological phenomena, SIROCCO is designed to optimize the performance of

retrieval and analysis in the domain of engineering ethics. The empirical study of the engineering

ethics domain, and the identification of the operationalization techniques, informed SIROCCO’s

design and development, but the program is not intended to be a mental model of human

reasoning.

5.2.2. ARCS

ARCS (Analog Retrieval by Constraint Satisfaction) is another two-stage analogical

reasoning program [Thagard et al., 1990]. ARCS’s initial stage collects source analogs that share

some semantic similarity to a target case. It achieves this by using an electronic thesaurus called

WordNet [Miller et al., 1990] that stores words in a semantic network that is intended to model

how concepts are organized in human memory, using relations such as “part-of” and “kind-of.”

For instance, the word “lion” might be stored as a “kind-of” feline, which is a “kind-of”

carnivore, which is a “kind-of” mammal, and so on. For each source candidate identified in the

first stage, ARCS’s second stage constructs a constraint network that accounts for structure,

purpose, and similarity in the mapping between source and target. ARCS then executes a parallel

constraint satisfaction algorithm on the networks to identify the candidate that is most similar to

the target43.

ARCS, like MAC/FAC, is intended to model human analogical reasoning. For several

reasons, one could argue that it is, in fact, a better approximation of human reasoning than

MAC/FAC. First, the connectionist approach of ARCS could be claimed to more closely

resemble the combined physical and logical functioning of human memory than the symbolic

approach of MAC/FAC. Second, the use of WordNet allows ARCS to retrieve inexact matches,

something humans are clearly capable of doing, but MAC/FAC is incapable of. Third, ARCS,

unlike MAC/FAC, incorporates the purpose or goal of retrieval in its mapping process. As

discussed in Section 5.2.1, there is empirical evidence that incorporating purpose into the retrieval

process does make a difference in the type of analogs human’s retrieve.

43 Holyoak and Thagard refer to three stages in describing ARCS [1995, p. 254]. They divide the construction of the
constraint networks and the execution of the relaxation algorithm into separate stages. However, the combination of
these steps is effectively equivalent to MAC/FAC’s and SIROCCO’s structural mapping stage, so ARCS will be
referred to as a two-stage algorithm.

178

For the second and third reasons above, ARCS could be considered more similar to

SIROCCO than MAC/FAC. That is, ARCS, like SIROCCO, provides a means of supporting

inexact matches. ARCS’s use of WordNet serves a similar function as SIROCCO’s Action/Event

Hierarchy. Also, ARCS’s emphasis on the purpose of analogical mapping is similar to

SIROCCO’s focus on mapping critical and questioned facts of source cases.

On the other hand, there are clear differences between the two programs. First, ARCS’s

connectionist approach to analogical mapping contrasts sharply with SIROCCO’s purely

symbolic approach. Second, similar to the contrast discussed above between SIROCCO and

MAC/FAC, ARCS performs a mapping over the entire source and target representations, while

SIROCCO’s mapping process is focused on the most relevant portion of the source cases, as

defined by the Code and Case Instantiations. Third, the ARCS model, like MAC/FAC, does not

provide a means for mapping temporal relations between cases. Finally, ARCS is claimed to

model human analogical reasoning; no such claim is made about SIROCCO.

5.3. Related Work in Practical Ethics

The domain of practical ethics, and engineering ethics in particular, is a novel domain for

applying AI case-based reasoning techniques. Other than the earlier work that Kevin Ashley and

I did with TRUTH-TELLER, discussed in Section 5.1.1, to my knowledge there has been no

other intelligent system or computational model developed to address the interesting and

challenging problems that arise in this domain.

However, there have been research-related efforts to develop computer programs to assist

students in grappling with the thorny problems of practical ethics. Two of these programs, the

Ethos System and the Dax Cowart CD, are briefly discussed in the following sections. Neither is

an intelligent system per se, but each provides a valuable pedagogical resource. The programs

share a number of similarities, including an open exploratory environment, the use of video clips

to provide a visceral experience of ethical problems and problem solving, and a detailed focus on

a single, or very few, ethical dilemma(s).

5.3.1. The Ethos System

The Ethos System was developed by Donald Searing to accompany the engineering ethics

textbook written by Harris and colleagues [1999]. The program implements the HARPS

methodology, an attempt to encourage rational and consistent ethical problem solving [Searing,

1998, p. 1-2]. The goal of HARPS is (1) to provide a framework in which one can rationally

apply moral beliefs and (2) to record the step-by-step decisions taken by a moral decision-maker

179

in resolving an ethical dilemma, so that those steps can later be analyzed and better understood.

The types of ethical scenarios presented and explored by the Ethos System involve ill-defined

concepts and conflicting principles and obligations.

The Ethos System and HARPS methodology essentially provide a means for the user to

experiment with and apply the problem-solving approach advocated in the Harris et al. textbook.

In particular, the program breaks down moral decision making into three major steps: (1) framing

the problem, (2) outlining the alternatives, and (3) evaluating the alternatives. Framing the

problem involves identification of the factual, conceptual, and moral issues of the dilemma.

Outlining the alternatives involves the application of interpretive techniques such as line-drawing

and conflict resolution. Finally, evaluating the alternatives entails the application of classic moral

evaluation techniques such as utilitarianism [Mill, edited and published in 1979] and respect for

persons [Kant, edited and published in 1969]. The user is able to traverse the steps by pointing

and clicking a graphical representation of the overall process. At each step, the user answers

questions and provides information related to that step. The program allows the user to skip

between steps, repeat steps, and generally explore the problem space.

The program provides several pre-packaged example dilemmas for the students to experiment

with and explore. One of the example dilemmas, involving an accident during the installation of

a 330-foot tall antenna in Houston in the early 1980s that resulted in the deaths of several people,

is represented in great detail, including video clips showing the participants and the accident as it

occurred.

5.3.2. The Dax Cowart CD

The Dax Cowart CD is an interactive, multimedia program designed to explore the practical

ethics issue of a person’s right to die [Cavalier and Covey, 1996]. The program focuses on a

single case, that of Dax Cowart, a victim of severe burns, crippling injuries, and blindness who

insists on his right to die throughout enforced treatment for his condition. The central issue of the

case is whether Dax should be allowed to die and what reasons support or conflict with that

decision. The program presents video clips of interviews with Dax’s doctor, lawyer, mother,

nurses, and Dax himself to allow the user to experience the issue from different viewpoints. The

program also presents clips of Dax’s painful burn treatment to provide an intimate sense of his

predicament.

The program operates in two modes: (1) a guided mode in which questions are posed in

Socratic style to challenge the user to consider the relevant facts, moral issues, and viewpoints

and (2) an exploratory mode in which the user can freely view video clips and investigate the

180

basic ethical issues involved with the case, including the quality of life, patient rights, and the

conflicting obligations of medical personnel. In the guided mode, the user is periodically asked

to make judgments on whether Dax’s request should be granted and, dependent on how one

answers, the program branches to present information and viewpoints that may cause

reconsideration of that judgment.

While neither the Ethos System nor the Dax Cowart CD are directly comparable to

SIROCCO, given the different goals of the programs, it is instructive nevertheless to discuss how

they differ. Both the Ethos System and the Dax Cowart CD present a much deeper and detailed

view of the ethics domain to the user than does SIROCCO. Both programs thoroughly cover at

least one problem and provide video clips to viscerally engage the user in that problem. Each

program is intended to instill a deep appreciation of the complexities of ethical decision making.

On the other hand, neither the Ethos System nor the Dax Cowart CD involves any intelligent

processing. All of the steps and displays of both systems are effectively “canned.” SIROCCO’s

retrieval and analysis functionality is far more complex than the processing of either of these

pedagogical programs. Also, SIROCCO covers a much wider range of issues and problems than

do either of the pedagogical programs. This is largely because the knowledge engineering

involved in representing a single case in both the Ethos and Dax programs is enormous, i.e., one

must create (or acquire) and integrate video clips and copious supporting information into an

ethics problem definition. Also, while the Ethos System and the Dax Cowart CD are focused on

iterative user interactivity, SIROCCO is intended to perform the noninteractive and focused task

of retrieving the relevant codes, cases, and operationalizations of a given case description.

Finally, while both the Ethos System and the Dax Cowart CD focus on one case or one case

at a time, each could benefit from an ability to support users in finding similar cases. One

approach would be to “hard wire” links to similar cases, but a more powerful and flexible

approach would be to provide an intelligent retrieval capability. SIROCCO provides such a

capability and could make a useful adjunct to either (with the appropriate case base, interface,

pedagogical curriculum, guidance, and some feedback).

181

6. Conclusion
This dissertation has explored the problem of applying abstract, open-textured rules to

specific fact situations. Such rules cannot be applied without knowledge that “bridges the gap”

between the rules and the concrete facts. In some domains, like the law, ethics, and policy

decision making, there are often no authoritative or readily-available intermediate rules that can

be used to bridge this gap. Nevertheless, the decision makers in these domains do make and

record decisions, and by using operationalization techniques, some extensional connections

between abstract rules and scenarios may be discerned and applied to new fact situations for the

purposes of retrieval.

I have proposed, developed, and empirically tested a computational model, SIROCCO, that

implements a set of operationalization techniques, which help bridge the gap between abstract

rules and facts in the domain of engineering ethics. The computation model tested two theses.

First, it tested whether a subset of the observed operationalization techniques, those that are most

objectively verifiable, allow a computation model to make accurate predictions of the principles

and past cases that are likely to be relevant in the analysis of new cases. Second, it tested the

secondary thesis that temporal knowledge can also be used to support the computational model in

making accurate predictions.

The experiments provided strong evidence that the primary thesis is well founded.

SIROCCO performed significantly better than several competitor models, including a full-text

retrieval system and a version of SIROCCO that did not employ operationalization techniques.

In addition, it was shown that augmenting the information retrieval system with an

operationalization technique improved the performance of that system. The experiments did not,

however, support the secondary thesis. A test comparing the use of SIROCCO with and without

temporal knowledge resulted in negligible difference between the performance of the two models.

This was surprising in light of the analysis of the NSPE BER cases (reported in Chapter 2) and

the fact that some actual examples of SIROCCO in action (see, for instance, Section 3.3)

indicated that temporal relations do make a difference. On the other hand, at least SIROCCO’s

temporal knowledge did not prevent good retrieval. Finally, the experiments showed that

SIROCCO’s computational characteristics are satisfactory, and that the system can be expected to

scale up to 2,000 cases and still perform adequately.

It has also been shown in the dissertation that SIROCCO provides advantages that are not

empirically quantifiable. For instance, the program is able to display the results of structural

mappings between an input target case and the relevant Instantiations it retrieves. This

182

information is potentially quite useful to a user, as it indicates the Facts (i.e., the individual steps

of a Fact Chronology) that may be relevant in assessing the case. The program is also capable of

displaying additional suggestions that are based on the application of the operationalization

techniques that were not directly involved in the selection of codes and cases.

In this chapter, I discuss the contributions of the research, the lessons learned in building the

computational model, and future directions of the work.

6.1. Contributions of the Dissertation Research

The contributions of the research presented in this dissertation are summarized below and the

following sections discuss each contribution in turn.

Contribution #1: The identification and cataloging of a set of operationalization

techniques, through an empirical analysis of a set of recorded decisions.

Contribution #2: The implementation and testing of a computational model that uses the

operationalization techniques to support retrieval and analysis.

Contribution #3: The development and application of a limited, but expressive, case-

representation language to represent the detailed facts of a case.

Contribution #4: The successful application of the computational model for purposes of

retrieval to a wider range of cases than any predecessor interpretive CBR system.

Contribution #5: The implementation and testing of a computational model that uses

temporal knowledge to support retrieval and analysis.

6.1.1. The Empirical Identification of the Operationalization Techniques

There has been little empirical work in AI that investigates the role principles play in

computational models of decision making. As has been discussed, principles are abstract rules

with typically no available intermediate rules to connect them to specific fact situations.

However, humans manage to apply principles to fact situations, so it is useful to study and

understand the techniques they employ to accomplish this. Understanding how to apply and

evaluate principles is important if one wants to build computational models in weak analytic

domains, such as ethics and the law.

183

Research in AI and Law has perhaps come the closest to addressing this problem. Various

researchers have investigated the connection between legal theories, similar to principles in many

respects, and concrete cases. For instance, Karl Branting investigated how to bridge the gap

between legal theories and the specific facts of precedent cases [1993; 1994]. As the foundation

for a proposed computational model, Branting employed the concept of ratio decidendi, a legal

metatheory that determines how a precedent can be authoritative to subsequent cases. In

BankXX [Rissland et al., 1993, 1996], theories are part of an extensive legal network that is

searched to develop arguments for one side or another in a legal dispute.

A key distinction of this dissertation is that it presents an explicit, structured, and

comprehensive list of the techniques used to bridge the gap between abstract, open-textured rules

and specific facts in a particular domain of interest. In previous work, various techniques have

been discussed and implicitly “recorded,” but no other project, to my knowledge, presents an

explicit and structured list of empirically-observed techniques, such as reported here. In

particular, I observed, analyzed, recorded, and cataloged the systematic reasoning techniques

employed by an ethics review board in deciding 475 published engineering ethics cases.

Although some of the identified techniques – for instance, Define the Terms of the Code, Cite an

Analogous Precedent – should be recognizable to those who have studied the interaction between

rules and cases in other weak analytic domains, such as the law, the identification of the full

group of techniques, applied in various combinations in analyzing and resolving ethical

dilemmas, is a research contribution. Further, some of the identified techniques, such as Group

Codes and Rewrite a Code, are clearly not addressed in comparable work, see for instance the

comparison of SIROCCO to GREBE (Section 5.1.2) and SIROCCO to BankXX (Section 5.1.3).

Finally, while this specific group of techniques was identified in the particular domain of

engineering ethics – and in a particular engineering society within that domain – there is reason

to believe that the operationalization techniques may have more general applicability. A more-

comprehensive investigation into the general applicability of the techniques remains for future

work; some preliminary ideas are discussed in Section 6.3.4.

6.1.2. The Implementation and Testing of a Computational Model That Uses
Operationalization Techniques

Part of the process of identifying and cataloging the operationalization techniques involved

understanding how the techniques could be computationally realized. Although the review board

uses the operationalization techniques to resolve the ethical dilemmas and/or justify their

conclusions, the goal for SIROCCO was to employ the techniques to retrieve relevant

184

information, i.e., codes, past cases, and other facts, about a dilemma. Modeling the board’s

resolutions and justifications as operationalization techniques, and implementing them

computationally, successfully supported retrieval. This attests to the central role of the

operationalization techniques as organizing structures in understanding, analyzing, resolving, and

arguing cases.

In essence, the operationalization techniques link and annotate the facts of a case with codes

and past cases, thus providing “indices” for future use of the operationalizations. For instance,

the designated Critical and Questioned Facts of source cases provide indices, at various levels of

abstraction, for Stage 1’s retrieval process. The Critical and Questioned Facts also focus the Stage

2 heuristic search. The links between grouped codes and cases, or between one code and another

code that it overrides, allow the program to indirectly access (or index) citations that might be

relevant in the context of a new case.

This knowledge representation allows SIROCCO to operate without the intermediate rules

found in many domains. Instead of chaining from the bare facts to intermediate conclusions to

final conclusions, as in a deductive approach, SIROCCO compares the bare facts of a target case

to the important facts of past source cases, harvesting various operationalizations that are linked

to those facts in the process. The program then evaluates the retrieved operationalizations to

determine if they apply in the context of the new target case and reuses those that apply. The

operationalizations thus applied are essentially extensional, rather than intensional (i.e., rule-like),

ways to deal with open-textured terms and can be thought of as replacing the reasoning inherent

in intermediate rules.

The development of SIROCCO and the dissertation project in general took very seriously the

notion of operationalization and its role in reasoning. In particular, the operationalization

techniques “make explicit … how a piece of knowledge was applied or what particular strategies

for accomplishing a goal were used” and “they capture knowledge that might be too hard to

capture in a general model.” [Kolodner, 1993, p. 9]. SIROCCO represents an effort to take these

general concepts and realize them computationally in a way that is extensional, yet detailed given

a narrative representation of cases as sets of temporally ordered actions and events. In particular,

SIROCCO provides a framework in which operationalization knowledge is made explicit and is

demonstrated in a difficult reasoning task.

The execution of empirical tests to evaluate the contribution of the operationalization

techniques was a key aspect of the dissertation project. As discussed above, comparing

SIROCCO to a version of the program lacking virtually all of the operationalization techniques

showed that the techniques make a significant difference in the retrieval of codes and cases.

185

Further, comparing an information retrieval system, MG, to a version augmented by one of the

operationalization techniques provided further evidence of the value of the operationalization

techniques.

6.1.3. The Development and Application of a Limited, But Expressive, Case-
Representation Language

SIROCCO’s case-representation language (see Appendix A) and case-acquisition

methodology (see Appendix B) are key contributions of this dissertation to the case-based

reasoning literature. The SIROCCO research provides an example of how one can represent the

actions and events in a complex narrative using a limited language, yet still successfully represent

a relatively wide range of cases. Emphasis was placed on enabling human users to represent the

bare facts of a situation, without greatly interpreting, abstracting, or explaining those facts. The

goal was to keep the representation as close to the narrative presentation of facts as possible while

pushing off abstractions and generalizations to the computational process. Thus, while

SIROCCO reasons about action and event abstractions, via its Action/Event Hierarchy, the

abstractions are not part of the given case representations. An ontology of engineering ethics was

developed as an important part of the dissertation project. The ontology includes a representation

of actions, events, actors, objects, and the temporal relationships between actions and events (see

Section 3.1.2).

SIROCCO’s language is limited in that the case enterer must conform to restricted ways of

phrasing facts. For instance, the Fact Primitive “x criticizes y” is the only way to express a case

fact that deals with an actor finding fault with, condemning, or denouncing another actor. The

criticism may be verbal, written, or implied, yet these distinctions are not available to the case

enterer. On the other hand, SIROCCO’s language is fairly expressive in the sense that each Fact

is essentially a sentence, i.e., with a noun-verb-noun type construct, and the Fact Chronology

reads like the facts of a case, expressing the important details. Even when Facts can be described

in different ways in SIROCCO’s limited language, SIROCCO’s matching criteria helps it deal

with a lack of consistency in the representation of different cases. The Action/Event Hierarchy is

a means for relating similar Facts to one another and the retrieval algorithm uses this structure to

relate similar, yet imprecisely matched, cases.

SIROCCO’s case-representation language diverges from most previous work in CBR with

regard to situation descriptions. For instance, in PROTOS [Bareiss, 1989] and CASEY [Koton,

1989], two early diagnostic CBR systems that support extensive situation descriptions, situations

were represented as collections of symptoms, patient histories, and results of lab tests. While this

186

information is clearly the most relevant for solving diagnostic problems, the representations

provided by these programs do not capture actions, events, and the chronology of those actions

and events, as SIROCCO does. CATO [Aleven, 1997], discussed in Section 5.1.4, provides a

different kind of situation description. CATO’s factors are interpretations of the detailed facts

with respect to whether those facts favor one side or the other in a legal dispute. However,

CATO’s representation scheme, as with PROTOS and CASEY, does not provide a representation

of the actual events of a case.

SIROCCO’s limited language is probably most similar to the languages of SWALE [Kass et

al., 1986, Leake, 1991] and GREBE [Branting, 1991]. Both of these programs also provide

representations for actions and events. However, both also emphasize the representation of

semantic explanation structures. That is, a case is represented not only by the actions and events

of the scenario but also by explanations of those actions and events. As explained in Section

5.1.2, GREBE’s explanations represent the reasoning (or justification) of a court in applying an

abstract rule to a case. In SWALE, the explanations provide a more abstract or stereotypical

description of a story, so that it may be more easily matched to (anomalous) cases in other

domains44.

While SIROCCO’s Code and Case Instantiations also provide a form of explanation (or

justification), through the linking of Facts to code and case citations, the justification

representation in SIROCCO is, by design, less semantic than in GREBE or SWALE. In effect,

SIROCCO’s justifications are extensional representations for the cited codes and cases and allow

the program to match these representations in future retrievals. Limiting the complexity and

semantic content of the justifications, combined with SIROCCO’s much more extensive set of

actions and events, made it possible to represent many more cases over a wide variety of topics.

Unlike either GREBE or SWALE, SIROCCO has been empirically shown, in this dissertation, to

have the capability to successfully address a relatively wide variety of cases. On the other hand,

because of the limited semantic content of its justifications, SIROCCO is not capable of

producing detailed analyses of fact situations, in contrast to GREBE and SWALE.

SIROCCO’s case-acquisition web site (www.pitt.edu/~bmclaren/ethics) was an attempt to

address the knowledge-acquisition bottleneck that is inherent in any AI system that relies heavily

on knowledge representation. SIROCCO’s web site addresses the bottleneck in a number of

ways. First, publishing the tool on the Internet provides easy and convenient access to many

people who are geographically dispersed. Second, providing a user’s guide and tutorial helps to

44 Here I am referring only to justifications provided manually by a case enterer. There are, of course, other CBR
programs that use program-generated justification structures to help guide reasoning [Veloso, 1992; Hinrichs, 1992].

187

clarify and explain the use of each of the language components. Third, supplying numerous

example transcriptions (47 in total) that are heavily cross-referenced by the components they use,

encourages a measure of consistency in the case representations. Fourth, providing a predefined

template for transcribing the analysis representation of each case, available by download from the

web site, eases the burden of manual case entry. Finally, supplying the complete lists of all the

Actions, Events, Actors, Objects, and Time Qualifiers allows the case enterer to access any

language component using simple point-and-click.

6.1.4. The Application of the Computational Model to a Wide Range of Cases

SIROCCO addresses a wide range of cases within the engineering ethics domain. As has

been discussed, the program was developed with a focus on cases within the Selected Topics

group (i.e., those cases that cite at least one code related to one of the following areas: public

safety, confidential information, duty to employer, credit for engineering work, proprietary

interests, and honesty in reports and public statements) of the engineering ethics domain.

However, a fair number of cases from outside this core group, specifically 50 foundational cases

and 14 trial cases, were also represented and tested in SIROCCO. The Non-Selected Topics

cases involved issues such as conflicts of interest, criticizing other engineers, and competence.

As evidence that SIROCCO is at least competent in addressing the Non-Selected Topics cases,

the results of Experiment #1 showed that the difference between the mean F-Measures for

Selected Topics trial cases and Non-Selected Topics trial cases was not great.

As discussed in Chapter 5, the capability to address a wide range of cases separates

SIROCCO from earlier interpretive CBR systems such as HYPO [Ashley, 1990] and CATO

[Aleven, 1997], which handled trade secrets cases exclusively; GREBE [Branting, 1991], which

reasoned only about workers’ compensation cases; CABARET [Rissland and Skalak, 1991],

which processed only home-office tax deduction cases; and BankXX [Rissland et al., 1996],

which handled only Chapter 13 personal bankruptcy cases. Although topics in the legal domain

and topics in engineering ethics are somewhat disparate, it seems apparent that the topical area of

each of the earlier systems is much narrower than the full set of Selected Topics. If one considers

that SIROCCO has also been shown to address cases outside the Selected Topics group, it is clear

that SIROCCO provides a wider domain coverage, at least for purposes of intelligent retrieval.

This is not to say that the earlier systems were somehow representationally and

architecturally incapable of handling a wider range of cases. For instance, Aleven claims that

CATO “is not specific to trade secrets law” [1997, p. 41], and it is easy to see how CATO’s

Factor Hierarchy has the flexibility to be applied to topical areas outside of trade secrets law.

188

However, it is certainly true that none of the earlier interpretive CBR systems actually

demonstrated coverage of a wider domain, as is done with SIROCCO in this dissertation (see

Section 4.2.1 and the discussion of Figure 4-8).

The earlier systems were constrained in breadth of coverage by the fact that they were all

intended to provide more detailed support for argumentation than SIROCCO does. This is one of

the trade-offs inherent in widening domain coverage. That is, there is a natural tension between

developing a representation that is deep in particular and specialized knowledge, for instance, of

argumentation, and a representation that is more broadly applicable to a wider range of situations

but is not as capable of providing deep and detailed analysis information.

SIROCCO’s wider breadth of coverage is at least partly due to its language and case-

acquisition tool. The language provides enough general-purpose primitives to allow it to be

applied to a variety of engineering ethics scenarios. As mentioned above, the use of the tool

supports a measure of consistency in representation that allows one to address a wider range of

cases and matching criteria.

6.1.5. The Implementation and Testing of a Computational Model That Uses
Temporal Knowledge to Support Retrieval and Analysis

The overall assessment of the NSPE BER foundational cases, from which SIROCCO’s

architecture was influenced and designed, appeared to indicate that temporal knowledge played

an integral role in the way the board decided many of its cases. In fact, in Chapter 2, several

examples were presented and discussed in which the review board used temporal knowledge to

analyze and decide a case. In addition, an example of how temporal knowledge was actually used

by SIROCCO to correctly abstain from suggesting a code was presented in Section 3.3. This

example illustrated that temporal knowledge can make a difference in the computational model’s

retrieval and analysis.

Unfortunately, the experiments, specifically Experiment #3, did not support the thesis that

temporal knowledge assists SIROCCO in making accurate predictions of the principles and past

cases that are relevant to the analysis of new cases. Specifically, the experiment showed that

there was a negligible difference in the accuracy of standard SIROCCO run over the 58 trial cases

versus a version of SIROCCO that did not employ temporal knowledge over the same cases.

Again, at least it did not make things worse, however.

A number of reasons were posited as to why SIROCCO’s temporal knowledge did not make

a difference in the experiment. First, there may have simply been too many trial cases that did

not involve temporal considerations. Second, uniform characteristics of the Facts, such as their

189

typical temporal location in a Fact Chronology or their prima facie connection to relevant codes,

may have sabotaged the flexibility and power of SIROCCO’s use of temporal knowledge. Third,

inaccuracies in the temporal knowledge transcribed by the independent case enterers may have

played a role. Finally, the specific representation and implementation of temporal reasoning

within SIROCCO may have been the cause of this finding. For instance, the representational

scheme of SIROCCO lacks a way for the case enterer to designate certain temporal relations as

more important than other temporal relations. More than likely, some combination of all of these

reasons underlie SIROCCO’s failure.

SIROCCO represents one of the few reported attempts to factor temporal considerations into

the retrieval process of a case-based reasoner. Case-based planning systems, such as

CAPLAN/CBC [Muñoz-Avila and Huellen, 1995], PRODIGY/ANALOGY [Veloso, 1992], and

CHEF [Hammond, 1989] involve temporal sequencing in the solutions they generate, store and

retrieve, but the retrieval indices of such systems consist of elements such as goals, partial

ordering between the goals, and initial state descriptions, not the temporal relations between

individual steps, as in SIROCCO. Another way to describe this distinction is as follows: the

solution sought by a planning system is a set of temporally related steps, while the solution

sought be SIROCCO is an analysis of a given set of temporally related steps.

One existing CBR system that uses temporally related steps to assist in retrieval is

BROADWAY, a world-wide web browsing advisor [Jaczynski and Trousse, 1998].

BROADWAY uses a current sequence of browsed pages as indices into a case base of previous

browsing sessions, represented as time-extended situations, to advise a user on what to do next.

This system uses much simpler temporal constraints (i.e., before, after) than SIROCCO, but a

more general architecture that performs matching of the Allen primitives underlies the application

[Jaczynski, 1997].

Vila and Yoshino have developed a formal model of temporal reasoning in the legal domain

[1998]. Although their work is somewhat preliminary and not directly applied to case-based

reasoning, it may provide a formal foundation for future interpretive CBR systems.

6.2. Lessons Learned and Limitations of SIROCCO

In this section, various lessons learned and limitations of the dissertation project are

discussed.

As discussed above, a central contribution of the SIROCCO project has been the use of a

limited language for representing cases. However, the use of such a language does not come

without problems. For instance, as reported in Chapter 4, some of the NSPE BER cases simply

190

could not be transcribed into the language. One of the key reasons for this difficulty was that

some fact situations did not involve only or primarily actions or events. For instance, several

cases focused on the language of a contract between an engineer and a client or an engineer and

his employer, while other cases dealt with the language used in engineering advertisements.

Since these types of situations do not involve actions or events (other than, perhaps, the writing of

the document or advertisement), it was not clear how they should or could be modeled in EETL.

Clearly, a language that better accounts for fact situations that do not contain actions and events

would have been advantageous. For instance, the language could have been supplemented with

components describing what documents say, perhaps using some of the language components

(i.e., speech acts) described by Anne Gardner [1987].

Another problem, mentioned earlier, is the difficulty for case enterers to correctly define the

temporal relationships between actions and events. For this issue, it would have been helpful to

have an interactive visual display depicting the current temporal relationships of a case, similar to

that depicted in Figure 3-9. The visual display would automatically update, using the

TIMELOGIC propagation scheme as its basis, when the case enterer adds a new Fact or modifies

an existing Fact. Such a function might have improved the quality and accuracy of the Time

Qualifiers submitted by the case enterers and made a difference in Experiment #3, which tested

the effects of temporal knowledge.

In general, the case-acquisition scheme could have been more robust. In particular, the

template used for entering cases could have been made interactive, automatically correcting

syntax and simple semantic errors, allowing the user to move Facts from one position to another,

providing access to all of the language components, and so on. Also, a capability to iteratively

define a case and retrieve relevant codes and cases based on partial case descriptions could be a

useful addition to both the case-acquisition process and to end-user retrievals. Such a capability

would provide the user with a clear sense of how the addition of individual Facts, or groups of

Facts, affect SIROCCO’s retrieval and analysis process.

These “tool” issues highlight one of the key characteristics of a representation-intensive

approach: a heavy reliance on the ability of humans to transcribe textual cases into the limited

language. A fundamental question logically follows from this: Is a representation-intensive

approach viable, considering the advances in representation-free full-text retrieval? There is no

arguing the fact that representing cases is labor intensive. The case enterers on the SIROCCO

project reported that it took, on average, 2 to 3 hours to transcribe a single source case (i.e.,

representing both a Fact Chronology and the review board’s analysis) into the form usable by the

191

program45. In addition, the imprecision that is introduced in such an interpretation process, due

both to human error and to limitations in the expressiveness of the language, is cause for concern.

This is especially a concern because a full-text retrieval approach does not require any

representation and does not introduce the extra layer of subjective interpretation.

On the other hand, there are clearly advantages to the manual representation approach. For

instance, this dissertation provides compelling evidence that the manual representation approach

can result in more-accurate performance. In particular, it was shown that SIROCCO significantly

outperformed MG, the pure full-text retrieval system, and even outperformed EXTENDED-MG,

the full-text retrieval system augmented with an operationalization technique. In addition, the

explanatory capabilities of SIROCCO, which rely on the manual representation of both the facts

and the rationales, provide potentially relevant and important information that is simply not

available from a full-text retrieval system. Finally, SIROCCO, as currently constituted, may

provide a better fit for its ultimate goals as a retrieval tool for an engineer and as a retrieval

component in an intelligent tutoring system. As a retrieval tool for an engineer, SIROCCO’s

explanatory capabilities are critical. It is hard to imagine a user putting much faith in such a

system if it provides no explanation of its function. In a tutoring system, the goal is for

engineering students to use SIROCCO interactively to analyze and explore cases. Asking the

student to provide manual case representations is intended, in part, to have pedagogical value. In

particular, thinking through the actions and events of a scenario, and the chronology of those

actions and events, may help the student to better understand the relevant facts. SIROCCO’s

explanatory capabilities are also likely to be critical for tutoring.

In general, the answer to the question of whether a representation-intensive approach is

viable, particularly in comparison to full-text retrieval, likely rests on the purposes intended for

the program. If one desires a system that can simply provide a quick possible answer, with

minimal effort on the part of the user, then full-text retrieval is clearly a better choice. If, on the

other hand, one desires a system that can explain its actions and provides an opportunity for the

user to analyze and dissect a problem into its constituent steps, a representational approach to the

problem, such as that embodied by SIROCCO, may be preferable.

45 Note, however, the case enterers also said that the majority of their time was spent transcribing each case’s analysis
representation. Representing the facts as a Fact Chronology did not take nearly so long. A typical user would not need
to represent the analysis, only the facts. Thus, source cases typically take much longer to transcribe than target cases.
The analysis representations probably take more time because (a) the analysis portion of the case texts are typically
much longer than the fact descriptions, (b) the analysis representations are more of an abstraction of the text and,
therefore, require more time to interpret, and (c) the board’s analyses are much less consistent than the fact descriptions
from case-to-case.

192

It may be feasible to combine the representation-intensive and full-text retrieval approaches

to take advantage of the respective benefits of each. For instance, both approaches could be

applied to a target case and the results of one method, say full-text retrieval, could be used to

verify the results of the other. Since it is relatively cheap to use full-text retrieval, not much

additional human or computing resource would be expended, but an additional validating data

point would be gained. And, by deploying the representation-intensive approach in such a

scenario, one is able to obtain explanations of the retrieved codes and cases.

Recent work in textual CBR also shows promise in this area. Steffi Brüninghaus and Kevin

Ashley have developed a system called SMILE that takes a small set of manually represented

legal cases and automatically assigns indices for a larger set of textual cases [1999]. SIROCCO’s

ontology, the hierarchies and database of represented cases provide a valuable resource for

experimenting with these techniques in the engineering ethics domain.

Another lesson learned in the course of the dissertation work concerns the viability of a two-

phase algorithm. Karl Branting identified a potential problem with two-phase algorithms [1992],

by evaluating several programs and building his own method, called match refinement by

structural difference links (MRSDL). In particular, he points out that the success of such an

approach hinges on the size of the set of initial candidates. If the size of the set is too small, then

similar cases may not be found. On the other hand, if the size of the set is too large, then the

computational expense of structural mapping increases prohibitively.

In SIROCCO’s architecture this problem does not appear to exist. Recall that the results of

Experiment #5 showed that N = 6 (SIROCCO’s initial candidates list) was the optimal value for

selecting initial candidates. N > 6 not only increased run time but also decreased SIROCCO’s

accuracy. This occurs for a couple of reasons. First, SIROCCO, unlike other two-stage

algorithms, such as MAC/FAC [Forbus et al., 1994] and ARCS [Thagard et al., 1990], is not

designed to find the single best analog. Rather, it uses its selection heuristics to suggest codes

and cases from a set of well-matched analogs (i.e., the initial candidates list). What is critical is

that there are at least reasonable matches in the candidates list and that there is some agreement in

citations with those candidates. Second, as was illustrated in Section 3.1.5, SIROCCO has

selection heuristics that allow it to cite cases (and codes cited by those cases) that were not in the

original list of candidate cases. This was shown in the example of Chapter 3 when Case 84-5-1

was cited, even though it was not in the original list. Thus, the original candidates list is not as

essential to SIROCCO’s selections as it is to other two-stage algorithms.

Finally, the results of the temporal experiment (i.e., Experiment #3) do not dissuade me from

the potential importance of temporal relations in the retrieval process of a case-based reasoner.

193

Most previous work in CBR has either assumed instantaneous situation descriptions, represented

as attribute-value pairs, or abstracted away the temporal information, for instance, by defining

factors or other structures that summarize situation characteristics. However, the world that we

live in is temporally continuous and a great number of interesting problems to address require

some understanding of temporal sequence and overlap of actions and events. For instance, in the

domain of engineering ethics, one may have a moral obligation to report a public safety hazard,

but not before one learns of the risk. Important and interesting problems such as this make it hard

to imagine the field of case-based reasoning advancing without addressing the issue of how

temporal knowledge can be incorporated into a computational model.

6.3. Future Research Directions

In this section some possible future research directions are discussed.

6.3.1. Improving the Performance of SIROCCO

There are a variety of changes and enhancements that could be made to SIROCCO to

potentially improve its performance. Possibilities arise from the discussion in Section 3.1.2, in

which it was mentioned that a number of the components of SIROCCO’s knowledge

representation were not used by the retrieval and analysis algorithms. Finding a way to gainfully

exploit at least some of the unused components might make a difference in the program’s

accuracy and qualitative suggestions. Most of the unused components were not used because it

was not obviously clear how they might be incorporated into SIROCCO’s algorithm. However,

it might be worthwhile to experiment with some possibilities. For example, distinctions in the

importance of Facts, represented by the Fact Modifiers “partially,” “substantially,” “limited,” and

“extensive,” could be incorporated into SIROCCO’s Stage 2 algorithm to strengthen or weaken

structural mappings. Distinctions in the importance of Code and Case Instantiations, represented

by the importance levels “more importance” and “less importance,” could influence SIROCCO’s

selection heuristics in proposing codes, cases, and additional suggestions. Performing at least

limited structural mapping between Internal Fact-Phrases, i.e., those fact structures that are nested

within Facts, may also provide some benefit.

Clearly, the program did not meet expectations regarding the secondary thesis, so a number

of changes relevant to temporal reasoning could also be explored. Clues to what could be

changed are discussed in Section 4.3.2. For instance, currently SIROCCO treats all instances of

Time Qualifiers as equal. However, just as particular Facts of a chronology are more important

than others, it is also true that particular Time Qualifiers are more important than others. Thus, a

194

scheme in which Time Qualifiers can be designated as more crucial, leading to greater or lesser

match scores, might be helpful. Another possible change related to weighting the Time Qualifiers

would involve the development of a capability to override SIROCCO’s default approach of

accumulating evidence in support of particular codes and cases. In particular, there may be

instances in which a temporal match (or mismatch) completely outweighs the combined evidence

from a variety of other case or code matches. Thus, the development of an exception handler, or

specialized heuristics, within SIROCCO’s Analyzer might be fruitful.

6.3.2. Using SIROCCO to Support Intelligent Tutoring

One of the stated long-term goals of this research is to incorporate SIROCCO into an

intelligent tutoring system as a retrieval component. SIROCCO could be valuable in a number of

ways.

First, students need to learn to read cases carefully. The exercise of representing a narrative

case into an ordered set of actions and events would likely help the student to focus reading. In

addition, by studying the general types of available Fact Primitives – a necessary activity in

successfully transcribing cases – the student may gain some understanding of the types of facts

that matter.

Second, a problem represented as a Fact Chronology could be used to retrieve relevant codes

and past cases. Perhaps the student could make his or her own suggestions of relevant codes and

cases before invoking SIROCCO and then compare those suggestions to SIROCCO’s retrieved

codes and cases.

Third, SIROCCO’s explanatory capabilities could help focus students on the Critical Facts of

a given target case. By examining the Fact mappings displayed when SIROCCO compares the

target to Code and Case Instantiations of source cases, the student could discern the most relevant

Facts. SIROCCO’s additional suggestions could also be helpful in this regard. For instance, if

the program suggests that a pair of codes might conflict in the context of the present case, the

student could examine the Facts associated with those conflicting codes to determine which are

most central to the conflict.

Finally, SIROCCO could be used to support a line-drawing exercise. Line-drawing is a

moral analysis technique in which scenarios are situated on a continuum ranging from “clearly

unethical” to “clearly ethical.” [Harris et al., 1999, p. 60]. The idea is to determine where an

input case lies on this continuum by comparing and contrasting it to other cases on the

continuum. The student could use SIROCCO’s code and case suggestions to help in placing an

input case, and variations of that case, on a continuum and thereby gain a greater understanding

195

of how the case and variations differ. By modifying the Facts in the Fact Chronology of the input

case, i.e., adding or deleting Facts or changing Time Qualifiers, a student could perform a series

of retrievals and observe how the possibly relevant codes, cases, and suggestions change. (The

proposed iterative case-description capability, discussed in Section 6.2, could support the rapid

definition of a group of variant cases.) Although SIROCCO does not suggest a conclusion (i.e.,

ethical, unethical, or a qualified “middle” solution) to help with this process, the retrieved

citations would provide clues on where each variation should reside on the continuum.

6.3.3. Developing Tools for Mapping Case Texts to the Ethics Transcription
Language

The usability of SIROCCO would improve dramatically if there were a way to more easily

provide target cases to SIROCCO, i.e., to map case texts into ETL. As has been discussed, the

process of interpreting a source case and transcribing that case into EETL is time-consuming.

Transcribing a target case, i.e., the facts only, is significantly less time-consuming than

transcribing a source case, but the effort involved is still non-trivial. Although on one hand this is

useful, as it encourages the user, perhaps a student, to think carefully about the relevant facts of a

case, on the other hand, it is somewhat tedious. A middle-ground solution might be to provide

tools that perform some automated translation of the text with the user having to edit the

translations into a final form.

For instance, one could imagine a tool that takes every sentence of a case text and searches

SIROCCO’s Action/Event Hierarchy for the Fact Primitive that most closely matches the primary

verb of that sentence. A grammar checker, combined with a thesaurus, could handle such a task.

The resulting set of matching Fact Primitives would then be presented to the user as an ordered

list of Facts with as much Actor and Object information filled in as the system is able to discern.

Of course, such output would be only a rough approximation of an appropriate Fact Chronology.

The user would still have to correctly designate Actors and Objects and decide which Facts are

worthy of inclusion in the chronology, which Facts should be Internal Fact-Phrases, etc. But

certainly such a tool could save considerable time in creating target cases to provide to

SIROCCO.

Textual CBR, discussed above, could be of benefit in this area. SIROCCO’s knowledge

representation should help research in building programs that deal directly with textual ethics

cases, just as CATO’s representation helped SMILE address textual legal cases [Brüninghaus and

Ashley, 1999].

196

6.3.4. Evaluating the Generality of SIROCCO and the Operationalization
Techniques

A final research direction is to evaluate the generality of SIROCCO and the

operationalization techniques by applying the computational model to different domains. There

are, of course, constraints on the types of domains in which the model would be applicable. For

instance, a candidate domain would be required to have, at minimum: (1) a documented set of

codes, theories, principles, or policies and (2) a recorded set of cases, each of which includes a

fact description, at least one question about the fact description, an outcome, and an analysis of

the fact description that includes citations to the codes, theories, principles, policies, and other

cases. One would also need to verify that the operationalization techniques discussed in this

dissertation are used in the new domain. Finally, the engineering ethics ontology would need to

be extended to include new Fact Primitives, Actors, and Objects that are relevant to the new

domain. An estimated one-third to one-half of the existing components, those that are not

specific to engineering, would likely carry over to most domains.

A natural domain to address is the law. In particular, might the list of operationalization

techniques and tools for knowledge representation generated during this dissertation project

provide any new insights into or techniques for retrieval of legal texts? Clearly the legal domain

satisfies the minimum applicability constraints because it provides published laws, theories, and

decided legal cases. Many of the operationalization techniques also appear to be used in legal

reasoning. For instance, there is little doubt that Code and Case Instantiations are relevant, as it

is institutionalized within the legal profession to interpret the facts of a new case in light of

established laws and precedent cases. If one or more subdomains of the law were chosen as the

focus, such as worker’s compensation, tax law, and trade secrets, it might be feasible to extend

ETL appropriately to cover a wide number of fact situations.

A more unusual domain to address is “social etiquette” or “pop psychology.” Take, for

instance, the published rules of etiquette and the many letters answered by “Miss Manners”

[Martin, 1998] over the years or the common sense rules for dealing with family and personal

conflicts in “Dear Abby” [Van Buren, 1989]. Trivial subdomains perhaps, but these are a major

step toward the commonsense domains that AI has so long hankered to conquer. Arguably, these

data sources satisfy the minimum applicability constraints. Usually, Miss Manners explicitly

refers to specific rules of etiquette in her responses to letters, and she clearly cites, at least

implicitly, the rules of etiquette and at least occasionally references her past letters and responses.

Abby is somewhat less specific in referencing rules. Whether the operationalization techniques

are applicable in these domains is an empirical question, but there is at least some reason to

197

believe that they are. Clearly Miss Manners interprets the rules of etiquette for her readers.

Often the letters center on a conflict of the rules, and Miss Manners suggests resolutions to those

conflicts. Probably the most difficult task in applying SIROCCO to this domain would be in

extending ETL. The types of personal situations addressed in such commonsense domains are

clearly quite variable, thus leading to the need for a wide range of actions, events, actors, and

objects.

A more serious and potentially applicable domain is government and political decision

making. For instance, Neustadt and May explore how politicians sometimes employ historical

precedence and analogy in their decision making [1986]. An example they provide is the 1962

Cuban missile crisis and how President Kennedy and his advisors discussed strategy, in part, by

arguing about whether a decision to abruptly attack Cuba could be considered analogous to

Japan’s bombing of Pearl Harbor during World War II. Holyoak and Thagard discuss a more

recent example of this type of political reasoning in which President George Bush justified the

1991 attack on Iraq and Saddam Hussein by evoking an analogy to World War II Germany and

Hitler [1995, p. 101-109]. The difficulty in applying SIROCCO to such a domain would be, first,

to identify the general policies and rules that guide such decision making, especially over time, by

different administrations, and even by different governments and, second, to acquire enough

documented cases and analyses that clearly involve those policies and rules. Finally, as with the

other possible domains, it would be necessary to verify that the operationalization techniques are,

in fact, applied in such a domain.

Appendices

199

Appendix A: SIROCCO’s Complete Knowledge Representation

A.1. The Ethics Transcription Language (ETL)

A.1.1. The Action/Event Hierarchy

The Action/Event Hierarchy for the engineering ethics domain is shown in its entirety below.

Fact Primitives are displayed in italics, prefaced with two asterisks (**). If a Fact Primitive has

multiple forms, all forms are shown, separated by vertical bars (|). Fact abstraction categories are

shown in roman type, prefaced with the hierarchy level in angle brackets. A Fact Primitive may

reside in multiple fact abstraction categories.

<1> Obtain-Maintain-or-Alter-Engineering-Employment-or-Work-Status
<2> Pursue-Professional-Engineering-Employment-or-Services

<3> Seek-Employment-or-to-Employ
<4> Seek-Employment-By-Engineer

** seeks-employment-in
** seeks-employment-with
** is-successful-finding-work-in
** writes-resume-to-emphasize-experience-in
** writes-resume-listing-the-achievement

<4> Seek-to-Employ-By-Employer
** seeks-to-employ
** seeks-to-employ-an-engineer-in
** conducts-an-extensive-employment-search-for

<3> Seek-to-Provide-or-Obtain-Professional-Engineering-Services
<4> Seek-to-Provide-Professional-Engineering-Services

** offers-services-to | offers-services-to-for
** submits-a-proposal-to-for
** develops-proposal-for

<4> Seek-to-Obtain-Professional-Engineering-Services
** seeks-to-hire-the-services-of | seeks-to-hire-the-services-of-for
** seeks-to-hire-the-services-of-an-engineer-in
** develops-request-for-proposals-for
** requests-proposals-for | requests-proposals-from-for

<2> Handle-an-Offer-of-Professional-Engineering-Employment-or-Services
<3> Offer-Accept-or-Refuse-Employment

** is-offered-employment-by
** accepts-an-offer-of-employment-from
** asks-to-start-employment-with-at-time

<3> Accept-or-Refuse-Offer-to-Perform-Professional-Engineering-Services
** agrees-to-perform-services-for

<2> Work-as-an-Employed-or-Contract-Professional-Engineer
** employs | employs-as
** hires-the-services-of | hires-the-services-of-as | hires-the-services-of-for
** is-retained-by-as-a-technical-consultant-for-a-legal-or-arbitration-proceeding

<2> Stop-Work-as-an-Employed-or-Contract-Professional-Engineer
<3> Suspend-Professional-Employment

200

** is-on-paid-leave-from
** is-on-unpaid-leave-from

<3> Terminate-Professional-Engineering-Employment-or-Services
<4> Terminate-Employment-By-Employee

** resigns-employment-with
** retires-from
** submits-resignation-to

<4> Terminate-Employment-By-Employer
** terminates-employment-of
** is-informed-of-termination-by

<4> Inform-of-Termination-of-Employment
** submits-resignation-to
** is-informed-of-termination-by

<4> Terminate-Services-By-Engineer-or-Firm
** completes-services-for
** terminates-services-for

<4> Terminate-Services-By-Client
** terminates-the-services-of
** is-terminated-by-as-a-technical-consultant-for-a-legal-or-arbitration-proceeding

<1> Strike-or-Protest-against-an-Employer
** participates-in-a-strike-against
** participates-in-a-protest-regarding

<1> Possess-an-Engineering-Qualification
<2> Specialize-or-Provide-Experience-in-a-Particular-Field-of-Engineering

** specializes-in
** has-experience-in
** is-a-key-engineering-employee-of

<2> Work-as-a-Registered-Engineer
** is-a-registered-engineer | is-a-registered-engineer-in

<2> Possess-an-Academic-Engineering-Degree
** has-a-Bachelors-degree | has-a-Bachelors-degree-in | has-a-Bachelors-degree-from | has-a-

Bachelors-degree-in-from
** has-a-Masters-degree | has-a-Masters-degree-in | has-a-Masters-degree-from | has-a-

Masters-degree-in-from
** has-a-professional-degree | has-a-professional-degree-in | has-a-professional-degree-from |

has-a-professional-degree-in-from
** has-a-PhD-degree | has-a-PhD-degree-in | has-a-PhD-degree-from | has-a-PhD-degree-in-

from

<1> Have-Problems-with-Engineering-Registration
** has-engineering-registration-revoked-because
** warns-that-engineering-license-could-be-revoked-if

<1> Participate-in-an-Engineering-Society
** is-engineering-society-member-of
** is-engineering-society-president-of

<1> Work-or-Study-in-an-Academic-Environment
<2> Work-as-a-Student-in-an-Academic-Environment

** is-an-engineering-graduate-student | is-an-engineering-graduate-student-at
** takes-an-academic-course-with

<2> Work-as-a-Teacher-in-an-Academic-Environment
** is-an-engineering-faculty-member | is-an-engineering-faculty-member-at

201

<1> Start-or-Own-an-Engineering-Business-or-Joint-Venture
<2> Own-an-Engineering-Company-or-Joint-Venture

** founds-the-company
** buys-the-company
** owns-the-company
** keeps-the-company-name
** forms-a-joint-venture-with

<2> Propose-or-Start-a-Joint-Venture
** proposes-a-joint-venture-with
** forms-a-joint-venture-with

<1> Declare-Personal-or-Company-Bankruptcy
** declares-bankruptcy

<1> Perform-Professional-Engineering-Services-or-Work
<2> Perform-Technical-Engineering-Work

<3> Perform-Miscellaneous-Engineering-Work
** provides-engineering-services-on | provides-engineering-services-on-for
** in-his-capacity-as-takes-the-action

<3> Perform-Engineering-Design-or-Analysis-Work
** designs
** redesigns
** reviews-and-analyzes

<3> Perform-Engineering-Analysis-Review-or-Testing-Work
** reviews-and-analyzes
** inspects
** performs-test | performs-test-on
** collects-test-samples-from
** records-the-existence-of

<3> Propose-an-Engineering-Solution
** proposes-the-solution | proposes-the-solution-as

<3> Perform-Material-Removal
** removes-material-from

<3> Perform-Engineering-Approval-Work
** approves-the-plan
** signs-the-plan-or-report
** issues-permit

<2> Write-an-Engineering-Related-Document-Article-or-Paper
** writes-paper/article | writes-paper/article-about
** publishes-in
** includes-the-information-in

<2> Engage-in-Negotiations-for-Engineering-Work
<3> Negotiate-for-Engineering-Work

** negotiates-with-for
<3> Terminate-Negotiations

** reaches-a-negotiating-impasse-with
** terminates-negotiations-with-regarding

<3> Assist-in-Negotiations
** offers-to-mediate-the-dispute-between-and
** mediates-the-dispute-between-and

<2> Develop-or-Request-an-Engineering-Proposal
<3> Develop/Submit-an-Engineering-Proposal

** develops-proposal-for
** submits-a-proposal-to-for

202

<3> Request-an-Engineering-Proposal
** develops-request-for-proposals-for
** requests-proposals-for | requests-proposals-from-for

<2> Manage-in-an-Engineering-Environment
<3> Manage-People-in-an-Engineering-Environment

** supervises
** heads-the-company
** owns-the-company

<3> Manage-Projects-in-an-Engineering-Environment
** is-responsible-for
** heads-the-company
** owns-the-company

<2> Perform-Engineering-Research
<3> Publish-Engineering-Research

** performs-research
** writes-paper/article
** publishes-in

<3> Deal-with-Engineering-Research-Data
** finds-research-data
** is-supportive-research-data-for
** includes-the-information-in

<2> Advertise-Solicit-or-Market-an-Engineering-Product-Project-or-Work
<3> Market-or-Advertise-an-Engineering-Product

** markets-products-to
<3> Solicit-Engineering-Projects-or-Work

** advertises-or-solicits-engineering-business-using
** offers-services-to | offers-services-to-for

<3> Organize-Deliver-or-Attend-an-Engineering-Event-or-Seminar
** organizes-event
** invites-to-event
** carries-out-event
** provides-as-part-of-the-event
** attends-event

<3> Receive-Publicity-for-Engineering-Services
** receives-favorable-publicity-for

<2> Enter-an-Engineering-Design-Competition
** enters-design-competition-using
** wins-design-competition
** enters-design-competition-against

<2> Manufacture-Construct-or-Ship-an-Engineering-Artifact
<3> Manufacture-or-Construct-an-Engineering-Artifact

** manufactures
** constructs

<3> Ship-an-Engineering-Artifact
** ships-to

<1> Perform-Nonprofessional-Work
** performs-nonprofessional-duties-for

<1> Engage-in-a-Professional-Engineering-Relationship
<2> Engage-in-an-Adversarial-Engineering-Relationship

** are-competitors
<2> Engage-in-a-Collaborative-Engineering-Relationship

** is-a-member-of

203

<1> Engage-in-Civic-Activity
** participates-in-a-protest-regarding
** petitions-for

<1> Engage-in-Political-Activity
<2> Run-For-Or-Hold-a-Political-Office-or-Appointment

<3> Run-For-Political-Office
** runs-for-political-office | runs-for-political-office-in
** are-competitors-for-the-same-political-office

<3> Hold-Political-Office
** is-an-elected-official-of

<3> Hold-Political-Appointment
** serves-as

<2> Terminate-Political-Office-or-Appointment
** ends-political-service-for

<2> Give-a-Political-Contribution
** is-asked-for-a-political-contribution-by | is-asked-for-a-political-contribution-of-by | is-

asked-for-a-political-contribution-for-by
** gives-a-political-contribution | gives-a-political-contribution-of

<2> Set-Limits-on-Political-Contributions
** is-the-maximum-possible-political-contribution

<1> Engage-in-Legal-or-Arbitration-Activity
<2> Initiate-Legal-or-Arbitration-Proceedings

** calls-a-hearing-regarding
** petitions-for
** files-a-lawsuit-or-arbitration-action-against | files-a-lawsuit-or-arbitration-action-against-

because
<2> Reach-a-Conclusion-in-Legal-or-Arbitration-Proceedings

** loses-a-lawsuit-or-arbitration-action-against
<2> Provide-Expert-Consultation-in-a-Legal-or-Arbitration-Proceeding

<3> Start-Expert-Consultation-in-a-Legal-or-Arbitration-Proceeding
** is-retained-by-as-a-technical-consultant-for-a-legal-or-arbitration-proceeding

<3> Terminate-Expert-Consultation-in-a-Legal-or-Arbitration-Proceeding
** is-terminated-by-as-a-technical-consultant-for-a-legal-or-arbitration-proceeding

<2> Provide-Testimony-in-a-Legal-or-Arbitration-Proceeding
<3> Provide-Expert-Testimony

** agrees-to-provide-expert-testimony-for | agrees-to-provide-expert-testimony-for-
regarding

** provides-expert-testimony-for | provides-expert-testimony-for-regarding
<3> Provide-Witness-Testimony

** agrees-to-testify-regarding
** testifies-that

<2> Has-Legal-Representation
** is-legally-represented-by

<1> Give-or-Claim-Credit-for-Engineering-Work
<2> Give-Credit-for-Engineering-Work

** gives-credit-to
<2> Claim-Credit-for-Engineering-Work

** claims-credit-for

<1> Give-or-Accept-a-Gift
<2> Give-a-Gift

** offers-to

204

** gives-a-gift-of-to
** gives-a-political-contribution-to | gives-a-political-contribution-of-to
** gives-to

<2> Accept-a-Gift
** accepts-a-gift-of-from

<1> Give-Receive-or-Request-Remuneration
<2> Give/Receive-Remuneration

** pays-for
** offers-to-pay-for

<2> Request-Remuneration
** requests-payment-from-for
** requests-additional-payment-from | requests-additional-payment-from-for

<2> Reject-a-Request-for-Remuneration
** rejects-the-request-for-payment-from
** rejects-the-request-for-additional-payment-from

<1> Ascribe-Quality-to-Engineering-Work
** provides-high-quality-engineering-work
** provides-average-quality-engineering-work
** provides-low-quality-engineering-work

<1> Disclose-or-Withhold-Information
<2> Disclose-Information

** informs-that
** reminds-that
** disseminates-to
** is-permitted-to-disseminate-to
** claims-that

<2> Withhold-Information
** withholds-information-from-regarding
** provides-limited-information-to-regarding

<1> Request-or-Provide-Engineering-Advice
<2> Request-Engineering-Advice

** requests-engineering-advice-from | requests-engineering-advice-from-for
<2> Provide-Engineering-Advice

** provides-engineering-advice-to | provides-engineering-advice-to-regarding
** provides-a-favorable-recommendation-of | provides-a-favorable-recommendation-of-to |

provides-a-favorable-recommendation-of-as
** provides-an-unfavorable-recommendation-of | provides-an-unfavorable-recommendation-

of-to | provides-an-unfavorable-recommendation-of-because | provides-an-unfavorable-
recommendation-of-to-because

<1> Request-Provide-or-Withhold-a-Recommendation
<2> Request-a-Recommendation

** requests-a-recommendation-regarding-from
<2> Provide-a-Recommendation

** provides-a-favorable-recommendation-of | provides-a-favorable-recommendation-of-to |
provides-a-favorable-recommendation-of-as

** provides-an-unfavorable-recommendation-of | provides-an-unfavorable-recommendation-
of-to | provides-an-unfavorable-recommendation-of-because | provides-an-unfavorable-
recommendation-of-to-because

** recommends-products-for
<2> Withholds-Recommendation

205

** withholds-recommendation-of | withholds-recommendation-of-to

<1> Give-or-Receive-Criticism
<2> Criticize-or-Accuse

** criticizes | criticizes-to
** accuses-of-unethical-behavior | accuses-of-unethical-behavior-because
** has-substantive-evidence-for-the-accusation

<2> Receive-Reprimand-for-Wrongdoing
** is-found-guilty-of-unethical-behavior | is-found-guilty-of-unethical-behavior-by | is-found-

guilty-of-unethical-behavior-because | is-found-guilty-of-unethical-behavior-by-because
** is-publicly-reprimanded-for | is-publicly-reprimanded-by-for

<1> Request-or-Order-Something
<2> Request-Something

** asks-for
<2> Order-Subordinate-to-Perform-Task

** instructs-to
<2> Refuse-Request

** refuses-the-request-by-to
** objects-to

<1> Deal-with-Disputes-or-Contentious-Issues
<2> Deal-with-Agreements-or-Disagreements

<3> Agree-About-a-Fact
** consents-to
** agrees-with-regarding

<3> Disagree-About-a-Fact
** objects-to

<2> Deal-with-a-Dispute
<3> Apologize-Regarding-Dispute

** apologizes-to-regarding
<3> Mediate-Dispute-Between-Engineers

** offers-to-mediate-the-dispute-between-and
** mediates-the-dispute-between-and

<1> Deal-with-Official-Policies-or-Written-Agreements
** has-a-policy-that
** has-a-policy-that-may-not-provide-engineering-services-on-projects-to-be-approved-by
** has-an-agreement-with-prohibiting-work-for-other-clients
** signs-the-agreement-with

<1> Relate-Engineering-Artifacts-to-One-Another
<2> Relate-Similar-or-Encompassing-Engineering-Artifacts

** are-largely-identical-to-one-another
** is-part-of-the-engineering-product-or-artifact
** is-based-upon

<2> Relate-Different-or-Competing-Engineering-Artifacts
** are-competing-products
** provides-a-comparison-of
** is-a-lower-standard-than

<2> Relate-Engineering-Projects-to-One-Another
** is-a-work-segment-of-the-engineering-project

<1> Relate-the-Physical-Location-of-One-Object-or-Actor-to-Another
<2> Specify-Location-of-Residence

206

** resides-in
** resides-next-to

<2> Specify-Location-of-Work
** practices-in

<2> Specify-Physical-Proximity
** is-located-next-to

<1> Transfer-Possession-of-an-Object
** gives-to
** disseminates-to

<1> Own-or-Purchase-Something
<2> Own-Something

** owns
** owns-facility

<2> Purchase-or-Pay-for-Something
** purchases-from
** pays-for
** offers-to-pay-for

<1> Deal-with-Dangers-Hazards-or-Injuries
<2> Deal-with-Known-Dangers-or-Hazards

** A-failure-of-would-be-hazardous-to-safety
** fails-standards-and-is-hazardous-to-safety
** is-a-safety-hazard | is-a-safety-hazard-due-to
** is-hazardous-material

<2> Deal-with-Potential-Dangers-or-Hazards
** A-failure-of-might-be-hazardous-to-safety
** fails-standards-and-may-be-hazardous-to-safety
** may-be-hazardous-to-safety | may-be-hazardous-to-safety-due-to
** may-be-hazardous-material

<2> Inform-others-about-Dangers-or-Hazards-Real-or-Potential
** should-be-informed-about-the-hazard-or-potential-hazard

<2> Endure-an-Accident-or-Injury
** sustains-an-injury
** is-involved-in-an-accident

<1> Assess-the-Value-of-an-Object
** is-worth | is-worth-to

<1> Assess-the-Results-of-a-Test
** fails

<1> Know-Believe-or-Expect-Something
<2> Know-or-Believe-Something

** knows
** discovers-that
** believes | believes-because

<2> Expect-Something
** expects-in-the-future

207

A.1.2. The Actors and Objects Hierarchy

The Actors and objects Hierarchy for the engineering ethics domain is shown in its entirety

below. The Actors branch of the hierarchy is shown on the left; the Objects branch of the

hierarchy is shown on the right. The leaves of the hierarchy are the general types that can be used

in case transcriptions.

<1> Actor <1> Object
<2> Individual-Engineering-Role <2> Field-Within-Engineering

<3> Engineer <3> Generic-Engineering
<3> Principal-Engineer <3> Specialized-Type-of-Engineering
<3> Engineering-Manager <3> Engineering-Management
<3> Engineering-Technician <2> Engineering-Work-Object
<3> Engineer-In-Training <3> Engineering-Artifact
<3> President-or-Director-of-

Engineering-Firm
<3> Engineering-Project
<3> Design-Work

<2> Group-Engineering-Role <3> Test-Samples
<3> Engineering-Firm <3> Test
<3> Team-of-Engineers <2> Construction-Work-Object
<3> Engineering-Society <3> Construction-Work
<3> Merger-of-Engineering-

Organizations
<3> Construction-Supervision
<3> Construction-Permit

<3> Engineering-Registration-Board <2> Research-Object
<2> Client-Role <3> Engineering-Research

<3> Client <3> Research-References
<3> Client-Firm <3> Research-Data

<2> Commercial-Role <3> Research-Paper
<3> Business-Leader <2> Paper-Letter-or-Document
<3> Labor-Union <3> Technical-Report
<3> Employment-Agency <3> Evaluation-Report
<3> Engineering-Supplier <3> Published-Article
<3> Commercial-Organization <3> An-Engineering-Magazine
<3> Newspaper-Company <3> A-Newspaper

<2> Manufacturing-Role <3> Proposal
<3> Manufacturing-Firm <3> Design-Document
<3> Workers-at-a-Manufacturing-Firm <3> Legal-Employment-Agreement

<2> Construction-Role <3> Letter
<3> Development-or-Construction-

Firm <2> Object-Belonging-to-an-Actor
<3> Construction-Contractor <3> House

<2> Academic-Role <3> Real-Estate
<3> Group-Academic-Role <3> Investments

<4> University-or-College <3> Facility-or-Site
<4> Unaccredited-College-or-

University
<2> Educational-Object

<3> Technical-Curriculum
<4> Technical-School <3> Educational-Seminar-or-Course
<4> University-or-College-

Committee
<2> Names-of-Things

<3> An-Engineering-Firms-Name

208

<4> Academic-Accrediting-
Team

<2> Design-Issue

<3> Individual-Academic-Role <3> Design-Errors
<4> Graduate-Student <3> Design-Philosophy

<4> University-or-College-
Professor

<2> Gift-or-Contribution
<3> Tangible-Favor

<4> Authority-at-University-or-
College

<2> Time
<3> Period-of-Time

<2> Government-or-Political-Role <3> Absolute-Time
<3> Government-Role <2> Money

<4> Governmental-Body <3> Cost-of-Work
<4> Government-Authority <3> Amount-of-Money

<3> Political-Role <3> Range-of-Money
<4> Political-Office-Holder
<4> Political-Candidate
<4> Political-Party

<2> Legal-Role
<3> Attorney
<3> Law-Firm
<3> Plaintiff
<3> Defendant
<3> Court-of-Law-or-Arbitration-

Board
<2> Public-Role

<3> General-Public
<3> Charitable-Organization
<3> Public-Action-Committee
<3> Community-Leader

209

A.1.3. Time Qualifiers

The Time Qualifiers and an explanation of how each is used are provided below. These

explanations are slightly edited versions of those provided to case enterers on the case-acquisition

web site. Note that whenever “Event” is mentioned in the table, this could refer to either an

action or an event, i.e., a Fact in a Fact Chronology.

Time Qualifier Explanation of Use

Pre-existing fact

Intended Use: This is a special-case qualifier intended primarily to
handle general conditions that hold over the course of a scenario. That is,
if there are certain events (i.e., Facts) that are true (or start) before the
beginning of the facts of a story, this qualifier is used to denote such
facts. Note that this qualifier is different from all of the others in that it
relates to all other Facts of the scenario (except others that are also "Pre-
existing fact"), and it typically relates to Facts that occur at a later time.
What is known:
° Event A starts before the start of every other event in the scenario,

except other events with the qualifier "Pre-existing fact"
° This is essentially the inverse of "After the start of …" except that it

assumes a temporal relationship between Event A and all other
events.

What is not necessarily known:
° All that is known is that Event A starts before all of the other events.

Event A could conceivably: conclude before the start of other events,
subsume the duration of other events, or overlap with the other events.

After the start of ...

Intended Use: Use this qualifier when the only information known is the
relative starting time of two events, i.e., that Event B starts after the start
of Event A.
What is known:
° Event B clearly starts after the start of Event A.
What is not necessarily known:
° How long after the start of Event A Event B starts.

Subsumed Qualifier: "[X time] after the start of…"
° Whether Event B starts after the conclusion of Event A.

Subsumed Qualifier: "After the conclusion of…"
° Whether Event B starts immediately after the conclusion of Event A.
 Subsumed Qualifier: "Immediately after the conclusion of…"
° If Event B starts after the conclusion of Event A, how long after the

conclusion of Event A.
Subsumed Qualifier: "[X time] after the conclusion of…"

° Whether Event B overlaps with the ending of Event A.
Subsumed Qualifier: "Ends…”

210

Time Qualifier Explanation of Use

Starts at the same time as ...

Intended Use: Use this qualifier when the only information known is that
Events A and B start at the same time. If it is also known that Events A
and B occur over precisely the same time period, use the more specific
qualifier "Occurs concurrently with…" If it is also known that Event A
has a longer duration than Event B, i.e., that Event A subsumes Event B,
use the qualifier "Occurs during…" / "Occurs as part of …"
What is known:
° Event B clearly starts at the same time that Event A starts.
What is not necessarily known:
° Whether Event B and Event A have precisely the same duration

Related Qualifier: "Occurs concurrently with…"
° Whether Event B occurs during Event A, whether Event A occurs

Event B.
Overlapping Qualifier: "Occurs during…" / "Occurs as part of …"

<X time> after the start of ...

Intended Use: Use this qualifier when the following information is
known: (1) Event B starts after the start of Event A and (2) the specific
amount of time between the start of Event B and the start of Event A. If it
is also known that Event A subsumes Event B, use the more specific
qualifier "Occurs during…" / "Occurs as part of …"
What is known:
° Event B starts a specific amount of time after Event A starts.
° There is some overlap in the durations of Events B and A. That is, it is

known that Event B doesn't start after the conclusion of Event A.
What is not necessarily known:
° Whether Event B occurs strictly during Event A or whether Event B

concludes later than A concludes.
Overlapping Qualifier: "Occurs during…" / "Occurs as part of …"

After the conclusion of ...

Intended Use: Use this qualifier when the only information known is that
Event B starts after the conclusion of Event A. If it is also known that
Event B starts immediately after the conclusion of Event A, use the more
specific qualifier "Immediately after the conclusion of …" If it is also
known that Event B starts a specified amount of time after the conclusion
of Event A, use the more specific qualifier "[X time] after the conclusion
of…"
What is known:
° Event B clearly starts after the conclusion of Event A.
What is not necessarily known:
° Whether Event B starts immediately after the conclusion of Event A.
 Subsumed Qualifier: "Immediately after the conclusion of…"
° Specifically how long after the conclusion of Event A Event B starts.

Subsumed Qualifier: "[X time] after the conclusion of…"

211

Time Qualifier Explanation of Use

Immediately after the conclusion of ...

Intended Use: Use this qualifier when it is known that Event B starts
immediately after the conclusion of Event A. If the only information
known is that Event B starts sometime after the conclusion of Event A
(i.e., it is not known whether Event B starts immediately after Event A)
use the more general qualifier "After the conclusion of …"
What is known:
° Event B starts immediately after the conclusion of Event A.
What is not necessarily known:
° Nothing. This qualifier fully specifies the temporal relationship

between Events A and B.

<X time> after the conclusion of ...

Intended Use: Use this qualifier when it is known that Event B starts a
specific amount of time after the conclusion of Event A. If the only
information known is that Event B starts after the conclusion of Event A
(i.e., the specific time lag between Event B and Event A is not known),
use the more general qualifier "After the conclusion of …"
What is known:
° Event B starts a specific amount of time after the conclusion of Event

A.
What is not necessarily known:
° Nothing. This qualifier fully specifies the temporal relationship

between Events A and B.

Ends ...

Intended Use: Use this qualifier when Event B signifies, or triggers, the
end of Event A. For instance, use it in the following situation:
 1. Engineer A <is employed by> Company X.
 2. Engineer A <resigns from> Company X. Ends 1
Typically, the type of "terminating event" represented by 2, above, cannot
be specifically defined as occurring before, during, or after the
"terminated event." But the duration of the "terminating event" clearly
overlaps, in some way, with the end time of the "terminated event."
What is known:
° Event B starts after the start of Event A.
° Event B either finishes, meets, or overlaps with the conclusion of

Event A.
What is not necessarily known:
° Whether Event B starts after the conclusion of Event A.
 Overlapping Qualifier: "After the conclusion of…"
 Subsumed Qualifier: "Immediately after the conclusion of…"
° Whether Event B occurs during Event A.
 Overlapping Qualifier: "Occurs during…" / "Occurs as part of…"

212

Time Qualifier Explanation of Use

Occurs during ... / Occurs as part of ...

Intended Use: Use this qualifier when it is known that Event B occurs
during, or as part of, Event A. Two possible phrasings are provided
because there are some situations in which "during" is the more
appropriate phrasing and other situations in which "part of" is the more
appropriate phrasing. This qualifier should be favored over 3 of the 4
qualifiers that overlap with it, i.e., "Starts at the same time as …", "[X
time] after the start of …", and "After the start of …" In particular, if the
relationship between the start times of Events B and A is known, but it is
also known that Event B occurs fully within the duration of Event A, the
"Occurs during…" / "Occurs as part of…" qualifier should be used
instead of the other possible qualifiers. The only exception is the "Ends"
qualifier. The "Ends" qualifier should always be used in cases in which
one event logically demarcates the termination of another.
What is known:
° The duration of Event B occurs within (or as part of) the duration of

Event A.
° Event B does not occur concurrently with Event A.
What is not necessarily known:
° Whether Event B starts at the same time as Event A.
 Overlapping Qualifier: "Starts at the same time as …"
° Whether Event B concludes at the same time that Event A concludes.
 Overlapping Qualifiers: "Ends …", "[X time] after the start of …",

"After the start of…"

Occurs concurrently with ...

Intended Use: Use this qualifier when it is known that Events B and A
occur over precisely the same time period and are equal in duration.
What is known:
° The duration of Event B occurs at the same time as and is equivalent

to Event A.
What is not necessarily known:
° Nothing. This qualifier fully and unambiguously specifies the

temporal relationship between Events A and B.

213

A.2. The Extended Ethics Transcription Language (EETL)

The following two tables summarize the values that may be used in the code and case tables

of the analysis representation.

Code Table Values

Column Heading Possible Values

Code The code number cited by the review board in their analysis of the case.

Code Status

Violated: The code is violated in the current case.
Not Violated: The code is not violated in the current case.
Not Applicable: The code is not applicable in the current case.
Changed: The code was changed prior to the decision in the current case or will change as a

result of the current case.
Unknown: The status of the code in the current case is unknown.

How Cited Explicitly Discussed: The review board explicitly discusses the code in their analysis of the
current case.

Referenced Only: The code is cited by the review board, but not discussed, in the analysis of
the current case.

Grouped With Other codes cited by the review board that are grouped with this code.

Overrides Other codes cited by the review board that are overridden by this code.

Why Relevant?

A statement or statements expressing why this code is relevant to the current case. Each
statement is linked to at least one of the following:
A Fact number (from the Fact Chronology): The Fact or Facts from the chronology that

support the statement.
Hypo: A hypothetical was posed to support the statement. A quotation from the review

board’s analysis is also supplied.
Unstated Assumption: The statement appears to be supported by an unstated assumption on

the part of the board.
Inference Based on Facts: The statement can be inferred from other facts of the case.

Why Violated,
Not Violated,
Changed, or
Not Applicable?

A statement or statements expressing why this code is violated, not violated, or not applicable
in the context of the current case. Each statement is linked to at least one of the following:
A Fact number (from the Fact Chronology): The Fact or Facts from the chronology that

support the statement.
Hypo: A hypothetical was posed to support the statement. A quotation from the review

board’s analysis is also supplied.
Unstated Assumption: The statement appears to be supported by an unstated assumption on

the part of the board.
Inference Based on Facts: The statement can be inferred from other facts of the case.

214

Case Table Values

Column Heading Possible Values

Case The fact situation number cited by the review board in their analysis of the case.

Citation Type

Analogous Precedent: The cited case is analogous to the current case.
Distinguishing Precedent: The cited case is analogous to the current case, but has at least one

critical characteristic distinguishing it from the current case.
Relevant, But Not Controlling: The cited case is relevant, perhaps to highlight a relevant issue

or to provide background information, but it is not analogous.
Unknown: The cited case’s relationship to the current case is unknown.

How Cited Explicitly Discussed: The review board explicitly discusses the code in their analysis of the
current case.

Referenced Only: The code is cited by the review board, but not discussed, in the analysis of
the current case.

Grouped With Other cases cited by the review board that are grouped with this case.

Q# The question number of the cited fact situation. The value of the “Case” column concatenated
with this column provides the full case name of the cited case.

Why Relevant?

A statement or statements expressing why this case is relevant to the current case. Each
statement is linked to at least one of the following:
A Fact number (from the Fact Chronology): The Fact or Facts from the chronology that

support the statement.
Hypo: A hypothetical was posed to support the statement. A quotation from the review

board’s analysis is also supplied.
Unstated Assumption: The statement appears to be supported by an unstated assumption on

the part of the board.
Inference Based on Facts: The statement can be inferred from other facts of the case.

Why Distinguished
or Analogous?

A statement or statements expressing why this case is distinguished from or analogous to the
current case. Each statement is linked to at least one of the following:
A Fact number (from the Fact Chronology): The Fact or Facts from the chronology that

support the statement.
Hypo: A hypothetical was posed to support the statement. A quotation from the review

board’s analysis is also supplied.
Unstated Assumption: The statement appears to be supported by an unstated assumption on

the part of the board.
Inference Based on Facts: The statement can be inferred from other facts of the case.

215

A.3. The Code Hierarchy

The NSPE BER Code Hierarchy is shown in its entirety below. Code names are displayed in

italics, followed by the text of the code. Code abstraction categories are shown in roman type,

prefaced with the hierarchy level in angle brackets. A Code may reside in multiple code

abstraction categories. A code that has been previously defined in another abstraction category is

indicated by the text “(see …)” after the code name.

<1> Importance-of-Engineering-Code-of-Ethics
Code Preamble. Engineering is an important and learned profession. The members of the profession recognize
that their work has a direct and vital impact on the quality of life for all people. Accordingly, the services
provided by engineers require honesty, impartiality, fairness and equity, and must be dedicated to the protection
of the public health, safety and welfare. In the practice of their profession, engineers must perform under a
standard of professional behavior which requires adherence to the highest principles of ethical conduct on behalf
of the public, clients, employers and the profession.

<1> Questionable-Associations-with-Others
Code II.1.d. Engineers shall not permit the use of their name or firm name nor associate in business ventures
with any person or firm which they have reason to believe is engaging in fraudulent or dishonest business or
professional practices.
Code III.9.b. Engineers shall not use association with a nonengineer, a corporation, or partnership as a "cloak"
for unethical acts, but must accept personal responsibility for all professional acts.

<1> Competence
Code II.2.b. Engineers shall not affix their signatures to any plans or documents dealing with subject matter in
which they lack competence, nor to any plan or document not prepared under their direction and control.
Code II.2.c. Engineers may accept assignments and assume responsibility for coordination of an entire project
and sign and seal the engineering documents for the entire project, provided that each technical segment is signed
and sealed only by the qualified engineers who prepared the segment.
Code II.3.b. Engineers may express publicly a professional opinion on technical subjects only when that opinion
is founded upon adequate knowledge of the facts and competence in the subject matter.
<2> Qualifications-for-Work

Code I.2. Engineers, in the fulfillment of their professional duties, shall perform services only in areas of
their competence.
Code II.2. Engineers shall perform services only in the areas of their competence.
Code II.2.a. Engineers shall undertake assignments only when qualified by education or experience in the
specific technical fields involved.

<1> Duty-to-Public-Safety
Code I.1. Engineers, in the fulfillment of their professional duties, shall hold paramount the safety, health and
welfare of the public in the performance of their professional duties.
Code II.1. Engineers shall hold paramount the safety, health and welfare of the public in the performance of their
professional duties.
Code II.1.a. Engineers shall at all times recognize that their primary obligation is to protect the safety, health,
property and welfare of the public. If their professional judgment is overruled under circumstances where the
safety, health, property or welfare of the public are endangered, they shall notify their employer or client and
such other authority as may be appropriate.
Code II.1.b. Engineers shall approve only those engineering documents which are safe for public health,
property and welfare in conformity with accepted standards.
Code III.2. Engineers shall at all times strive to serve the public interest.
Code III.2.a. Engineers shall seek opportunities to be of constructive service in civic affairs and work for the
advancement of the safety, health and well-being of their community.

216

Code III.2.b. Engineers shall not complete, sign or seal plans and/or specifications that are not of a design safe to
the public health and welfare and in conformity with accepted engineering standards. If the client or employer
insists on such unprofessional conduct, they shall notify the proper authorities and withdraw from further service
on the project.

<1> Community-Service-and-Civic-Affairs
Code III.2. (see “Duty-to-Public-Safety”)
Code III.2.a. (see “Duty-to-Public-Safety”)
Code III.2.c. Engineers shall endeavor to extend public knowledge and appreciation of engineering and its
achievements and to protect the engineering profession from misrepresentation and misunderstanding.

<1> Confidential-Information
Code II.1.c. Engineers shall not reveal facts, data or information obtained in a professional capacity without the
prior consent of the client or employer except as authorized or required by law or this Code.
Code III.4. Engineers shall not disclose confidential information concerning the business affairs or technical
processes of any present or former client or employer without his consent.
Code III.4.a. Engineers in the employ of others shall not without the consent of all interested parties enter
promotional efforts or negotiations for work or make arrangements for other employment as a principal or to
practice in connection with a specific project for which the Engineer has gained particular and specialized
knowledge.
Code III.4.b. Engineers shall not, without the consent of all interested parties, participate in or represent an
adversary interest in connection with a specific project or proceeding in which the Engineer has gained particular
specialized knowledge on behalf of a former client or employer.

<1> Conflict-of-Interest
Code II.3.c. Engineers shall issue no statements, criticisms or arguments on technical matters which are inspired
or paid for by interested parties, unless they have prefaced their comments by explicitly identifying the interested
parties on whose behalf they are speaking, and by revealing the existence of any interest the engineers may have
in the matters.
Code II.4.a. Engineers shall disclose all known or potential conflicts of interest to their employers or clients by
promptly informing them of any business association, interest, or other circumstances which could influence or
appear to influence their judgment or the quality of their services.
Code III.4.a. (see “Confidential-Information”)
Code III.4.b. (see “Confidential-Information”)
Code III.5. Engineers shall not be influenced in their professional duties by conflicting interests.
<2> Conflict-of-Interest-Related-to-Compensation

Code II.4.b. Engineers shall not accept compensation, financial or otherwise, from more than one party for
services on the same project, or for services pertaining to the same project, unless the circumstances are
fully disclosed to, and agreed to by, all interested parties.
Code II.4.c. Engineers shall not solicit or accept financial or other valuable consideration directly or
indirectly, from contractors, their agents, or other parties in connection with work for employers or clients
for which they are responsible.
Code III.5.a. Engineers shall not accept financial or other considerations, including free engineering
designs, from material or equipment suppliers for specifying their product.
Code III.5.b. Engineers shall not accept commissions or allowances, directly or indirectly, from
contractors or other parties dealing with clients or employers of the Engineer in connection with work for
which the Engineer is responsible.
Code III.7.a. Engineers shall not request, propose, or accept a professional commission on a contingent
basis under circumstances in which their professional judgment may be compromised.

<2> Conflict-of-Interest-Between-Public-and-Private-Roles
Code II.4.d. Engineers in public service as members, advisors or employees of a governmental or quasi-
governmental body or department shall not participate in decisions with respect to professional services
solicited or provided by them or their organizations in private or public engineering practice.
Code II.4.e. Engineers shall not solicit or accept a professional contract from a governmental body on
which a principal or officer of their organization serves as a member.

<1> Credit-for-Engineering-Work

217

Code III.3.c. Consistent with the foregoing (i.e., III.3.a.), Engineers may prepare articles for the lay or technical
press, but such articles shall not imply credit to the author for work performed by others.
Code III.10. Engineers shall give credit for engineering work to those to whom credit is due, and will recognize
the proprietary interests of others.
Code III.10.a. Engineers shall, whenever possible, name the person or persons who may be individually
responsible for designs, inventions, writings, or other accomplishments.
Code III.10.c. Engineers, before undertaking work for others in connection with which the Engineer may make
improvements, plans, designs, inventions, or other records which may justify copyrights or patents, should enter
into a positive agreement regarding ownership.

<1> Duty-to-Disclose
Code II.4.a. (see “Conflict-of-Interest”)
Code III.1.a. Engineers shall admit and accept their own errors when proven wrong and refrain from distorting
or altering the facts in an attempt to justify their decisions.
Code III.1.b. Engineers shall advise their clients or employers when they believe a project will not be successful.

<1> Duty-to-Employer
Code I.4. Engineers, in the fulfillment of their professional duties, shall act in professional matters for each
employer or client as faithful agents or trustees.
Code II.4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees.
Code III.1.e. Engineers shall not actively participate in strikes, picket lines, or other collective coercive action.
<2> Outside-Employment/Moonlighting

Code III.1.c. Engineers shall not accept outside employment to the detriment of their regular work or
interest. Before accepting any outside employment they will notify their employers.
Code III.7.b. Engineers in salaried positions shall accept part-time engineering work only to the extent
consistent with policies of the employer and in accordance with ethical considerations.
Code III.7.c. Engineers shall not use equipment, supplies, laboratory, or office facilities of an employer to
carry on outside private practice without consent.

<1> Truthfulness-and-Honesty
Code II.3.a. Engineers shall be objective and truthful in professional reports, statements or testimony. They shall
include all relevant and pertinent information in such reports, statements or testimony.
<2> Honesty-in-Advertising

Code I.5. Engineers, in the fulfillment of their professional duties, shall avoid deceptive acts in the
solicitation of professional employment.
Code II.5. Engineers shall avoid deceptive acts in the solicitation of professional employment.
Code II.5.a. Engineers shall not falsify or permit misrepresentation of their, or their associates', academic
or professional qualifications. They shall not misrepresent or exaggerate their degree of responsibility in or
for the subject matter of prior assignments. Brochures or other presentations incident to the solicitation of
employment shall not misrepresent pertinent facts concerning employers, employees, associates, joint
venturers or past accomplishments with the intent and purpose of enhancing their qualifications and their
work.
Code III.3.a. Engineers shall avoid the use of statements containing a material misrepresentation of fact or
omitting a material fact necessary to keep statements from being misleading or intended or likely to create
an unjustified expectation, or statements containing prediction of future success.

<2> Honesty-in-Public-Statements
Code I.3. Engineers, in the fulfillment of their professional duties, shall issue public statements only in an
objective and truthful manner.
Code II.3. Engineers shall issue public statements only in an objective and truthful manner.
Code II.3.b. (see “Competence”)
Code III.3. Engineers shall avoid all conduct or practice which is likely to discredit the profession or
deceive the public.

<2> Honesty-in-Criticism-of-Other-Engineers
Code II.3.c. (see “Conflict-of-Interest”)
Code III.7. Engineers shall not attempt to obtain employment or advancement or professional
engagements by untruthfully criticizing other engineers, or by other improper or questionable methods.

218

Code III.8. Engineers shall not attempt to injure, maliciously or falsely, directly or indirectly, the
professional reputation, prospects, practice or employment of other engineers, nor untruthfully criticize
other engineers' work. Engineers who believe others are guilty of unethical or illegal practice shall present
such information to the proper authority for action.

<2> Honesty-in-the-Hiring-of-Engineers
Code III.11.e. Engineers shall provide a prospective engineering employee with complete information on
working conditions and proposed status of employment, and after employment will keep employees
informed of any changes.
<3> Recruiting-Engineer-from-Another-Engineer

Code III.1.d. Engineers shall not attempt to attract an engineer from another employer by false or
misleading pretenses.
Code III.3.b. Consistent with the foregoing (i.e. III.3.a.), Engineers may advertise for recruitment of
personnel.

<1> General-Integrity
Code III.1. Engineers shall be guided in all their professional relations by the highest standards of integrity.

<1> Gifts-and-Political-Contributions
Code II.4.c. (see “Conflict-of-Interest”)
Code II.5.b. Engineers shall not offer, give, solicit or receive, either directly or indirectly, any political
contribution in an amount intended to influence the award of a contract by public authority, or which may be
reasonably construed by the public of having the effect or intent to influence the award of a contract. They shall
not offer any gift, or other valuable consideration in order to secure work. They shall not pay a commission,
percentage or brokerage fee in order to secure work except to a bona fide employee or bona fide established
commercial or marketing agencies retained by them.

<1> Encouraging-Professional-Development
Code III.11. Engineers shall cooperate in extending the effectiveness of the profession by interchanging
information and experience with other engineers and students, and will endeavor to provide opportunity for the
professional development and advancement of engineers under their supervision.
Code III.11.a. Engineers shall encourage engineering employees' efforts to improve their education.
Code III.11.b. Engineers shall encourage engineering employees to attend and present papers at professional and
technical society meetings.

<1> Professional-Responsibility
Code III.9. Engineers shall accept personal responsibility for their professional activities; provided, however,
that Engineers may seek indemnification for professional services arising out of their practice for other than gross
negligence, where the Engineer's interests cannot otherwise be protected.
Code III.9.b. (see “Questionable-Associations-with-Others”)
Code III.10. (see “Credit-for-Engineering-Work”)

<1> Ownership-of-Engineering-Info
Code III.10.b. Engineers using designs supplied by a client recognize that the designs remain the property of the
client and may not be duplicated by the Engineer for others without express permission.
Code III.10.c. (see “Credit-for-Engineering-Work”)
Code III.10.d. Engineers' designs, data, records, and notes referring exclusively to an employer's work are the
employer's property.

<1> Registration-Laws
Code III.9.a. Engineers shall conform with state registration laws in the practice of engineering.
Code III.11.c. Engineers shall urge engineering employees to become registered at the earliest possible date.

<1> Remuneration
Code III.6. Engineers shall uphold the principle of appropriate and adequate compensation for those engaged in
engineering work.
Code III.6.a. Engineers shall not accept remuneration from either an employee or employment agency for giving
employment.
Code III.6.b. Engineers, when employing other engineers, shall offer a salary according to professional
qualifications.
Code III.7.b. (see “Outside-Employment/Moonlighting”)

219

<1> Reviewing-the-Work-of-Other-Engineers
Code III.8. (see “Honesty-in-Criticism-of-Other-Engineers”)
Code III.8.a. Engineers in private practice shall not review the work of another engineer for the same client,
except with the knowledge of such engineer, or unless the connection of such engineer with the work has been
terminated.
Code III.8.b. Engineers in governmental, industrial or educational employ are entitled to review and evaluate the
work of other engineers when so required by their employment duties.
Code III.8.c. Engineers in sales or industrial employ are entitled to make engineering comparisons of represented
products with products of other suppliers.

<1> Self-Promotion
Code III.1.f. Engineers shall avoid any act tending to promote their own interest at the expense of the dignity and
integrity of the profession.
Code III.4.a. (see “Confidential-Information”)
Code III.7. (see “Honesty-in-Criticism-of-Other-Engineers”)

<1> Proper-Utilization-of-Engineering-Workers
Code III.11.d. Engineers shall assign a professional engineer duties of a nature to utilize full training and
experience, insofar as possible, and delegate lesser functions to subprofessionals or to technicians.

<1> Unethical-Practice-by-Others
Code II.1.e. Engineers having knowledge of any alleged violation of this Code shall cooperate with the proper
authorities in furnishing such information or assistance as may be required.
Code III.8. (see “Honesty-in-Criticism-of-Other-Engineers”)

220

Appendix B: The SIROCCO Case-Acquisition Web Site

This appendix provides a brief overview of SIROCCO’s case-acquisition web site, located at

www.pitt.edu/~bmclaren/ethics, and reproduces the participant’s guide portion of the web site.

Figure B-6-1 shows the main page of the site. The primary sections of the site are accessed by a

menu bar found at the top of the main page (and also at the top of the main page of every other

section). An arrow points to the menu bar in Figure B-6-1.

Figure B-6-1: A Screen Shot of the Case-Acquisition Web Site

The purpose of the case-acquisition web site is to support case enterers in transcribing cases

into EETL. A “case representation template,” used for filling in the representation of a single

case, is available from the “Download Library,” shown in the right frame of Figure B-6-1. The

web site consists of the following primary sections:

Primary Sections

221

• The Participant’s Guide: The guide is intended to provide complete instructions on

transcribing cases into EETL. It uses a tutorial approach. The guide traces the

transcription of a single case into the language and explains each step of the

process. The guide is reproduced below.

• Cases: The text of all of the NSPE BER cases, from 1958 through 1998, are

available in this section.

• Examples: Examples of 47 transcribed fact situations are shown in this section.

• Codes: The full set of 75 NSPE BER ethics code provisions (revised in 1981) is

shown in this section.

• Fact Primitives: The Action/Event Hierarchy, i.e., the complete set of Fact

Primitives organized by category, is displayed in this section.

• Actors and objects: The complete set of Actors and Objects is provided in this

section.

• Time Qualifiers: All of the Time Qualifiers, as well as explanations and examples

of each, is shown in this section.

The case-acquisition web site is highly intralinked. For instance, in the participant’s guide,

there are numerous links from the textual explanations of various representational components to

example uses of those components within the 47 transcribed fact situations. Also, each Fact

Primitive, Actor, and Object is linked to every instance of its use in the 47 example transcriptions.

In the following sections, the participant’s guide of the case-acquisition web site is presented

in text format. Items that are hyperlinked to other locations on the web site are underlined and

shown in a lighter font.

Note that the Extended Ethics Transcription Language (EETL) is not mentioned in the guide.

For the case enterers, this is unnecessary information and, therefore, is not provided.

B.1. The Participant’s Guide: An Introduction

Thank you for agreeing to participate in the engineering ethics transcription exercise.

Participation entails reading engineering ethics dilemmas, and transcribing each dilemma using a

restricted, predefined representation language. For each dilemma you will need to:

• Transcribe the text of the scenario into a set of chronological facts.

• Identify the actors (e.g. engineers, clients) and objects (e.g., technical reports,

222

products) involved in each scenario.

• Identify the questioned facts, the actor or actors whose ethical behavior is

questioned, and the conclusion of the dilemma.

• Note the codes and cases cited by the board that led to their conclusion, and

identify why and for what purpose each was cited.

It will take approximately two hours to transcribe each case. You are free to do the work in as

many sessions as you need, and at any time. You are also free to consult with others (although not

other participants in the exercise) or to refer to any written materials. Contact the exercise

coordinator with any questions you may have.

The following documents are a tutorial that will cover all of the skills you will need to

transcribe the cases. Please follow the tutorial all of the way through before attempting to

transcribe any cases on your own. The exercise is complicated, but by understanding each of the

tasks involved, and attempting each in turn, you will have no trouble.

In addition to completing this tutorial, you should study further examples of transcription

work, and maybe try a few practice transcripts. A collection of example transcripts is available

through the Reference Shelf area of this web site.

Before you can begin transcribing, you will need to download the MS Word 6.0 template that

is already set up for transcription. This template facilitates much of the transcript formatting, and

will save you the trouble of creating the transcript format from scratch. Your transcript ultimately

must be submitted as an MS Word 6.0 file, but, if you wish, you may work with a newer version

of Word while developing the transcript.

B.2. Helpful Hints

During this tutorial, and during transcription, some of the following practices may facilitate

your work.

B.2.1. Be Careful with Transcript Structure and Syntax

It is important that you meticulously conform to the required structure, syntax, and special

characters in your transcripts. The required format is discussed in this guide, and you can always

study and refer to the example transcripts if you are unsure about any of the specifics.

A computer program will scan over all of your submitted transcripts, identifying any errors in

structure and syntax. Transcripts with errors will be returned to you for revisions.

223

B.2.2. Contact the Exercise Coordinator if a Case Cannot be Transcribed

The reference materials that are provided to you on this web site should be sufficient to

transcribe virtually every case assigned to you. However, you will occasionally encounter a case

that simply cannot be transcribed with the provided materials, without grossly distorting the facts

of the case. Don't attempt to transcribe such a case. In such a situation, you should promptly

contact the exercise coordinator and alert him to this issue. He will likely assign a new case to

you.

B.2.3. Opening Multiple Browser Windows

Especially during this tutorial, you will need to be able to refer to several documents at once.

While you can achieve this by following links and using your browser's history commands, this

method is somewhat ungainly, and often slow as it forces the browser to reload and redisplay

pages.

You may find it easier to keep several browser windows open at once, each displaying a

different document. Some web browsers have this facility built in. In some browsers instead of

following a link by selecting it with the left mouse button you can open the link in a new window

by selecting the link with the right mouse button (or by holding down the mouse button) and

choosing "Open in New Window" from the menu that appears. You may also be able to run

multiple browsers.

B.2.4. Dealing with Multiple Windows

If you are going to use multiple windows, you may also wish to familiarize yourself with an

easy to way to switch between them. Under MS Windows, for instance, use the Alt and Tab keys

simultaneously to switch between windows you have open.

The ability to switch easily between two or more windows will be very useful during

transcription, as you will need to switch between the browser and MS Word often.

B.2.5. Using "Empty Template Rows" as an Aid in Doing Your Transcriptions

The last section of each transcript is comprised of several tables containing special characters.

To avoid having to repeatedly retype these characters and also as a convenience for rapidly

adding new rows, it is recommended that you always keep one "empty template row" (which is

not actually empty, it will contain special characters) at the end of each table while you are

transcribing a case. Whenever you need to add a new row to the table, simply execute a copy-

and-paste of the empty template row. The transcript template that you will download for the

224

transcription work contains the empty template rows. (Important Note: Be sure to delete the

empty template rows when you are ready to submit the transcript.)

B.2.6. Printing

If your browser does not support multiple windows, if you cannot run multiple browsers, or if

you simply work better with paper, you may wish to print out some of the files from this web site.

In particular you may wish to print out the case used during this tutorial.

This web site does two things that make printing somewhat tricky, however. The first thing is

that larger files (like this guide) have been broken into collections of smaller files to make

browsing quicker. To keep you from having to view and print each section separately, some of

these files have also been collected into single documents. You can find links to these documents

(if they exist) at the bottom of the table of contents for each collection.

The other thing that makes printing tricky is the fact that this web site uses "frames." This site

uses HTML frames to divide your browser window into several parts and display several

documents simultaneously. In order to print one of the displayed documents you must first select

(click in) the frame you wish to print before choosing your browser's "Print" command.

B.3. Reading the Case

The first step in transcribing a case is, of course, reading it. You'll save yourself a fair amount

of time later if you read the case with the intent of transcribing it foremost in your mind, and keep

your eye on the things you will be transcribing.

As you gain more experience transcribing, it may be faster to transcribe and read

simultaneously. In the beginning, it will be more instructive to read the case first and begin

transcribing once you have all of the information ready.

B.3.1. Finding Cases

All of the cases available for transcription are located in the Reference Shelf area of this web

site. For this tutorial, you will be reading and transcribing Case 83-1.

During this tutorial, it will be helpful for you to have this case open in another browser

window. If your browser supports multiple windows open the case in a new window and keep

that window open for the duration of this tutorial. If your browser does not support multiple

windows, or if you cannot run multiple browsers, you may wish to visit Case 83-1 now, print it,

and return to this point.

225

When trying to find cases in the index to all cases, you can use your browser's search function

to search for cases by number or name. Choosing a case from the list will display that case in

your browser, with a reference frame beside the case.

B.3.2. Noting Facts

First, read the "Facts" section of Case 83-1. The facts section relates the scenario as it was

brought to the attention of the board of ethical review (BER). As you read, identify the events,

actors, and objects relevant to the scenario. Determine in what order the events happened.

Determine what people were involved. Determine what objects were involved. Pay attention to

the relationships between all these things, e.g. who did what to whom.

Some of these things, will be obvious. For instance, you can see right away that two people

(Engineers A and B) are involved.

Some facts are not explicitly stated in the text, but will need to be inferred. For instance, in

Case 83-1, it is explicitly stated that "Engineer A thereupon notified clients of Engineer B," but it

may not be obvious that this fact also implies that Engineer B had clients. Look for these implied

and important facts.

You should also notice that the facts of the case are laid out logically, and fairly sequentially.

In most cases, the sentences are short and contain one event or fact per sentence. Also in most

cases, events are presented in the order they occurred.

Lastly, try to identify if any of the facts are not really relevant to the case. The board may

record some facts that, although perhaps interesting, have no real bearing on the case. You do not

want to transcribe these extraneous facts.

B.3.3. Identifying the Question

Following the facts of the case is a list of the actual questions that were brought before the

board. Make sure that you can identify each questioned action as a fact in the chronology, and

which actor's actions are being questioned.

B.3.4. Studying the References

In this section, the board lists specific sections of the NSPE code of ethics that they believe

have bearing on this case. The text of each code is included, but if you need a more detailed

breakdown of how the code works, you can select the code number in the transcript to display a

full representation of the code in the "reference frame", the upper right pane of the window.

226

The board will discuss how these codes relate to the matter at hand, but as you gain more

experience transcribing cases, you may begin to anticipate their arguments.

B.3.5. Analyzing the Discussion

In the "discussion" section of the case, the board members lay out the arguments that lead to a

decision regarding the questioned facts. Make note of where the board is absolutely sure of

something, and where they are making assumptions and judgment calls. Pay attention to which

codes and cases are cited, how they relate to each other, and how they are being used.

It may be useful to refer back to the "Questions" section, and also make note of which parts

of the discussion relate to which questioned facts.

There may also be additional discussion following the conclusion of the board. You are not

responsible for transcribing this additional material. Sometimes this material clarifies the board's

decision, so you may wish to read it anyway. You may also find it interesting.

B.3.6. Noting the Conclusion

There will be one conclusion for each questioned fact. In your transcript, you will need to

note these decisions, and who has been judged to be at fault or not at fault. At this point it may be

useful to refer back to the discussion and determine which arguments were used to support

specific conclusions, which arguments conflict with specific conclusions, and which were used

informationally and neither support nor conflict with specific conclusions.

B.4. Creating the Transcript

Once you have read the text of the case, you are ready to begin creating your transcript of the

case. There are five main steps to creating your transcript.

1. Breaking down the facts into actions and events, and identifying the time

relationships between them.

2. Noting the actors and objects involved in the case, and assigning each a descriptive

type.

3. Summarizing the board's decision of each questioned fact.

4. Listing the codes referred to by the board to reach their decision, and analyzing how

each was used.

227

5. Listing the cases referred to by the board during discussion of the case, and

analyzing how each was used.

This guide will continue to use Case 83-1, as an example, and refer to it often. If you have not

already done so, you may wish to open this case in another browser window, or print it out so that

you can refer to it easily.

B.5. Creating the Fact Chronology

The fact chronology section of the transcript is represented as a table of ordered facts and

time qualifiers. The facts are presented in approximate time order, and the time qualifiers clarify

how the facts relate to each other chronologically. The questioned facts are identified as well.

Each fact comprises one "fact primitive". These fact primitives indicate actions and events.

Sometimes, the fact is simple, and just indicates an actor and an action. Often, the fact indicates a

"subject-verb-object" relationship, describing who did what to whom, or who did what to which

object. Occasionally, the fact relates an actor to another fact.

B.5.1. Choosing Fact Primitives

The next step is to separate the scenario of the case into individual facts. For this task, you'll

need to become familiar with the "fact primitives". The fact primitives are essentially verb

phrases, that indicate the specific actions and events in the fact chronology.

You can review the full list of fact primitives directly, or access it through this site's

Reference Shelf. You may wish to open up the list in a separate browser window while you create

the fact chronology. To make it easier to search the list, the list of basic facts is categorized by

type.

The ellipses (i.e., "…") found in the fact primitives indicate that an actor, object, or possibly

another fact must "fill in the blank." One to three actors, objects, or facts are required by each fact

primitive. For instance, "… <employs> …" requires two actors, one before "<employs>" to

indicate the employer and one after "<employs>" to indicate the employee. An example of this

fact primitive is: "Firm X <employs> Engineer A."

Selecting a fact in the list will cause a detailed description of that fact to display in the

reference frame. The detailed description has several parts.

Event/State Type

The facts are categorized into three types to ensure that time qualifiers are used
consistently. People might interpret the meaning and general duration of the same fact in
different ways. For instance, the fact "Y <employs> X" could be viewed as a short

228

duration event in which X begins employment with Y. It could also be viewed as X's
"state" of employment, something that would probably persist over a long period of time.

Therefore, the facts have an explicit categorization that enables you to be more precise
when defining the time relations between different facts. For example, if you think of "Y
<employs> X" as being a long-term state, then subsequent facts such as "X <designs>
Building" can be viewed as occurring during "Y <employs> X". If you were to think of
"Y <employs> X" as being a short-term "starting" event, then you might view "X
<designs> Building" as occurring after the conclusion of "Y <employs> X". This is an
important difference in time sequence.

Event

An "event" fact primitive has a relatively short duration. Other events can occur
within or overlap with "event" primitives, but typically only a small number of other
primitives will overlap with an event primitive. For instance, the primitive "…
<accepts an offer of employment from> …" is an "event" primitive; it occurs over
a relatively short duration of time (perhaps seconds or minutes) and is not likely to
overlap with many, if any, other primitives.

State

A "state" fact primitive has a relatively long duration. In effect, a "state" primitive
covers both an event and a state. For instance, the primitive "… <employs> …"
entails both the "event" when employment starts, as well as the "state" of being
employed. The "… <employs> …" primitive typically occurs over a relatively long
period of time (probably years, maybe decades) and it is likely to overlap with, or
totally encompass, other events or states.

Event, Typically Terminates

An "event, typically terminates" fact primitive is a special type of event. This
primitive typically (but not necessarily) terminates a state primitive. For instance,
the primitive "… <resigns employment with> …" can be used to terminate the "…
<employs> …" state primitive. These primitives thus typically use an "Ends..." time
qualifier.

It is important that you check to make sure your interpretation of the duration of
each fact you use matches that in the code representation.

Description

The description provides instruction on specific situations that should be described by
this fact primitive. If the situation you are attempting to describe does not match the
description of the primitive, search for a more appropriate one. If a primitive has optional
clauses, their usage is also described.

229

Hint

Some fact primitives have hints that further delineate their usage. If another, more
specific or more general fact would be more appropriate, the hint will indicate this.

Inverse Form

This indicates another form of the primitive that you can use if you wish to transpose the
order of the actors, objects, or facts that surround the fact primitive. For instance, "…
<employs> …" can also be phrased as "(… <is employed by> …)." The inverse form
may provide natural phrasing in your fact chronology.

Plural Form

Since the fact primitives are essentially verb phrases, the conjugation of the verb may be
different if any of the actors/objects/facts are plural. This form shows the primitive is
different for that case.

Negative Form

This form is simply the logical negation of the primitive, for when you want to indicate
the exact opposite situation to that represented by the primitive.

Inv.-Neg. Form

The Inverse Negative form is the logical negation of the inverse form.

Neg.-Plural Form

The Negative Plural form is the logical negation of the plural form.

References

Most (but not all) of the fact primitives are followed by numbers in parentheses (e.g. "58-
1 [1]," "92-6 [1]"). These numbers are cross-references to specific transcriptions in the
Examples that use the primitive. For instance, the number "58-1 [1]" following "…
employs …" means that line number 1 of the fact sequence of Case 58-1 contains the
"employs" fact primitive. Use the cross-references as a way to examine and verify
specific usage of facts.

To choose the fact primitives for the chronology, go through the facts of the case, pick out

actions in the scenario, and match fact primitives to them. The goal is to represent the important

events in the case as accurately as possible, given the limited set of event primitives, actors, and

objects. Sometimes, you may not be able to be completely accurate, but do the best you can.

This part of the tutorial also begins the actual creation of the transcript. Copy the transcript

template to a new document, and name that document "83-1.doc" or something similar. Open the

230

file and enter "83-1" at the top next to the word "Case". Place the cursor in the first cell of the

Fact Chronology table, and begin.

Once again, the facts of Case 83-1 are as follows. You may also wish to refer to the full list of

fact primitives during this exercise.

Fact Situation 83-1:
Engineer A worked for Engineer B. On November 15, 1982 Engineer B notified Engineer A that Engineer B
was going to terminate Engineer A because of lack of work. Engineer A thereupon notified clients of
Engineer B that Engineer A was planning to start another engineering firm and would appreciate being
considered for future work. Meanwhile, Engineer A continued to work for Engineer B for several additional
months after the November termination notice. During that period, Engineer B distributed a previously
printed brochure listing Engineer A as one of Engineer B's key employees, and continued to use the
previously printed brochure with Engineer A's name in it well after Engineer B did in fact terminate Engineer
A.

Question 1: (Case 83-1-1)
Was it ethical for Engineer A to notify clients of Engineer B that Engineer A was planning to start a firm and
would appreciate being considered for future work while still in the employ of Engineer B?

Question 2: (Case 83-1-2)
Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key employee in view of the fact
that Engineer B had given Engineer A a notice of termination?

Question 3: (Case 83-1-3)
Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key employee after Engineer A's
actual termination?

The word "worked" is the key verb in the first sentence. Fact primitives relating to

employment are at the top of the list. Primitives relating to starting employment are in the first

sub-section. The primitive … <employs> … [<as> …] seems to be fairly close to the situation of

this fact. It is a "state" primitive, and will properly represent a period of time during which some

of the other events of this case occur. Select it in the list, and view the detailed information. Since

the description matches this situation, search the forms of the primitive to see if one is close to the

structure of this sentence. The inverse form, … <is employed by> …, matches the structure of

the sentence.

Copy the fact primitive from the browser window (if you decide to type by hand, be sure to

include the "angle braces", i.e., "<" and ""), and paste it into the table as fact number 1. For

readability, you may want to boldface the fact primitive text, as shown below. However, the

boldface formatting is optional. Replace the ellipses in the primitive with the actors you

identified, to create the fact,

1. Engineer A <is employed> by Engineer B.

End your fact with a period.

231

Reading along, you can see that in most cases, the events are presented roughly in

chronological order. The second sentence relates a fact that quite obviously occurs after fact one,

Engineer B informing Engineer A that his employment will be terminated.

In the list of fact primitives, scroll down to the section that contains fact primitives dealing

with "Informing of Termination of Employment". The second primitive in this section, "… <is
informed of termination by> …" correctly relates the employer and employee. Note that this

primitive is an "event". Again, copy the primitive and paste it into the table, then replace the

ellipses with the actors Engineer A and Engineer B to make the second fact in the chronology.

 2. Engineer A <is informed of termination by> Engineer B.

The next sentence illustrates the situation of a single sentence containing two facts, one of

which may not be immediately obvious. The most obvious fact related by this sentence is that

Engineer A offers services to the clients of Engineer B. Since Engineer B has clients, and

Engineer B's clients are central to the case, this is also fact worth noting, although it is not

explicitly stated in its own sentence.

This also brings up another interesting issue. The fact that Engineer has clients obviously

predates the termination notice, so when you enter this fact into the chronology, you will have to

enter it before what is currently fact number two. This is not a problem. Place the cursor in fact

number two, and select the menu command "Table Insert Rows". The rows should automatically

renumber themselves.

If we assume that Engineer B was hired at some point to provide engineering services for

those clients, the most appropriate fact primitive is found in the section, "Starting Work with a

Client," and since "… hires the services of … [as … | for …]" is the only primitive in this section,

the primitive you want must be either that one, or an alternate form of it. You could say that

2. Clients <hire the services of> Engineer B.

but since Engineers A and B are the primary actors in this case, it would be clearer to use the

inverse form of the primitive, yielding

2. Engineer B <is hired to provide services for> Clients.

followed by

3. Engineer A <is informed of termination by> Engineer B.

which is now fact number three. Don't forget to add the obvious fact,

4. Engineer A <offers services to> Clients.

232

It is not always necessary, or even possible, to go through the facts of the case sentence by

sentence, assigning fact primitives to every piece of information. First of all, some of the facts in

the text of the case may not be fully relevant to the ethical dilemma. The next sentence of the case

does not add any relevant factual information and does not need to be transcribed. It does add

some information about the time relationships between some of the facts in the chronology. This

information will come in handy soon.

The last and final sentence is so complex that it actually encompasses three major facts, and

five facts total. We learn that Engineer B distributed a brochure, that Engineer A was eventually

terminated, and Engineer B continued to distribute that brochure. Address the first fact first.

Sometimes, an ellipsis in a fact primitive is not filled by an actor or object, but by another

fact. The next sentence of the case could possibly be represented as a complex relationship

between Engineer B, a brochure, and the information contained within it. This complexity is not

necessary, however, if you transcribe the information as a simple relationship of facts.

What did Engineer B do?

Engineer B distributed a brochure.

Why would Engineer B distribute a brochure?

To attract new business.

What's more important, the brochure itself, or the information contained within it?

The brochure is not described in any great detail, and is not as relevant to the case as idea
that it lists Engineer A as a key employee.

When you replace an ellipsis with another fact, place the secondary fact in parentheses.

5. Engineer B <advertises or solicits engineering business using> (Engineer A <is a
key engineering employee of> Engineer B).

The next thing we know for sure is that Engineer A was eventually terminated.

6. Engineer A <is terminated by> Engineer B.

The last piece of information in the case is that Engineer B continued to solicit new business

using the same outdated brochure. Since the action is essentially the same as it was before

Engineer A's termination, you can copy the earlier structure to create this new fact.

7. Engineer B <advertises or solicits engineering business using> (Engineer A <is a
key engineering employee of> Engineer B).

233

Multiple Objects, Actors, and Internal Facts

Sometimes it will be necessary to fill in the ellipses (i.e., "...") of a fact primitive with a

conjunction of objects, actors, or other facts. If more than one object, actor, or other fact is

required, connect the elements with a series of commas and the conjunction (i.e., "&")

character. (Examples: 64-10 [4, 5, 6, 8], 58-1 [4, 5, 7], 72-4 [4], 77-11 [15, 16, 17])

Using Fact Modifiers

Some facts will need to have "modifiers" attached to them. These modifiers are optional but

sometimes necessary to appropriately express a fact. For instance, if you needed to relate that

Engineer A developed most of a proposal before being terminated, there is a fact primitive that

expresses the development of a proposal, but a modifier is needed to express the incomplete

nature of that proposal. The valid modifiers are:

partially, substantially

Use one of these two modifiers to express that the actor was responsible for a quantifiable
portion of the fact that is either less than half or more than half, respectively. For
instance, in Case 58-1 there is a fact "Engineer X <designs> {partially} Hydroelectric
Plant", indicating that Engineer X did some portion, but not all and probably less than
half, of the design.

limited, extensive

Use one of these two modifiers to express that the actor was responsible for a portion of
the fact that cannot be expressed in a strictly quantifiable way. For instance, in Case 72-
1 1 there is a fact "Engineer Doe <has experience in> {limited} Engineering
Management," indicating that Doe has experience, but the experience is limited in nature.

Include the modifiers in "curly braces." For readability, you may want to use bold-italics text

for the modifier, as shown above. However, the bold-italics formatting is optional.

Indicating Questioned Facts

After identifying the facts and listing them chronologically, you need to indicate which

actions in the fact chronology are being questioned by the board. These facts will need to be

marked in the fact chronology. (Examples: 75-3 [6], 77-11 [13, 14, 15, 17])

If you refer to the "Questions" section of Case 83-1, you can see that there are three

questioned facts.

234

1. Was it ethical for Engineer A to notify clients of Engineer B that Engineer A was
planning to start a firm and would appreciate being considered for future work while
still in the employ of Engineer B?

This question refers fact number four, where Engineer A offers services to the clients. Add the

text "[Questioned Fact 1]" to the table cell that holds fact #4. Surround the text in brackets. For

readability, you may want to use italics for the questioned fact text, as shown above. However,

the italics formatting is optional.

2. Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key
employee in view of the fact that Engineer B had given Engineer A a notice of
termination?

This question refers fact number five, where Engineer B solicits business. Add the text

"[Questioned Fact 2]" to the table cell that holds fact #5.

3. Was it ethical for Engineer B to distribute a brochure listing Engineer A as a key
employee after Engineer A's actual termination?

This question refers fact number seven, where Engineer B continues to use the misleading

brochure. Add the text "[Questioned Fact 3]" to the table cell that holds fact #7.

B.5.2. Choosing Time Qualifiers

Once you have identified the facts, you need to assign qualifiers to those facts to clarify the

time relationships between them. The Time Qualifiers are entered into the second column of the

Fact Chronology table. Basically, each qualifier clarifies the time relationship between the current

fact, and the facts before it.

At this point, you should load the Time Qualifiers list into a new browser window for

reference. Selecting a qualifier from the contents list will move the display to the section of the

document that describes the usage of that qualifier.

The description of each qualifier has four parts that describe its use.

Intended Use

The first section describes in a general way the relationship that this qualifier is meant to
express.

What We Know

The next section describes specifically what information we need to know about the time
relationship between two facts in order to choose this qualifier. If you are not absolutely
sure about the information in this section, another qualifier may be more appropriate.

235

What We Don't Necessarily Know

This section lists information that you may or may not have about the time relationship
between two facts. If you do have one of these pieces of information, the qualifier shown
after it may be more appropriate.

References

The last section contains links to examples that use this qualifier in the fact chronology.
The number or numbers in brackets beside each case number show which facts in that
case use this qualifier.

By double checking the information you have against all the parts of the description of a

qualifier, you can make sure you are using the qualifier that most accurately represents the

relationship.

Each fact in the chronology must have at least one time qualifier. Some facts may have more

than one qualifier. Go through the facts of Case 83-1, and assign qualifiers to each fact.

The ellipses (i.e., "…") found in the time qualifiers indicate that a fact number or numbers

must "fill in the blank." For example, if fact number five ends the state represented by fact

number three, include the qualifier "Ends 3" next to line 5 of the fact chronology.

1. Engineer A <is employed by> Engineer B.

This state begins before any of the actions relevant to the case, and so earns the qualifier,
"Pre-existing fact."

2. Engineer B <is hired to provide services for> Clients.

This state also begins before any of the relevant actions. Since it is immaterial whether
the relationship with the clients begins before or after Engineer A's employment, simply
use "Pre-existing fact" here as well.

3. Engineer A <is informed of termination by> Engineer B.

This event obviously occurs after the start of A's employment, but since we don't know
exactly how long, use the qualifier, "After the start of 1."

4. Engineer A <offers services to> Clients.

The case informs us that it is materially important that this event occurs during A's
employment, and while these clients were still clients of B. Therefore, you must use the
qualifier, "Occurs during 1, 2."

Since you also know that this did not happen until after A was informed of his pending
termination, you also need to include, "After the conclusion of 3."

236

5. Engineer B <advertises or solicits engineering business using> (Engineer A <is a key
engineering employee of> Engineer B).

It is not only relevant that this event occurs during facts one and two, necessitating the
qualifier "Occurs during 1, 2", but that the solicitation occurs after B has informed A of
A's impending termination, so you must include the qualifier "After the conclusion of 3."

6. Engineer A <is terminated by> Engineer B.

It is explicitly stated that this event occurs "for several additional months after the
November termination notice," and so rather than use the generic "After the conclusion of
3," qualifier, use the more specific "Several months after the conclusion of 3."

Also, if you check the representation for this fact primitive, you will see that it is an event
that typically terminates. Even if you don't check, it should be obvious that this event
ends fact number one, so include the qualifier "Ends 1."

7. Engineer B <advertises or solicits engineering business using> (Engineer A <is a key
engineering employee of> Engineer B).

Since it is most relevant that this even occurs after A's actual termination, include the
qualifier, "After the conclusion of 6."

You have now completed the fact chronology section of your transcript. Before you continue,

you should save your transcript file (the Microsoft Word document).

B.6. Listing the Actors and objects

After creating the fact chronology, you must assign actor and object "types" to the proper

names you gave in the chronology. If you identified them before beginning the transcript, you

already have half of this part done.

Start by listing the actors and objects from the fact chronology in the transcript file as a

numbered list under the heading, "Actor and Object Types." As you identified before, there are

three actors in this case, and no objects.

Engineer A

Engineer B

Clients

Then add an "arrow" next to each, made of two dashes and a greater-than symbol.

Engineer A –>

Engineer B –>

Clients –>

237

You will add the type for each actor next to this arrow.

You can review the full list of actor and object types directly, or access it through this site's

Reference Shelf. You may wish to open up the list in a separate browser window while you

complete this section. The contents list in the left half of the window shows the categories of

actor and object types. Select a category in the list to display the actor and object types of that

category in the right half of the window.

B.6.1. Choosing Actor Types

For each actor in the case, find the actor type that most closely describes the actor, and add

the type to the list.

Engineer A

This actor is an individual, so select "Individual Engineering Roles" in the contents list.
Of the six roles, you only have enough information to assign the most general,
"Engineer" role to Engineer A. Copy or enter Engineer next to "Engineer A" in the list.
(Make sure it is displayed in bold type).

Engineer B

While you do know a bit more about Engineer B, (that he hired Engineer A) you do not
know enough to assign a more specific type like "Principal Engineer" or "Engineering
Manager".
As a result, you must again use the actor type, Engineer.

Clients

Select "Client Roles" in the contents list.
Since there is only one client role, "Client Firm" enter that in the list next to "Clients."

The list in your transcript should now look like this:

Engineer A –> Engineer.

Engineer B –> Engineer.

Clients –> Client Firm.

B.6.2. Choosing Object Types

Were there objects in this case, you would need to apply object types to them as well. List the

objects in the same way, with "arrows" after them. Find object types in the list by looking under a

general category, and add the specific object type to the list, after the object from the chronology.

Before you continue, you should save your transcript file.

238

B.7. Summarizing the Board's Decision

Once you have completed the fact chronology and list of actor and object types, you are ready

to proceed to transcribing the board's decision. Even though the cases typically list "Discussion"

before "Conclusion", you will first transcribe the decision, and then the analysis used to support

that decision.

Scroll down through the text of the case to the "Conclusion" section. This section presents

direct judgments on the questioned facts from the chronology. For each questioned fact, you will

need to create a three-line summary of the board's decision of that fact. These summaries are

placed in the transcript under the heading, "The Board's Analysis."

Questioned Fact(s) [number]:

If there is more than one questioned fact, replace the word number with the number of the
question. That is, "Question 1" or "Q1" in the case becomes "Questioned Fact(s) 1" in the
transcript.

To the right of this label, add the number of the questioned fact from the fact chronology.

Questioned Actor or Actors:

To the right of this label, list the actor or actors whose actions are being questioned in this
fact.

The Board's Conclusion:

To the right of this label, add the decision of the board. Only one of two words is valid;
either the decision is "Ethical" or it is "Unethical."

In Case 83-1, there are three questioned facts, so you need to create three summaries.

Q1. It was unethical for Engineer A to notify clients of Engineer B that Engineer A was planning
to start a firm and would appreciate being considered for work while still in the employ of
Engineer B.

This is the first questioned fact, so change the label to say, "Questioned Fact(s) 1". It
corresponds to fact number four in the chronology, so enter "Fact 4" next to that label.
Engineer A's action was questioned, so add "Engineer A" next to the second label.
The board's decision was "Unethical", so add this next to the final label.

Q2. It was not unethical for Engineer B to distribute a previously printed brochure listing
Engineer A as a key employee provided Engineer B apprised the prospective client during the
negotiation of-Engineer A's pending termination.

This is the second questioned fact, so change the label to say, "Questioned Fact(s) 2". It
corresponds to fact number five in the chronology, so enter "Fact 5" next to that label.
Engineer B's action was questioned, so add "Engineer B" next to the second label.

239

The board's decision was "not unethical", so add the word "Ethical" next to the final
label.

Q3. It was unethical for Engineer B to distribute a brochure listing Engineer A as a key employee
after Engineer A's actual termination.

This is the third questioned fact, so change the label to say, "Questioned Fact(s) 3". It
corresponds to fact number seven in the chronology, so enter "Fact 7" next to that label.
Engineer B's action was questioned, so add "Engineer B" next to the second label.
The board's decision was "unethical", so add that next to the final label.

Before you continue, you should save your transcript file.

B.8. Listing Cited Codes

Once you have summarized the board's decisions of the questioned facts in the case, you must

transcribe how the board argued each of those decisions in the discussion. This is presented in the

transcript as a set of tables, with between one and three tables following each decision. The first

part of each table shows the codes referenced by the board in discussion.

The first table contains the evidence used to support the conclusion. The second table

contains the evidence used that conflicts with the conclusion. Use the third table to record the

evidence in the board's discussion that neither directly supports, nor directly conflicts with the

board's conclusion.

The table has seven columns that detail how each code was used in the discussion.

B.8.1. Code

This column simply lists each code cited by the board. These code numbers are listed at the

top of the case, so you can just copy them and paste them into the table, each starting its own row.

B.8.2. Code Status

Basically, use this column to record whether or not the code was violated. Here are the

possible values that may be entered under this column:

Violated

Enter this value if one of the following is true: (1) the board explicitly indicates that the
code was violated (2) the board does not explicitly indicate that the code was violated,
but it implies, in general discussion that it was violated. (Examples: 84-6 [cited codes
II.3., III.1.f.], 89-2 [cited codes II.4., II.5., III.7.])

240

Not Violated

Enter this value if one of the following is true: (1) the board explicitly indicates that the
code was not violated (2) the board does not explicitly indicate that the code was not
violated, but it implies, in general discussion that it was not violated. (Examples: 69-10
[cited codes 5, 12, 12(b)], 89-4 [cited code II.3.a.])

Not Applicable

Sometimes a code is referenced, but the board argues and ultimately decides that it does
not apply to a given case. Enter this value if the board notes that this code does not apply
to this case. (Examples: 84-6 [cited code III.1.e.], 89-4 [cited code III.4.b.])

Changed

Over time, the specific language of some codes might change, altering the detailed
meaning of the particular codes in question. If the board notes that a code has changed,
enter this value. Sometimes, it is the cited code that has changed, but other times the
changed code is a previous version of the code from an earlier code set. If the code that
was changed is a different code, you will need to list that code in the "Grouped With"
column, described below. (Examples: 58-1 [cited code C27], 79-5 [cited code 3(f)], 85-6
[cited code II.4.a.])

Unknown

If you cannot tell from the discussion that one of the above terms is more appropriate you
can enter this value. (Example: 92-1 [cited code III.5.a.])

You may also need to include special status modifiers to indicate the relative importance of

cited codes. If the board's discussion cites several codes, but one of them seems to have more

bearing than some of the others, include the "More Importance" modifier in the "Code Status"

column. If one or more of the cited codes seem to have less bearing, include the "Less

Importance" modifier. These importance values are optional. They should only be used when the

relative importance of cases is made obvious in the board's discussion. (Examples: 60-9-A [cited

code R1:4], 91-5 [cited code II.2.a.])

B.8.3. How Cited

There are two possible values for this column.

Explicitly Discussed

If the board cites the code in the "References" section, and also discusses its relevance to
the case, enter this value in the "How Cited" column. (Important note: Sometimes the
board will review a code in the discussion without explicitly stating its code number. In
a situation such as this, the code should still be considered "explicitly discussed.")

241

(Examples: 71-4 [cited code 12], 77-11 [cited code 11(a)])

Referenced Only

If the board cites the code in the "References" section, but does not discuss its relevance
to the case, enter this value in the "How Cited" column. (Important note: Just because
the board doesn't explicitly mention the code number of a code in the discussion does
not necessarily mean that the code should be considered "referenced only." If the board
discusses a code without mentioning its number, it should be considered "explicitly
discussed" instead of "referenced only.") (Examples: 71-4 [cited code 5], 77-11 [cited
code 11])

B.8.4. Grouped With

If the code is mentioned along with other codes, and seems to be logically grouped with the

other codes discussed by the board, list the numbers of those codes here. If the code is not

grouped with others, enter "None" in this column. Note that this is a judgment call on your part.

You may want to examine some example transcripts to better understand situations in which

codes (and cases) should be grouped. (Examples: 61-9 [cited codes C4, C11], 79-5 [cited codes

3(f), 3(g)])

B.8.5. Overrides

If the board mentions that the violation or non-violation of this code overrides the importance

of another code or codes, list the overridden code numbers in this column. If no codes are

overridden, enter "None" in this column. Be Careful: You should only indicate that one code

overrides another if the board explicitly indicates that one code holds more importance than

another in the context of the current fact situation. (Examples: 61-9 [cited codes C4, C11], 89-5

[cited code III.4.b.])

B.8.6. Why Relevant?

When you select the number of a code in the case, a representation of the cited code displays

in the "reference" frame of the window. This representation contains statements of when this code

is relevant, next to the label, "Code is relevant when". If a code has several parts, you may need

to scroll through the representation to find the most appropriate statement of relevancy. Copy this

statement from the code representation, and paste it into this column of the table, between the two

caret characters (i.e., "^") provided in the transcript template. (You can retype all of the code text

if you wish, but copy/paste will assure that no errors are introduced.) If there are any "AND" or

"OR" connectors in the sequence of statements you copied to this column, delete them.

242

If you are unable to determine why the code was cited (often this occurs in the third, "neither

supports nor conflicts", table) enter "Unknown" in this column. This may be because the code

was erroneously cited by the board, or cited briefly with insufficient discussion.

After each statement, indicate in brackets (i.e., "[" and "]") the numbers of the facts that

support it. If no fact from the chronology table directly supports it, but it is supported by text in

the discussion, one of three values can go in the brackets instead of a number:

Hypo

Use this value when the board makes an explicit assumption in their analysis. There must
be some text in the discussion section that supports the idea that this is an assumption.
Keys to look for are the words "assuming that ...", "provided that ...", and "if we assume
..." etc. If you use the "Hypo:" value, you must also include the portion of the discussion
that includes the assumption. Copy the relevant quote from the case, and paste it inside
the brackets, after the value "Hypo:". You may edit the quote to remove parts of the
discussion that are not relevant. (Examples: 58-1 [cited code C19], 84-1 [cited code
III.8.])

Unstated assumption

Use this value when it appears that the board may have made an assumption, but did not
explicitly state the assumption in the discussion section. For example, situations in which
the board cites a particular code, but none of the explicit facts of the case match the
conditions in the representation of the code. In this kind of situation, you may infer that
the board has made "unstated assumption" that allows the code to be relevant, violated, or
not violated. (Examples: 65-9 [cited code 2(b)], 84-1 [cited code III.8.])

Inference based on facts

Use this value when it appears that the board inferred a new fact or facts based on
existing facts. Inside the brackets, list the facts that act as the basis for this inference,
followed by the "Inference based on facts" designation. (Examples: 76-3 [cited code
4(a)], 84-1 [cited code III.1.f.])

B.8.7. Why Violated, Not Violated, Changed, or Not Applicable?

If the code was violated or not violated

Following the statement of relevancy in the code representation are statements delineating

when a code is violated and not violated. Which set of statements you use in this column depends,

of course, on whether or not the board has decided the code was violated. Select the most relevant

statement, copy it, and paste it into this column of the table, between the two caret characters (i.e.,

"^") provided in the transcript template. (You can retype all of the code text if you wish, but

243

copy/paste will assure that no errors are introduced.) If there are any "AND" or "OR" connectors

in the sequence of statements you copied to this column, delete them.

You may also need to enter additional information to support the code status. For instance,

sometimes a code seems to be violated, but the board argues that, for a reason that is not specified

in the code table, the code is actually not violated. In this situation, the you should use the

"violated" form of the rule, but add an extra phrase to explain why it is actually not violated. (For

an example, see Case 83-1, question 2, code III.3.a.)

Sometimes, a code seems to be not violated, but is actually violated for some reason that is

not specified in the code table. In this instance, you should choose the "not violated" form of the

rule, but add an extra phrase to explain why it is actually violated.

After each statement, indicate in brackets (i.e., "[" and "]") the numbers of the facts that

support it. If no fact from the chronology table directly supports it, but it is supported by text in

the discussion, use one of the three values (i.e., Hypo, Unstated assumption, Inference based on

facts) discussed in the "Why Relevant?" section, above.

Lastly, sometimes there are simply extra conditions that the board discusses but which are not

specified in the code table. You should add these extra conditions.

If there is no text that can be copied and pasted into the table, you should construct a

statement and type it into the table. This statement should have the same structure and style as the

statements from the code representation. Any text you create yourself should be surrounded in

percentage signs (i.e., "%" and "%") in the transcript file, e.g., "%The Engineer has the right to

seek and accept other employment in his field. %" (Examples: 69-10 [cited code 12], 87-5 [cited

code II.4.c.])

If the code has changed

If the board proposed that the code be changed, describe how the code was changed. Include

the new text of the code, and if the information is given, how it differs from the old text.

Remember to surround in percentage signs (i.e., "%" and "%") any text that you create yourself.

(Examples: 58-1 [cited code C27], 79-5 [cited code 3(f)], 85-6 [cited code II.4.a.])

Unknown

If you entered "Unknown" in the "Why Relevant" column, you will obviously also be unable

to determine content for this column, and should enter "Unknown" here as well. (Example: 92-1

[cited code III.5.a.])

Before you continue, you should save your transcript file.

244

B.9. Listing the Cited Cases

Just as you transcribed the codes referenced by the board in discussion, you must also

transcribe the referenced cases into tables.

The tables of referenced cases go just beneath the code tables. Once again, they are used to

transcribe the precedents used to support the conclusion, the precedents that conflict with the

conclusion, and the precedents in the board's discussion that neither directly support nor directly

conflict with the board's conclusion.

Each table has seven columns that detail how each case was used in the discussion.

B.9.1. Case

This column simply lists each case cited by the board. These case numbers are listed at the

top of the case, so you can just copy them and paste them into the table, each starting its own row.

B.9.2. Citation Type

Use this column to record how the case was cited, whether as an analogous precedent, as a

distinguishing precedent, or as a relevant, but not controlling case.

Analogous Precedent

An analogous precedent is a cited case that, by certain similarity to the current fact
situation, argues for the same conclusion in both. A cited case should be labelled as an
analogous precedent when: (1) the board cites it because it is very similar, at a thematic
or perhaps detailed level, to the current fact situation and (2) the board argues that the
conclusion in the cited case (i.e., ethical or unethical) should be followed in the current
case. (Important Note: Notice that by this definition a cited case can be an analogous
precedent even if its facts are quite different from the current case. The key is that the
cases are similar at a conceptual or abstract level.) (Examples: 77-11 [cited cases 76-5,
75-15], 79-2 [cited case 63-6], 88-1 [cited case 69-13-C])

Distinguishing Precedent

A distinguishing precedent is a cited case that essentially provides a counter-example to
the current fact situation; it supports an opposite conclusion. A cited case should be
labelled as a distinguishing precedent when: (1) the board cites it because it is similar, at
either a detailed or thematic level, to the current case, (2) despite the similarities, the
board notes at least one key distinction between the cases, and (3) the board argues that
the conclusion in the cited case (i.e., ethical or unethical) should not be followed in the
current case. (Examples: 79-5 [cited case 72-11], 83-1 [cited case 77-11], 88-1 [cited
case 85-6])

245

Relevant, But Not Controlling

A Relevant, But Not Controlling case is an earlier case that is relevant, in some way, to
the current case but not to the extent that it "controls" or directly supports the board's
decision in the current case. The earlier and current cases may share a general issue,
principle, or perhaps some facts. However, with a "Relevant, But Not Controlling"
citation the board does not argue that the current case should or should not follow the
earlier conclusion. Typical situations in which to use this designation are: cases cited in
passing, cases cited to illustrate a general point, and cases cited for any reason other than
as analogous or distinguishing precedents. (Important Note: You should only use the
"Relevant, But Not Controlling" tag in the transcript section with the heading: "...
information that neither directly supports nor directly conflicts with their conclusion."
By definition, "Relevant, But Not Controlling" cases can neither directly support nor
directly conflict with the board's conclusion.) (Examples: 72-4 [cited cases 62-10, 62-
18, 64-9], 85-4 [cited cases 76-3, 82-2, 82-6])

Unknown

If you cannot tell from the discussion that one of the above terms is more appropriate you
can enter this value.

You may also need to include special status modifiers to indicate the relative importance of

cited cases. If the board's discussion cites several cases (and/or codes), but one of the cases seems

to have more bearing than the others (or other codes), include the "More Importance" modifier in

the "Citation Type" column. If one or more of the cited cases seem to have less bearing, include

the "Less Importance" modifier. These importance values are optional. They should only be used

when the relative importance of cases is made obvious in the board's discussion. (Examples: 71-

4 [cited case 63-6])

B.9.3. How Cited

There are two possible values for this column.

Explicitly Discussed

If the board cites the case, and also discusses its relevance to the case, enter this value in
the "How Cited" column. (Examples: 92-9 [cited case 77-3], 92-4 [cited case 88-6])

Referenced Only

If the board cites the case, but does not discuss its relevance to the case, enter this value
in the "How Cited" column. This can occur when the board cites a case in passing but
then does not discuss it, other than to broadly categorize it. (Example: 67-1 [cited cases
62-7, 62-21, 63-5])

246

B.9.4. Grouped With

If the case is mentioned along with other cases, list the numbers of those cases here. If the

case is not grouped with others, enter "None" in this column. (Examples: 92-4 [cited cases 65-

12, 82-5], 92-6 [cited cases 89-7, 90-5])

B.9.5. Q #

The cited case usually will be cited as part of the discussion concerning a particular

questioned fact. List the number of the questioned fact in this column.

B.9.6. Why Relevant?

Since for cases there is no analog to the code representation, you will need to write a

statement (or statements) in your own words that expresses the relevancy of this case to the

current case. These statements should have the same structure and style as the statements from the

code representation, and they should be placed between the two caret characters (i.e., "^")

provided in the transcript template. Also, as before, text you create yourself should be

surrounded by percentage signs (i.e., "%"); place the percentage signs around each individual

statement.

After the statement of relevancy, indicate in brackets (i.e., "[" "]") the numbers of the facts

that support your choice.

If you are unable to determine why the case was cited (often this occurs in the third, "neither

supports nor conflicts", table) enter "Unknown" in this column. This may be because the code

was erroneously cited by the board, or cited briefly with insufficient discussion.

After each statement, indicate in brackets (i.e., "[" and "]") the numbers of the facts that

support it. If no fact from the chronology table directly supports it, but it is supported by text in

the discussion, one of three values can go in the brackets instead of a number (note that these are

the same values that can be used with cited codes):

Hypo

Use this value when the board makes an explicit assumption in their analysis. There must
be some text in the discussion section that supports the idea that this is an assumption.
Keys to look for are the words "assuming that ...", "provided that ...", and "if we assume
..." etc. If you use the "Hypo:" value, you must also include the portion of the discussion
that includes the assumption. Copy the relevant quote from the case, and paste it inside
the brackets, after the value "Hypo:". You may edit the quote to remove parts of the
discussion that are not relevant. (Examples: 65-9 [cited case 63-6], 79-2 [cited case 65-
9])

247

Unstated assumption

Use this value when it appears that the board may have made an assumption, but did not
explicitly state the assumption in the discussion section. In this kind of situation, you may
infer that the board has made an "unstated assumption" that allows the case to be
relevant, violated, or not violated. (Examples: 79-2 [cited case 65-9], 88-7 [cited case
63-6])

Inference based on facts

Use this value when it appears that the board inferred a new fact or facts based on
existing facts. Inside the brackets, list the facts that act as the basis for this inference,
followed by the "Inference based on facts" designation. (Examples: 72-4 [cited case 62-
10], 77-11 [cited case 75-15])

B.9.7. Why Distinguished or Analogous?

Following the statement of relevancy are statements delineating how a cited case is similar

(analogous) or different (distinguished) from the current case.

Again, you will need to write a statement (or statements) in your own words that expresses

the distinguishing or analogous points. These statements should have the same structure and style

as the statements from the code representation, and they should be placed between the two caret

characters (i.e., "^") provided in the transcript template. Also, don't forget to surround each

individual statement with percentage signs (i.e., "%").

After the statement, indicate in brackets (i.e., "[" "]") the numbers of the facts that support

your statement. Alternatively, you can indicate one of the three values discussed in the previous

section (i.e., Hypo, Unstated assumption, Inference based on facts).

If you are unable to determine why the case was cited (often this occurs in the third, "neither

supports nor conflicts", table) enter "Unknown" in this column. This may be because the code

was erroneously cited by the board, or cited briefly with insufficient discussion.

If the cited case is tagged as "Relevant, But Not Controlling," there likely will not be any

points to enumerate here. For these cases, enter "NA" for "Not Applicable" in this column.

Before you continue, you should save your transcript file.

B.10. Submitting the Transcript

Once you have completed your transcript, read through it one last time to assure that:

1. you have included all of the necessary parts,

2. the transcript adheres to the required structure and syntax, and

248

3. the transcript expresses the case as well as it possibly can.

If you make any changes at this point, save your file one last time.

You will be assigned transcripts in groups of 5, 10, 15, etc. by the exercise coordinator.

While you are working on an individual transcript of a particular assignment you can store it as a

single file. However, when you are ready to submit your completed work, please append all of

the individual files together as a single MS Word 6.0 file to be shipped to the exercise

coordinator. Name the file using your last name, followed by the extension ".DOC".

Using your email program, create a new message addressed to the exercise coordinator.

Include the single file containing all of your individual transcripts as an attachment to that piece

of email. If you have any comments or questions about your transcript, the web site, the case, or

the transcription process, you may include them in the body of the message.

The last step is sending your message. Once you send the message, you must wait until the

exercise coordinator contacts you again by email. If there are any "bugs" in your transcript (e.g.,

invalid syntax, missing information), the file will be returned to you for revisions. Not until your

transcript file is bug-free will it be considered complete. After completing a set of transcriptions,

wait until the exercise coordinator provides you with a new set of cases to transcribe.

B.11. Conclusion

Thank you for participating in the Ethics Case Transcription Study.

If this is your first transcript, you may find it helpful to view further example transcriptions,

and perhaps try a few more transcripts yourself. A collection of example transcripts is available

through the Reference Shelf area of this web site.

Try transcribing one or more of these cases yourself, and compare your results to the example

on this web site. Even if you do not choose to do a full practice transcript, reading through

several examples will give you a better idea of what a transcription is like, and how the parts of a

transcript are constructed. If you take the time to familiarize yourself with the style of the

examples, creating your own transcripts will be more a matter of imitation rather than creation

from scratch.

Thank you again for participating, and best of luck with your transcription tasks.

Bibliography

250

References

[Aleven, 1997] Vincent A. W. M. M. Aleven. Teaching Case-Based Argumentation Through a
Model and Examples. Ph.D. Dissertation, University of Pittsburgh, 1997.

[Allen, 1983] James F. Allen. Maintaining Knowledge about Temporal Intervals. In the
Communications of the ACM 26(11), 832-843, 1983.

[Arras, 1991] John D. Arras. Getting Down to Cases: The Revival of Casuistry in Bioethics. In
Journal of Medicine and Philosophy, 16, 29-51, 1991.

[Aristotle, edited and published in 1924] Aristotle. Nicomachean Ethics. W. D. Ross, editor,
Oxford, 1924.

[Ashley, 1990] Kevin D. Ashley. Modeling Legal Argument: Reasoning with Cases and
Hypotheticals. Based on a Ph.D. Dissertation, University of Massachusetts, 1987, COINS
Technical Report No. 88-01. Cambridge: MIT Press, 1990.

[Ashley and McLaren, 1995] Kevin D. Ashley and Bruce M. McLaren. Reasoning with Reasons
in Case-Based Comparisons. In the Proceedings of the First International Conference on Case-
Based Reasoning, Sesimbra, Portugal, 1995.

[Ashley and McLaren, 1994a] Kevin D. Ashley and Bruce M. McLaren. A CBR Knowledge
Representation for Practical Ethics. In the Proceedings of the Second European Workshop on
Case-Based Reasoning, (EWCBR), Chantilly, France, 1994.

[Ashley and McLaren, 1994b] Kevin D. Ashley and Bruce M. McLaren. Evaluating Comparative
Evaluation Models. In the Working Notes, AAAI Workshop on Case-Based Reasoning, David
Aha, editor, 164-171, 1994.

[Bareiss, 1989] E. Ray Bareiss. Exemplar-Based Knowledge Acquisition - A Unified Approach to
Concept Representation, Classification, and Learning. San Diego, CA: Academic Press, 1989.

[Beauchamp and Childress, 1978] T. L. Beauchamp and J. F. Childress. Principles of Biomedical
Ethics. New York: Oxford University Press, First edition, 1978.

[Berman and Hafner, 1986] Donald H. Berman and Carole D. Hafner. Obstacles to the
Development of Logic-Based Models of Legal Reasoning. In Computer Power and Legal
Language. C. Walter, editor, 185-214, Greenwood Press, 1986

[Berman and Greiner, 1980] Harold J. Berman and William R. Greiner. The Nature and
Functions of Law. Mineola, NY: Foundation Press, 1980.

[Bok, 1989] Sissela Bok. Lying: Moral Choice in Public and Private Life. New York: Random
House, Inc. Vintage Books, 1989.

[Branting, 1994] L. Karl Branting. A Computational Model of Ratio Decidendi. Artificial
Intelligence and Law 2:1-31. The Netherlands: Kluwer Academic Publishers, 1994.

251

[Branting, 1993] L. Karl Branting. A Reduction-Graph Model of Ratio Decidendi. In the
Proceedings of the Fourth International Conference on Artificial Intelligence and Law (ICAIL),
Amsterdam, The Netherlands, 1993.

[Branting, 1992] L. Karl Branting. A Model of the Role of Expertise in Analog Retrieval. In the
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society.
Bloomington, Indiana, 1992.

[Branting, 1991] L. Karl Branting. Building Explanations from Rules and Structured Cases.
International Journal of Man-Machine Studies, 34 (6): 797-837, 1991.

[Brill, 1993] David Brill. L o o m Reference Manual, Version 2.0. University of Southern
California, 1993.

[Brüninghaus and Ashley, 1999] Stefanie Brüninghaus and Kevin D. Ashley. Bootstrapping Case
Base Development with Annotated Case Summaries. In the Proceedings of the Third
International Conference on Case-Based Reasoning (ICCBR-99). Seeon Monastery, Germany,
1999.

[Brüninghaus and Ashley, 1998] Stefanie Brüninghaus and Kevin D. Ashley. Developing
Mapping and Evaluation Techniques for Textual CBR. In the Proceedings of the AAAI-98
Workshop on Case-Based Reasoning, 1998.

[Bunke and Messmer, 1993] H. Bunke, H. and B. T. Messmer. Similarity Measures for
Structured Representations. In the Proceedings of the First European Workshop on Case-Based
Reasoning. Kaiserslautern, Germany, 1993.

[Burke et al., 1997] Robin D. Burke, Kristian J. Hammond, Vladimir Kulyukin, Steven L.
Lytinen, Noriko Tomuro, and Scott Schoenberg. Question Answering from Frequently Asked
Question Files: Experiences with the FAQ Finder System. AI Magazine, Volume 18, No. 2,
Summer, 1997.

[Cavalier and Covey, 1996] Robert Cavalier and Preston K. Covey. A Right to Die? The Dax
Cowart Case CD-ROM Teacher’s Guide, Version 1.0, Pittsburgh, PA: Center for the
Advancement of Applied Ethics, Carnegie Mellon University, 1996

[Cheng et al., 1996] Chun Hung Cheng, Clyde W. Holsapple, and Anita Lee. Citation-Based
Journal Rankings for AI Research: A Business Perspective. AI Magazine, Volume 17, No. 2,
Summer, 1996.

[Colby and Kohlberg, 1987a] A. Colby and L. Kohlberg. The Measurement of Moral Judgment.
Vol. 1: Theoretical Foundations and Research Validation. New York: Cambridge University
Press, 1987.

[Colby and Kohlberg, 1987b] A. Colby and L. Kohlberg. The Measurement of Moral Judgment.
Vol. 2: Standard Issue Scoring Manual. New York: Cambridge University Press, 1987.

[Davis et al., 1977] R. Davis, B. G. Buchanan, and E. H. Shortliffe. Production Rules as a
Representation for a Knowledge-Based Consultation System. Artificial Intelligence 8:15-45,
1977.

252

[Davison and Hinkley, 1997] A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their
Application. Cambridge University Press, 1997.

[Efron and Tibshirani, 1993] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. San
Francisco: Chapman and Hall, 1993.

[Evans, 1968] Thomas Evans. A Program for the Solution of a Class of Geometric Analogy
Intelligence Test Questions. In Semantic Information Processing, M. Minsky, editor, 271-353.
Cambridge, MA: MIT Press, 1968.

[Forbus et al., 1994] Kenneth D. Forbus, Dedre Gentner, and Keith Law. MAC/FAC: A Model
of Similarity-based Retrieval. Cognitive Science 19, 141-205, Norwood, NJ: Ablex Publishing
Corporation, 1994.

[Frakes and Baeza-Yates, 1992] W. Frakes and R. Baeza-Yates, Editors. Information Retrieval:
Data Structures and Algorithms. Englewood Cliffs, NJ: Prentice- Hall, 1992.

[Gardner, 1987] Anne Gardner. An Artificial Intelligence Approach to Legal Reasoning.
Cambridge, MA: MIT Press, 1987.

[Gentner, 1983] Dedre Gentner. Structure-mapping: A Theoretical Framework for Analogy.
Cognitive Science, 7, 155-170, 1983.

[Gilligan, 1982] Carol Gilligan. In a Different Voice. Cambridge, MA: Harvard University
Press, 1982.

[Ginsberg, 1993] Matt Ginsberg. Essentials of Artificial Intelligence. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1993.

[Hammond, 1989] Kristian J. Hammond. Case-Based Planning: Viewing Planning as a Memory
Task. San Diego, CA: Academic Press, Inc., 1989.

[Harris et al., 1999] Charles E. Harris, Michael S. Pritchard, and Michael J. Rabins. Engineering
Ethics: Concepts and Cases. Belmont, CA: Wadsworth, a division of Thomson Learning, Second
edition, 1999.

[Hinrichs, 1992] T. R. Hinrichs. Problem Solving in Open Worlds: A Case Study in Design.
Northvale, NJ: Erlbaum, 1992.

[Holyoak and Thagard, 1995] Keith J. Holyoak and Paul Thagard. Mental Leaps: Analogy in
Creative Thought. Cambridge, MA: The MIT Press, 1995.

[Jaczynski and Trousse, 1998] Michel Jaczynski and Brigitte Trousse. BROADWAY: A World
Wide Web Browsing Advisor Reusing Past Navigations from a Group of Users. In the
Proceedings of the Fourth European Workshop on Case-Based Reasoning. Dublin, Ireland,
1998.

[Jaczynski, 1997] Michel Jaczynski. Framework for the Management of Past Experiences with
Time-Extended Situations. In the Proceedings of the Sixth ACM Conference on Information and
Knowledge Management (CIKM ’97), Las Vegas, Nevada, 1997.

253

[Jonsen and Toulmin, 1988] Albert R. Jonsen and Stephen Toulmin. The Abuse of Casuistry: A
History of Moral Reasoning. Berkeley, CA: University of California Press, 1988.

[Kant, edited and published in 1969] Immanuel Kant. Foundations of the Metaphysics of Morals
with Critical Essays. Robert Paul Wolff, editor, Indianapolis, IN: Bobbs-Merrill, 1969.

[Kass et al., 1986] Alex M. Kass, David B. Leake, and Christopher C. Owens. Swale: A Program
that Explains. In Explanation Patterns: Understanding Mechanically and Creatively. Hillsdale,
NJ: Erlbaum, 1986.

[Keane et al., 1994] Mark T. Keane, Tim Ledgeway, and Stuart Duff. Constraints on Analogical
Mapping: A Comparison of Three Models. Cognitive Science 18, 387-438, 1994.

[Kolodner, 1993] Janet Kolodner. Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann
Publishers, Inc., 1993.

[Korfhage, 1997] R. Korfhage. Information Storage and Retrieval. New York: Wiley, 1997.

[Koton, 1989] Phyllis Koton. Using Experience in Learning and Problem Solving. Ph.D.
Dissertation, Massachusetts Institute of Technology, 1988, Technical Report 441, MIT
Laboratory for Computer Science, Cambridge, MA, 1989.

[Koomen, 1989] Johannes A. G. M. Koomen. The TIMELOGIC Temporal Reasoning System.
Technical Report 231, Computer Science Department, the University of Rochester, NY, 1989.

[Leake, 1991] David B. Leake. An Indexing Vocabulary for Case-Based Explanation. In the
Proceedings of AAAI-91, 1991.

[Lenz, 1998] Mario Lenz. Defining Knowledge Layers for Textual Case-Based Reasoning. In
the Proceedings of the Fourth European Workshop on Case-Based Reasoning. Dublin, Ireland,
1998.

[Lewis et al., 1996] David D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka.
Training Algorithms for Linear Text Classifiers. In the Proceedings of the 19th Annual
International ACM-SIGIR Conference on Research and Development in Information Retrieval.
Zurich, Switzerland, 1996.

[Llewellyn, 1930] K. N. Llewellyn. The Bramble Bush. On Our Law and its Study. New York:
Oceana Publications, 1930.

[Lytinen, 1992] Steven L. Lytinen. Conceptual Dependency and its Descendants. In Semantic
Networks in Artificial Intelligence, Fritz Lehmann, editor, Great Britain: Pergamon Press, 1992.

[MacGregor, 1990] Robert MacGregor. The Evolving Technology of Classification-Based
Knowledge Representation Systems. In Principles of Semantic Networks: Explorations in the
Representation of Knowledge, Chapter 13, John Sowa, editor, San Mateo, CA: Morgan
Kaufmann, 1990.

[Martin, 1998] Judith Martin. Miss Manners' Basic Training: The Right Thing to Say. Crown
Publishing, 1998.

254

[McLaren and Ashley, 1999] Bruce M. McLaren and Kevin D. Ashley. Case Representation,
Acquisition, and Retrieval in SIROCCO. In the Proceedings of the Third International
Conference on Case-Based Reasoning (ICCBR-99). Seeon Monastery, Germany, 1999.

[McLaren and Ashley, 1998] Bruce M. McLaren and Kevin D. Ashley. Exploring the Dialectic
Between Abstract Rules and Concrete Facts: Operationalizing Principles and Cases in
Engineering Ethics. In the Proceedings of the Fourth European Workshop on Case-Based
Reasoning. Dublin, Ireland, 1998.

[McLaren and Ashley, 1995a] Bruce M. McLaren and Kevin D. Ashley. Case-Based
Comparative Evaluation in TRUTH-TELLER. In the Proceedings of the Seventeenth Annual
Conference of the Cognitive Science Society. Pittsburgh, PA, 1995.

[McLaren and Ashley, 1995b] Bruce M. McLaren and Kevin D. Ashley. Context Sensitive Case
Comparisons in Practical Ethics: Reasoning about Reasons. In the Proceedings of the Fifth
International Conference on Artificial Intelligence and Law, College Park, MD, 1995.

[Mill, edited and published in 1979] John Stuart Mill. Utilitarianism. G. Sher, editor,
Indianapolis, IN: Hackett, 1979.

[Miller et al., 1990] G. Miller, R. Beckwith, C. Fellbaum, G. Gross, and K. Miller. Introduction
to WordNet: An On-Line Lexical Database. International Journal of Lexicography 3:235-244,
1990.

[Minton et al., 1990] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka,
Oren Etzioni, and Yolanda Gil. Explanation-Based Learning: A Problem Solving Perspective. In
Machine Learning: Paradigms and Methods. 63-118. J. G. Carbonell, editor, Cambridge, MA:
The MIT Press, 1990.

[Minton, 1988] Steven Minton. Learning Effective Search Control Knowledge: An Explanation-
Based Approach. Ph.D. Dissertation, Carnegie Mellon University, 1988.

[Mostow, 1983] J. Mostow. Machine transformation of advice into a heuristic search procedure.
In Machine Learning, vol. 1, 1983.

[Muñoz-Avila and Huellen, 1995] Héctor Muñoz-Avila and Jochem Huellen. Retrieving Cases
in Structured Domains by Using Goal Dependencies. In the Proceedings of the First International
Conference on Case-Based Reasoning, Sesimbra, Portugal, 1995.

[Neustadt and May, 1986] R. E. Neustadt and E. R. May. Thinking in Time. New York: Free
Press, 1986.

[NSPE, 1958-1998] National Society of Professional Engineers. Opinions of the Board of Ethical
Review, Volumes I through VIII. Alexandria, VA: the National Society of Professional
Engineers, 1958-1998.

[NSPE, 1996] National Society of Professional Engineers. The NSPE Ethics Reference Guide.
Alexandria, VA: the National Society of Professional Engineers, 1996.

255

[Pinkus et al., 1997] R. L. Pinkus, L. J. Shuman, and N. P. Hummon. Engineering Ethics:
Balancing Cost, Schedule and Risk-Lessons Learned from the Space Shuttle. New York:
Cambridge University Press, 1997.

[Rissland et al., 1997] Edwina L. Rissland, David B. Skalak, and M. Timur Friedman. Evaluating
a Legal Argument Program: The BankXX Experiments. Artificial Intelligence and Law Volume
5. The Netherlands: Kluwer Academic Publishers, 1997.

[Rissland et al., 1996] Edwina L. Rissland, David B. Skalak, and M. Timur Friedman. BankXX:
Supporting Legal Arguments through Heuristic Retrieval. Artificial Intelligence and Law
Volume 4. The Netherlands: Kluwer Academic Publishers, 1996.

[Rissland et al., 1993] Edwina L. Rissland, David B. Skalak, and M. Timur Friedman. BankXX:
A Program to Generate Argument through Case-Based Search. In the Proceedings of the Fourth
International Conference on Artificial Intelligence and Law (ICAIL), Amsterdam, The
Netherlands, 1993.

[Rissland and Skalak, 1991] Edwina L. Rissland and David B. Skalak. CABARET: Statutory
Interpretation in a Hybrid Architecture. In International Journal of Man-Machine Studies, 34 (6):
839-887, 1991.

[Schank, 1972] Roger C. Schank. Conceptual Dependency: A Theory of Natural Language
Understanding. Cognitive Psychology 3, 552-631, 1972.

[Searing, 1998] Donald R. Searing. HARPS Ethical Analysis Methodology, Method Description.
Version 2.0.0., Lake Zurich, IL: Taknosys Software Corporation, 1998.

[Sergot et al., 1986] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H.
T. Cory. The British Nationality Act as a Logic Program. In the Communications of the ACM,
29(5): 370-386, 1986

[Smyth and McKenna, 1999] Barry Smyth and Elizabeth McKenna. Building Compact
Competent Case-Bases. In the Proceedings of the Third International Conference on Case-Based
Reasoning (ICCBR-99). Seeon Monastery, Germany, 1999.

[Spellman and Holyoak, 1993] Barbara A. Spellman and Keith J. Holyoak. An Inhibitory
Mechanism for Goal-Directed Analogical Mapping. In Proceedings of the Fifteenth Annual
Conference of the Cognitive Science Society, 947-952. Hillsdale, NJ: Erlbaum, 1993.

[Strong, 1988] C. Strong. Justification in Ethics. In Baruch A. Brody, editor, Moral Theory and
Moral Judgments in Medical Ethics, 193-211. Dordrecht: Kluwer Academic Publishers, 1988.

[Thagard et al., 1990] P. Thagard, K. J. Holyoak, G. Nelson, and D. Gochfeld. Analog Retrieval
by Constraint Satisfaction. Technical Report CSL-Report 41, Princeton University, 1990.

[Toulmin, 1958] Stephen E. Toulmin. The Uses of Argument. Cambridge, England: Cambridge
University Press, 1958.

[Twining and Miers, 1976] William Twining and David Miers. How to Do Things With Rules.
London: Cox and Wyman, Ltd, 1976.

256

[Van Buren, 1989] Abigal Van Buren. The Best of Dear Abby. Andrews McMeel Publishing,
Second edition, 1989.

[van Rijsbergen, 1979] C.J. van Rijsbergen. Information Retrieval. London: Butterworths,
Second edition, 1979.

[Veloso, 1992] Manuela M. Veloso. Learning by Analogical Reasoning in General Problem
Solving. Ph.D. Dissertation, Carnegie Mellon University, 1992.

[Vila and Yoshino, 1998] Lluís Vila and Hajime Yoshino. Time in Automated Legal Reasoning.
Information and Communications Technology Law, Vol. 7, No. 3, 1998.

[Warnock, 1971] G. J. Warnock. The Object of Morality. London: Methuen and Co., 1971.

[Winston, 1980] Patrick H. Winston. Learning and Reasoning by Analogy. Communications of
the ACM 23:689-703, 1980.

[Witten et al., 1999] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. San Francisco, CA: Morgan Kaufmann
Publishers, Inc., Second edition, 1999.

[Yen et al., 1991] John Yen, Robert Neches, and Robert MacGregor. CLASP: Integrating Term
Subsumption Systems and Production Systems. IEEE Transactions on Knowledge and Data
Engineering, Vol. 3, No. 1, March, 1991.

[Zobel and Moffat, 1998] Justin Zobel and Alistair Moffat. Exploring the Similarity Space.
SIGIR Forum, Vol. 32, No. 1, 18-34. New York: ACM Press, 1998.

257

Index

A
A* search

admissibility condition, 90
example search space in SIROCCO, 92
in GREBE, 16, 168
in SIROCCO, 14, 15, 53, 99
variant used in SIROCCO, 90

Abstraction
gap, iv, 1, 5, 139, 162, 164, 171, 181, 183

Abstraction levels
definition of SIROCCO’s, 77

Action/Event Hierarchy, 53, 57, 64, 70, 71, 72, 77, 81,
82, 100, 173, 176, 178, 185, 195, 199, 221
description of, 70

AI. See Artificial Intelligence
Aleven, V., v, 13, 14, 162, 172, 186, 187, 250
Allen, J. F., 61, 62, 63, 94, 96, 151, 189, 250
Analog Retrieval by Constraint Satisfaction. See

ARCS
Analogical reasoning

comparison to SIROCCO, 174
cross-domain analogies, 174
how humans create and use analogies, 174
in political decision making, 197
The Tumor and the Fortress problem, 175

Analysis representation
example of, 66, 89

Apply a Hypothetical to a Code
definition of, 7
Operationalization Technique, 17, 44, 101, 107,

109, 111, 169, 171
ARCS, 177, 178, 192

comparison to SIROCCO, 177
Argument pieces

in BankXX, 170
Aristotle, 166, 250
Arras, J. D., 28, 30, 166, 250
Artificial Intelligence, iv, 1, 19, 250, 251, 252, 253,

254, 255
AI and Law Research, iv, 9, 163, 183
systems, 3

Ashley, K. D., ii, v, 4, 5, 13, 20, 120, 162, 165, 167,
172, 178, 187, 192, 195, 250, 251, 254

B
Baeza-Yates, R., 120, 252
BankXX, 14, 164, 165, 170, 171, 172, 183, 187, 255

comparison to SIROCCO, 170
description of domain, 170
example representation, 171

Bareiss, E. R., 185, 250
Beauchamp, T. L., 28, 250
Beckwith, R., 254
Bell, T. C., 256
Benchmark, 20, 22, 118, 119, 123, 125, 127, 141
Berman

D. H., 162, 250
H. J., 5, 250

Best-first search
in BankXX, 170

Bilecka, L., vi
Bodin, C., vi
Boisjoly, R., 1, 2, 3, 27, 116
Bok, S., 166, 250
Branting, L. K., 5, 13, 16, 162, 168, 169, 183, 186,

187, 192, 250, 251
Brill, D., 53, 251
BROADWAY, 189, 252
Brüninghaus, S., v, 20, 120, 192, 195, 251
Buchanan, B. G., ii, v, 251
Bunke, H., 85, 251
Burke, R., 20, 120, 251
Bush, President George, 197

C
Callan, J. P., 253
CAPLAN/CBC, 189
Carbonell, J. G., 254
Carnegie Group, Inc., vi
Carnegie Mellon University, vi, 251, 254, 256
Case Instantiation

definition of, 7
Operationalization Technique, 9, 10, 15, 16, 21, 35,

44, 53, 68, 75, 84, 85, 86, 87, 99, 100, 105, 106,
110, 111, 116, 118, 144, 151, 154, 160, 171,
176, 178, 186, 193, 194, 196

Case-acquisition web site, 19
Participant's Guide, 57, 60, 69, 221

258

SIROCCO's, vi, 14, 19, 56, 60, 62, 68, 165, 169,
185, 186, 187, 188, 190, 209, 220, 221

URL, 56, 186, 220
Case-Based Reasoning, iv, 5, 20, 23, 162, 164, 165,

174, 175, 176, 177, 185, 186, 189, 193, 250, 251
interpretive, iv, 9, 13, 23, 25, 162, 164, 165, 169,

182, 187, 188, 189
textual, 20, 120, 192, 195

cases. See also NSPE BER Cases
choosing trial cases, 32
the importance of, 30

CASEY, 185
Casuistry

definition of, 30
TRUTH-TELLER, a computational model of, 166

CATO, 13, 14, 164, 165, 172, 173, 186, 187, 195
comparison to SIROCCO, 172
description of domain, 172
example representation, 172

Cavalier, R., 179, 251
CBR. See Case-Based Reasoning
Challenger

Space Shuttle, 1, 2, 27, 28, 29, 30, 50
CHEF, 189
Cheng, C. H., 124, 251
Childress, J. F., 28, 250
Citation overlap, 107, 119, 124

case, 124, 125
case, definition of, 125
code, 124, 125
code, definition of, 124
definition of, 125

Cite a Distinguishing Precedent
definition of, 7
Operationalization Technique, 44, 45

Cite an Analogous Precedent
definition of, 7
Operationalization Technique, 35, 41, 54, 183

CLASP, 4, 5, 256
Code Hierarchy, 21, 53, 57, 71, 72, 119, 122, 123,

124, 125, 161, 215
description of, 71

Code Instantiation
definition of, 7
Operationalization Technique, 9, 10, 15, 16, 17, 36,

38, 41, 44, 47, 49, 53, 68, 71, 85, 86, 87, 91, 92,
98, 99, 104, 105, 106, 108, 109, 111, 114, 118,
144, 151, 160, 164, 168, 169, 171, 176, 193

Code of ethics
definition of, 29

Codes. See also NSPE Codes
Conflict between, 2, 5, 7, 29, 30, 36, 37, 38, 54, 55,

67, 108, 109, 117, 146
Code-selection heuristic

Frequent Occurrences in Top Cases, 101, 103, 111,
120, 121, 128

Colby, A., 27, 251
Common Lisp, 24, 53
Communications of the ACM, 250, 255, 256
Conceptual Dependency, 165, 253, 255
Content vector, 15, 76, 77, 78, 79, 81, 82
Contributions of the dissertation research, 182

discussion of contribution #1, 182
discussion of contribution #2, 183
discussion of contribution #3, 185
discussion of contribution #4, 187
discussion of contribution #5, 188
summary of contribution #1, 182
summary of contribution #2, 182
summary of contribution #3, 182
summary of contribution #4, 182
summary of contribution #5, 182

Cory, H. T., 255
Covey, P. K., 179, 251
Creative middle-way solutions

ethics problem resolution technique, 18, 28, 116,
163, 195

Cuban missile crisis, the, 197

D
Davis, R., 3, 251
Davison, A. C., 131, 252
Dax Cowart CD, 179

comparison to SIROCCO, 179
Dear Abby, 196, 256
Deduction. See Formal deduction
Define or Elaborate a General Issue or Principle

definition of, 7
Operationalization Technique, 17, 36, 101, 107,

110, 169, 171
Define the Superior Code

definition of, 7
Operationalization Technique, 16, 36, 39, 54, 101,

107, 108, 109
Define the Terms of the Code

definition of, 7
Operationalization Technique, 183

Dot product
definition of, 79

Duff, S., 253
Durand, E., vi

E
EBEs. See Exemplar-based explanations
EETL. See Extended Ethics Transcription Language
Efron, B., 131, 252
Empirical Analysis of the NSPE BER Cases

basis of SIROCCO, 8
conclusions, 5, 33
description of, 31
explanation of process, 32
techniques uncovered, 6

Ethics
Engineering, iv, 2, 5, 6, 8, 9, 14, 19, 20, 24, 25, 27,

28, 29, 30, 31, 34, 38, 48, 51, 56, 57, 58, 61, 63,
70, 115, 116, 117, 118, 120, 140, 159, 162, 163,
164, 173, 175, 177, 178, 181, 183, 185, 187,
188, 192, 193, 199, 207, 221, 252, 254, 255

Extended Transcription Language, 13, 14, 15, 19,
24, 52, 53, 56, 57, 58, 65, 73, 75, 130, 154, 157,
190, 195, 213, 220, 221

259

Personal, 28
right to die, issue in the Dax Cowart case, 179
Transcription Language, 11, 13, 14, 15, 19, 51, 52,

57, 58, 59, 61, 63, 64, 65, 77, 195, 196, 197,
199

Transcription Language Grammar, 59
Ethos System, 178, 179

comparison to SIROCCO, 178
ETL. See Ethics Transcription Language
Etzioni, O., 254
Evaluation web site, 142
Evans

E., vi
T., 174, 252

Exemplar-based explanations
in GREBE, 168

Experiments
design of, 118
Experiment #1 description, 133
Experiment #2 description, 141
Experiment #4 description, 153
Experiment #5 description, 155
Experiment #6 description, 157
metric used, 121
nonparameteric bootstrap procedure, definition of,

131
parameter settings, 126
summary of, 160
testing accuracy, efficiency, and scalability, 153
the comparison points, 121
the statistical model, 131
the test cases, 130
top level design approach, 118

Expert systems, 3
Explanation

in SIROCCO's output, iv, 8
EXTENDED-MG, Competitor Method, xii, 20, 22, 23,

104, 110, 111, 120, 121, 128, 129, 132, 133, 134,
135, 136, 139, 141, 142, 143, 144, 145, 147, 176,
191
definition of, 21

F
Factor Hierarchy

in CATO, 172, 173, 187
Fellbaum, C., 254
F-Measure, 21, 23, 24, 71, 119, 121, 122, 123, 124,

125, 128, 130, 131, 132, 133, 134, 136, 139, 142,
148, 153, 154, 155, 156, 160
definition of, 122
example calculation, 122, 124
suitability of, 125, 126

Forbus, K. D., 16, 77, 175, 176, 192, 252
Formal deduction

AI systems that reason using, 3
inadequacies of, 4

Foundational cases, 13, 14, 19, 20, 24, 63, 103, 119,
125, 127, 128, 130, 133, 139, 148, 149, 150, 151,
153, 155, 157, 161, 165, 187, 188

Frakes, W., 120, 252
Friedman, M. T., 255

Full-text retrieval, iv, 20, 21, 22, 120, 144, 145, 160,
181, 190, 191, 192

G
Gardner, A., 4, 190, 252
Gentner, D., 15, 176, 252
Gil, Y., 254
Gilligan, C., 27, 252
Ginsberg, M., 90, 252
Gochfeld, D., 255
GREBE, 13, 16, 164, 165, 168, 169, 171, 172, 183,

186, 187
comparison to SIROCCO, 168
description of domain, 168

Greiner, W. R., 5, 250
Gross, G., 254
Group Cases

definition of, 7
Operationalization Technique, 9, 41, 69, 110, 111,

144, 160, 169, 171
Group Codes

definition of, 7
Operationalization Technique, 9, 69, 105, 109, 111,

144, 160, 169, 171, 183

H
Hafner, C. D., 162, 250
Hammond, K., 189, 251, 252, 255
HARPS methodology, 178, 179
Harris, C. E., 2, 19, 27, 28, 30, 31, 50, 116, 163, 164,

178, 179, 194, 252
Hash tables

in SIROCCO, 77, 78
Hinkley, D. V., 131, 252
Hinrichs, T. R., 186, 252
Hitler, Adolph, 197
Holsapple, C. W., 251
Holyoak, K. J., 174, 176, 177, 197, 252, 255
Huellen, J., 189, 254
Hummon, N. P., 255
Hussein, Saddam, 197
HYPO, 13, 187

I
IBM Transarc Laboratory, vi
INFORMED-RANDOM, Competitor Method, 20, 21,

119, 120, 129, 132, 133, 134, 135, 139, 141, 144
definition of, 21

Intelligent Systems, Doctoral Program, i, v
Intelligent tutoring system, 8, 172, 191, 194
Internet

publishing of NSPE BER cases on, 8, 31
URL for SIROCCO's case-acquisition web site, 56,

186, 220
Inter-rater reliability, 23, 142

260

J
Jaczynski, M., 189, 252
Jones, B., vi
Jonsen, A. R., 28, 30, 166, 253

K
Kaminski, J., vi
Kant, I., 27, 179, 253
Kass, A. M., 165, 175, 186, 253
Keane, M. T., 174, 253
Keane, M. T. T., 253
Kennedy, President John F., 197
Keranen, J., vi
Knoblock, C. A., 254
Kohlberg, L., 27, 251
Kolodner, J., 9, 162, 174, 184, 253
Koomen, J., 63, 96, 253
Korfhage, R., 120, 253
Koton, P., 185, 253
Kowalski, R. A., 255
Kriwaczek, F., 255
Kulykin, V., 251
Kuokka, D. R., 254

L
Ladder of abstraction

idea for bridging abstraction gap, 163
Laubach, S., vi
Law, K., 252
Leake, D. B., 165, 175, 186, 253
Ledgeway, T., 253
Lee, A., 251
Legal domain, the, iv, 49, 173, 181, 182, 183, 196

contrast with engineering ethics, 162
Lenz, M., 20, 120, 253
Lewis, D. D., 21, 121, 253
Limited language, use of in SIROCCO, 164, 165, 169,

185, 186, 189, 190
Line-drawing

ethics problem resolution technique, 28, 116, 179,
194

Llewellyn, K. N., 162, 253
Loom

knowledge representation language, 53, 251
Lytinen, S. L., 165, 251, 253

M
MAC/FAC, 16, 176, 177, 178, 192, 252

comparison to SIROCCO, 176
two-stage algorithm, 176

MacGregor, R., 53, 253, 256
Macintosh

computer, 53, 153
Make the Code More Specific

definition of, 7
Managing Gigabytes. See MG

Many Are Called but Few Are Chosen. See
MAC/FAC

Martin, J., i, ii, iii, iv, 196, 253
Massachusetts Institute of Technology, 253
Massachusetts, University of, 250
May, E. R., 78, 79, 80, 197, 254
McAuliffe, C., 1, 2
McKenna, E., 25, 159, 255
McLaren

Bruce M., i, ii, iii, iv, 5, 167, 250, 254
Debbie, vi
Dominik. See
Gabriele, v
Mark, vi
Patrick, v
Shirley, vi
Thomas, vi

Messmer, B. T., 85, 251
MG, Competitor Method, 20, 21, 22, 111, 120, 128,

129, 132, 133, 134, 135, 136, 139, 141, 144, 145,
161, 185, 191
definition of, 21

Miers, D., 4, 162, 163, 255
Mill, J. S., 179, 254
Miller

G., 177, 254
K., 254

Millersville University, i
Minton, S., 3, 254
Miss Manners, 196, 253
Moffat, A., 128, 256
Moore, J., v
Morton Thiokol, 1
Mostow, J., 6, 254
MRSDL, 192
Mukhopadhyay, N., vi
Muñoz-Avila, H., 189, 254
Mycin, 3, 4, 5

N
Narrative description of a case

absent in BankXX, 164
absent in CATO, 172
absent in other interpretive CBR programs, 165
absent in TRUTH-TELLER, 167
advantage when used in tutoring system, 194
example of SIROCCO's representation of, 60, 88
partially present in GREBE, 168
representation of, iv, 164, 167, 184, 185
SIROCCO different from other CBR programs,

164
National Council of Examiners for Engineering and

Surveying, 28
National Society of Professional Engineers, xii, 1, 2,

5, 7, 8, 9, 13, 14, 18, 19, 20, 21, 25, 27, 28, 29, 30,
31, 32, 33, 34, 35, 37, 40, 43, 46, 48, 49, 50, 55,
65, 70, 71, 72, 115, 118, 119, 124, 125, 130, 141,
145, 146, 147, 150, 152, 159, 161, 163, 181, 188,
189, 215, 221, 225, 254
Board of Directors, 31

261

Board of Ethical Review, xii, 7, 8, 9, 13, 14, 20,
21, 25, 27, 30, 31, 32, 33, 34, 35, 37, 40, 43, 46,
48, 49, 50, 51, 55, 65, 72, 115, 118, 119, 124,
125, 130, 141, 145, 146, 147, 150, 152, 159,
161, 163, 181, 188, 189, 215, 221, 225

Board of Ethical Review, description of analysis
process, 33

Board of Ethical Review, limitations of, 50
NCEES. See National Council of Examiners for

Engineering and Surveying
Neches, R., 256
Nelson, G., 255
Neustadt, R. E., 197, 254
NON-OP SIROCCO, Competitor Method, 21, 22,

121, 132, 133, 134, 135, 139, 141, 144, 148, 176
definition of, 21

Nonparametric bootstrap procedure
definition of, 131

Non-Selected Topics, 13, 20, 119, 130, 139, 140, 153,
187
definition of, 14

NON-TEMP SIROCCO, Ablated version of
SIROCCO, xii, 23, 121, 147, 148, 149, 150, 160

NSPE. See National Society of Professional Engineers
NSPE BER Cases

59-2-1, 49
62-10-1, 49
62-18-1, 49
62-7-1, 112, 113, 114, 115
65-8-1, 49
67-10-1, 12, 86
71-10-1, 49
73-7-1, 49
76-3-1, 40, 41
76-4-1, 12, 17, 18, 54, 55, 56, 75, 80, 81, 82, 83,

84, 85, 86, 88, 89, 91, 92, 93, 95, 96, 98, 99,
102, 104, 105, 107, 146, 147

76-5-1, 47, 48, 49
77-11-1, 43, 44, 45
82-2-1, 36, 37, 66, 67
82-6-1, 40, 41
83-1-1, 41, 42, 43, 44, 45, 49, 230
83-1-2, 41, 42, 45, 46, 47, 230
83-1-3, 41, 42, 45, 46, 47, 230
84-5-1, 12, 35, 36, 37, 38, 54, 55, 56, 65, 66, 67,

75, 78, 79, 80, 81, 82, 83, 84, 85, 102, 106, 192
89-5-1, 38, 39, 40, 41, 47
89-7-1, 12, 17, 18, 81, 82, 83, 84, 85, 102, 104, 106
90-5-1, 11, 12, 17, 18, 34, 35, 36, 37, 38, 53, 54,

55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 70, 75,
78, 79, 80, 84, 91, 92, 93, 96, 99, 100, 102, 105,
106, 107, 108, 117, 151

91-6-1, 112, 113, 114, 115
96-8-1, 145, 146, 147

NSPE BER Cases (Hypothetical)
99-1-1, 54, 55, 56, 75, 78, 79, 80, 81, 82, 83, 84, 85

NSPE Codes
I.1., 1, 2, 5, 17, 28, 72, 86, 89, 107, 146, 215
I.2., 215
I.3., 38, 39, 217
I.4., 1, 2, 17, 42, 43, 44, 49, 86, 89, 103, 105, 107,

217

I.5., 217
II.1., 215
II.1.a., 2, 17, 28, 35, 36, 37, 38, 54, 65, 67, 68, 72,

86, 89, 107, 108, 109, 146, 215
II.1.b., 72, 215
II.1.c., 35, 36, 37, 38, 54, 67, 108, 147, 216
II.1.d., 215
II.1.e., 146, 219
II.2., 215
II.2.a., 215, 240
II.2.b., 215
II.2.c., 215
II.3., 217, 239
II.3.a., 39, 217, 240
II.3.b., 215, 217
II.3.c., 39, 216, 217
II.4., 29, 217, 239
II.4.a., 39, 216, 217, 240, 243
II.4.b., 216
II.4.c., 216, 218, 243
II.4.d., 216
II.4.e., 216
II.5., 217, 239
II.5.a., 29, 42, 45, 46, 217
II.5.b., 218
III.1., 86, 89, 107, 147, 218
III.1.a., 217
III.1.b., 86, 89, 217
III.1.c., 113, 114, 115, 217
III.1.d., 218
III.1.e., 217, 240
III.1.f., 219, 239, 242
III.10., 217, 218
III.10.a., 217
III.10.b., 218
III.10.c., 217, 218
III.10.d., 218
III.11., 218
III.11.a., 218
III.11.b., 218
III.11.c., 218
III.11.d., 219
III.11.e., 218
III.2., 72, 215, 216
III.2.a., 72, 215, 216
III.2.b., 72, 86, 89, 146, 147, 216
III.2.c., 72, 216
III.3., 105, 217
III.3.a., 42, 45, 46, 217, 218, 243
III.3.b., 218
III.3.c., 217
III.4., 17, 86, 89, 91, 92, 98, 103, 104, 105, 107,

146, 216
III.4.a., 42, 43, 44, 216, 219
III.4.b., 39, 40, 41, 47, 216, 240, 241
III.5., 216
III.5.a., 216, 240, 243
III.5.b., 216
III.6., 218
III.6.a., 218
III.6.b., 218
III.7., 42, 43, 44, 45, 49, 217, 219, 239

262

III.7.a., 216
III.7.b., 217, 218
III.7.c., 217
III.8., 218, 219, 242
III.8.a., 219
III.8.b., 219
III.8.c., 219
III.9., 218
III.9.a., 218
III.9.b., 215, 218
Preamble, 215

O
Ontology

extending, 196
of engineering ethics, 57, 185, 192

Open-textured terms, 4, 29, 45, 116, 184
Operationalization techniques, iv, 1, 5, 6, 8, 9, 10, 11,

15, 17, 18, 19, 20, 21, 22, 25, 30, 31, 32, 33, 34,
35, 41, 44, 45, 51, 69, 85, 107, 108, 109, 111, 118,
121, 144, 145, 160, 164, 169, 171, 173, 175, 177,
181, 182, 183, 184, 185, 196, 197
examples of how the NSPE BER uses, 34

Owens, C. C., 253

P
Papka, R., 253
Pearl Harbor, bombing of, 197
PERL, 14, 24, 157
Pinkus, R. L., 27, 255
Pittsburgh, University of, i, iv, v, 250
Political decision making, 4

potential domain for SIROCCO, 197
Pollack, M., ii, v
Pop psychology, potential domain for SIROCCO, 196
Precision

definition of, 122
Primary thesis of the dissertation, 20, 21, 22, 118, 121,

144, 145, 160, 181
statement of, 9
testing, 132, 144

Princeton University, 255
Principles

middle-level, 29
philosophical theories of, 27
psychological theories of, 27
reasoning with, 28
understanding, interpreting, and applying, 30

Pritchard, M. S., 19, 252
PRODIGY, 3, 4, 5
PRODIGY/ANALOGY, 189
PROTOS, 185

R
Rabins, M. J., 19, 252
RANDOM, Competitor Method, 20, 21, 119, 120,

129, 132, 133, 134, 135, 139, 141, 144
definition of, 21

ratio decidendi
use by Karl Branting, 183

Reasons Hierarchy
in TRUTH-TELLER, 166

Recall
definition of, 122

Relations Hierarchy
in TRUTH-TELLER, 166

Rephrase the Code
definition of, 7

Respect for Persons
ethics problem resolution technique, 179

Retrieval
accuracy, iv, 141, 149, 160

Reuse an Operationalization
definition of, 7
Operationalization Technique, 9, 22, 36, 103, 110,

111, 120, 144, 145, 160
Rewrite a Code

definition of, 7
Operationalization Technique, 17, 73, 107, 108,

109, 169, 171, 183
Rissland, E. L., 5, 13, 14, 126, 162, 170, 171, 183,

187, 255
Role morality, 28, 29
Rule

abstract, 5, 164
abstract, open-textured, iv, 1, 2, 164, 173, 181, 183
chaining, 3, 96
intermediate, iv, 1, 3, 4, 6, 162, 163, 164, 181, 182,

184

S
Sadri, F., 255
Scalability

of SIROCCO, 19, 24, 118, 153, 157, 160, 181
Schank, R. C., 165, 255
Schapire, R. E., 253
Schoenberg, S., 251
Searing, D. R., 178, 255
Secondary thesis of the dissertation, 23, 115, 118, 121,

150, 152, 160, 181, 193
statement of, 10
testing, 147, 149

Selected Topics, 13, 20, 63, 116, 119, 130, 139, 140,
153, 187
definition of, 14

Sergot, M. J., 162, 255
Shortliffe, E. H., 251
Shuman, L. J., 255
Similarity assessment, iv, 23, 55, 74, 75, 77, 83, 165,

172
SIROCCO, iv, vi, xii, 8, 9, 10, 11, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 31, 38, 49, 50, 51,
52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83,
84, 85, 86, 87, 90, 91, 95, 97, 98, 99, 100, 101,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
125, 126, 127, 128, 130, 131, 132, 133, 134, 135,
136, 139, 140, 141, 142, 143, 144, 145, 146, 147,

263

148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 175, 176, 177, 178, 180, 181,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 197, 199, 220, 254
abstraction levels, 77
Actors and Objects, 11, 207, 221, 236
additional suggestion heuristics, 16
additional suggestions heuristics definition, 108
Architecture, 51
Architecture diagram, 52
case-selection heuristics, 16
case-selection heuristics definition, 106
code-selection heuristics, 16, 103, 105, 109
code-selection heuristics definition, 104
comparison to other interpretive CBR systems, 164
Critical Facts, 17, 21, 53, 84, 85, 87, 91, 99, 104,

105, 106, 109, 110, 111, 121, 154, 170, 184,
194

domain coverage, 165
dot product, 15, 21, 76, 79, 80, 81, 82, 83, 84, 85,

100, 109, 110, 121, 157, 170
dot product, definition of, 79
example explanation output of, 18
example of search tree, 92
example output of, 12, 102
experiments. See Experiments (top-level topic)
Fact Chronology, 11, 13, 16, 58, 59, 60, 61, 63, 64,

65, 68, 70, 75, 77, 78, 82, 86, 88, 92, 93, 169,
182, 185, 189, 190, 191, 194, 195, 209, 213,
214, 227, 230, 234

Fact Modifiers, 61, 74, 193, 233
Fact Primitive, 11, 14, 15, 51, 53, 58, 59, 60, 61,

63, 64, 70, 74, 77, 78, 79, 80, 81, 82, 84, 87, 90,
91, 92, 93, 95, 98, 99, 100, 101, 114, 115, 127,
130, 185, 194, 195, 196, 199, 221, 227

Fact-Phrases, 59, 74, 193, 195
Facts, 11, 14, 17, 51, 53, 59, 61, 62, 63, 64, 68, 71,

73, 74, 75, 84, 85, 90, 92, 93, 94, 95, 96, 98, 99,
105, 111, 112, 114, 115, 116, 151, 169, 176,
182, 185, 186, 188, 190, 193, 194, 195, 209,
213, 214

Ontology, 56, 57, 185, 192, 196
Questioned Facts, 11, 13, 17, 18, 21, 53, 59, 61, 66,

76, 78, 83, 84, 85, 87, 89, 91, 92, 99, 104, 105,
106, 109, 110, 111, 121, 170, 184, 233, 234,
238, 239

Stage 1, Surface Retrieval, 14, 15, 17, 21, 22, 24,
53, 55, 75, 76, 81, 83, 84, 85, 86, 99, 100, 103,
104, 106, 109, 110, 121, 155, 156, 157, 184

Stage 1, Surface Retrieval, algorithm definition, 76
Stage 2, Structural Mapping, 14, 15, 17, 21, 24, 53,

61, 75, 85, 86, 87, 98, 99, 100, 103, 104, 106,
109, 110, 111, 155, 159, 184, 193

Stage 2, Structural Mapping, algorithm definition,
87

The Analyzer, 53, 55, 99, 100, 101, 103, 105, 107,
109, 110, 121, 127, 152, 194

The Analyzer, algorithm definition, 101
Time Qualifier, 11, 15, 51, 58, 59, 61, 62, 63, 115,

151, 187, 190, 193, 194, 195, 209, 210, 211,
212, 221, 234

Skalak, D. B., 5, 14, 162, 187, 255
SMILE, 192, 195
Smyth, B., 25, 159, 255
Social etiquette, potential domain for SIROCCO, 196
Source case

definition of, 52
Southern California, University of, 251
Spellman, B. A., 176, 255
Stare decisis, 5
Strong, C., 28, 30, 166, 255
Structural mapping, 14, 15, 16, 21, 24, 53, 60, 61, 85,

101, 109, 110, 114, 115, 116, 121, 151, 155, 159,
169, 176, 177, 192, 193

SWALE, 165, 175, 186
Syllogism, of medical facts and rules, 3
System for Intelligent Retrieval of Operationalized

Cases and COdes. See SIROCCO

T
Target case

definition of, 51
Temporal

knowledge, iv, 6, 9, 10, 19, 23, 31, 34, 45, 47, 48,
50, 51, 111, 114, 115, 118, 121, 147, 148, 149,
150, 151, 152, 160, 164, 165, 181, 182, 188,
189, 190, 193

knowledge, examples of how the NSPE BER uses,
45

matching, definition of, 94
matching, in SIROCCO, 126, 168
Reasoning, 23, 25, 45, 47, 48, 127, 189, 193

Temporally analogous
definition of, 96

Thagard, P., 174, 177, 192, 197, 252, 255
Thomason, R., v
Tibshirani, R. J., 131, 252
TIMELOGIC, 96, 97, 190, 253
Tobey, B., vi
Tomuro, N., 251
Toulmin, S., 4, 28, 30, 166, 253, 255
Treger, R., vi
Trial cases, 19, 20, 21, 22, 23, 24, 32, 64, 82, 119,

127, 130, 131, 132, 133, 135, 136, 139, 141, 142,
145, 147, 148, 150, 153, 155, 157, 158, 160, 161,
169, 187, 188

Trousse, B., 189, 252
TRUTH-TELLER, 164, 165, 166, 167, 172, 178, 254

comparison to SIROCCO, 165
description of domain, 165
example representation, 167

Twining, W., 4, 162, 163, 255

U
Utilitarianism

ethics problem resolution technique, 179

V
Van Buren, A., 196, 256

264

van Rijsbergen, C. J., 21, 121, 256
Veloso, M. M., ii, v, 3, 186, 189, 256
Vila, L., 189, 256

W
Warnock, G. J., 28, 256
Weak analytic domain, 5, 24, 25, 29, 162, 164, 182,

183
characterization of, 4

Winston, P. H., 174, 256
Witten, I. A., 20, 120, 128, 256

WordNet, 177, 178, 254

Y
Yen, J., 4, 256
Yoo, C., vi
Yoshino, H., 189, 256

Z
Zobel, J., 128, 256

