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Abstract. Modern AIED systems develop sophisticated and multidimensional 
models of students. However, what is learned about students in one system—
their skills, behaviors, and affect—is not carried over to other systems that could 
benefit students by using the information, potentially reducing both the effective-
ness and efficiency of these systems. This challenge has been cited by a number 
of researchers as one of the most important for the field of AIED. In this paper, 
we discuss existing progress towards resolving this challenge, break down five 
sub-challenges, and propose how to address the sub-challenges.  
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1 Introduction 

More and more students use learning technologies each year, a trend accelerated by 
COVID-19 [6, 14]. Schools often have students use several learning platforms, even 
within the same subject [4]. However, these learning technologies do not currently work 
together to support students. What one learning system determines about a student’s 
skills and behaviors is generally not carried over to other learning systems, reducing 
both educational effectiveness and efficiency— if a student learns a topic several times, 
and multiple learning technologies need time to learn the same thing about a student. 

This challenge, bringing together distinct learning technologies, has been repeatedly 
referred to as a key goal for learning technologies. Kay [11] argued for “lifelong user 
models…existing independently of any single application and controlled by the 
learner.” It was also a key part of the fifth challenge, “Lifelong and Lifewide Learning,” 
in the AI Grand Challenges proposed in [18]. Finally, it was one of six “Baker Learning 
Analytics Prizes” (BLAP) challenges [3]. This challenge, “Transferability: The Learn-
ing System Wall,” was posed as not just transferring student information from learning 
system A to learning system B, but in improving a student model that is already suc-
cessful in learning system B and using that improved model to change how system B 
supports students at runtime, improving learning outcomes. Intentionally conceived in 
a more specific fashion than previous challenges, the Transferability/Learning Wall 



challenge was designed to represent a stepping-stone to the visions proposed in [11] 
and [18]—while representing improvement for students in itself.  

2 Prior Work 

Although learning systems do not yet connect their student models, there has been 
some past work to integrate learning systems in other fashions. In this section, we re-
view that literature and discuss why it remains a significant step to integrate two sys-
tems’ student models in an actionable way.  

One of the most well-known areas of relevant prior work is in standards for log-
ging data and representing student models. The Caliper framework provides a large 
set of ways to represent data from a variety of types of learning activities seen in 
learning management systems but has less support for the types of activities seen in 
the more complex interactions in AIED systems [9]. xAPI attempts to offer support 
for representing and sharing the data from a broader range of learning activities [5].  

Both these platforms can be used to integrate systems through connections such as 
the Learning Tools Interoperability (LTI) standards [10]. Still, the connections offered 
are very simple, such as specifying the correctness of an action. Neither framework 
provides functionality designed for sharing the type of complex student models used 
in modern AIED systems. One AIED project was able to develop a workaround for 
the LTI standard to support simple transfer of student model information between 
platforms [1], but the approach only worked in a single direction, for a single piece of 
information, and required a direct platform-to-platform connection. In another exam-
ple, [7, 15] connected two learning environments into the same reporting system. 

Other research has attempted to simulate a student model connection between 
different learning systems or activities, without actually connecting systems/activities 
to each other. [15,16] developed a mapping between the skills in two different learn-
ing systems and then tested it by administering paper tests to students and analyzed 
the degree of agreement between the skills (but solely from the paper test data). [8] 
analyzed whether student knowledge model estimates from one lesson in a Cognitive 
Tutor would improve knowledge estimation on later lessons in a Cognitive Tutor. [17]  
asked twenty subjects to use both a research paper recommendation system and a sci-
entific talk recommendation system (with order randomized) and then analyzed 
whether the second system’s recommendations would have been more accurate if the 
first system’s data had been used. These studies established the feasibility and poten-
tial usefulness of connecting student models across learning systems, paving the way 
for the next step: actually making the connection between learning systems. 

3 The Problem, Broken Down Into Its Constituent Parts 

The problem of sharing student models between two learning systems in a mean-
ingful way that improves student outcomes breaks down into five sub-challenges:  
1) Connection: The two systems need to seamlessly and digitally connect to each 

other, whether via API, shared database, or another technical link, so that one 
system can use the other system’s inferences to inform its behavior.  



2) Mapping Related Constructs: The two systems need to have student models of 
similar or related constructs, each of sufficient accuracy to be practically useful, 
and a mapping between the constructs in each system is needed [16]. 

3) Evidence Integration: Each system needs to have a way to integrate evidence 
from the other system into its own estimates based on how strongly each sys-
tem’s evidence predicts behavior in the other system. 

4) A Good Reason: There needs to be a practical reason for connecting the student 
models, e.g. the student model drives an automated intervention, or the student 
model helps with a teacher orchestration system. 

5) Demonstration of Benefit: The intervention (whether automated or by teachers) 
driven by the shared student model needs to actually make a difference to student 
behavior and outcomes if properly delivered, but only for some students (i.e. a 
student model is actually needed; the intervention is not universally beneficial).  

4 Potential Steps towards an Architecture and Student Model 
Integration Algorithms 

There are many possible approaches to connecting and sharing information between 
two or more learning systems (sub-challenge 1, Connection): these approaches can gen-
erally be grouped into two categories, system-to-system direct connections, and server-
mediated connections. System-to-system direct connections are likely the quickest ap-
proach but are also hard to scale more broadly. It will be difficult to develop an ecosys-
tem of learning systems working in concert through direct connections between indi-
vidual learning systems. Instead, it will be more scalable to build a single server to 
facilitate connections between many learning systems. This could be achieved by an 
external web service, shown in Figure 1, that different learning systems can post student 
model inferences to or request student model inferences from. This external service 
would also need to be able to securely maintain a mapping of student IDs in different 
learning systems, with some form of access control for school districts or learning sys-
tem developers to authorize sharing between learning systems. 

Assuming that the two platforms model similar or related constructs (sub-challenge 
2, Mapping Related Constructs), and that these models drive practical interventions 
(sub-challenge 4, A Good Reason), the next step is to select an algorithm that each 
platform will use to integrate information from the other platform  

 

 
Fig. 1: A potential architecture for student model sharing 

 



(sub-challenge 3, Evidence Integration), improving, replacing, or initializing the other 
system’s estimates. Each system should take in the other system’s evidence but make 
its own decision, rather than having a unified student model external to either system. 
This design choice keeps student model control local to each system—keeping system 
developers in control of their system’s functioning. We propose investigating the fol-
lowing five approaches to information integration and selecting the most successful:  
1) System-weighted averaging. Take each system’s estimates, and average them 

together, weighting the other system’s estimates lower than its own.. 
2) System and evidence quantity weighted averaging. Take each system’s esti-

mates and average them together. Each system weighs the other system’s evi-
dence in terms of the amount of evidence, penalized by a percentage due to the 
evidence not being from the local system.  

3) Performance Factors Analysis (PFA) [13]. PFA is typically used in a single 
system. It computes a linear combination of weighted successes and failures for a 
skill so far (weights fit per skill) and then runs that combination through a logistic 
function to predict correctness on future items. PFA could be extended for a 
multi-system student model by fitting “successes” and “failures” for each system.  

4) Bayesian Network. A Bayesian Network allows complex inter-relationships be-
tween skills [cf. 2, 12]. Both the current system’s evidence and the other system’s 
evidence can be integrated into a network, with the other system’s evidence 
providing updates to the estimates of the current system’s evidence. 

5) Deep Knowledge Tracing + [19]. Deep Knowledge Tracing (DKT) can find 
complex relationships between multiple sources of evidence to predict future per-
formance. DKT+ is an extension based on regularization that fixes problems with 
the original formulation (such as correct performance leading to predictions of 
worse performance and wild swings in proficiency estimates). The other system's 
evidence and the current system’s evidence can be integrated into DKT+ to pre-
dict multiple student attributes or behaviors simultaneously.  

 
Having integrated the two student models, the next step will be to test whether an in-
tervention based on the integrated student model is beneficial for learners (sub-chal-
lenge 5, Demonstration of Benefit): beneficial only to students in need and better than 
an intervention from only a single system’s data. One of the biggest areas of potential 
will be for “cold start” situations – where one system has evidence on student 
knowledge of a topic not yet encountered in the other learning system. There will also 
be potential around inferring constructs where considerable amounts of aggregate data 
are needed to draw a clear inference or where the behavior or state of interest only 
manifests occasionally. 

5 Conclusion 

In this article, we discuss the potential of sharing student models between learning sys-
tems. We frame this challenge in terms of five sub-challenges that need to be addressed 
in order to solve this challenge. We then offer an architecture to address a key sub-
challenge and discuss algorithms that could potentially be used for student model inte-
gration. We encourage our AIED colleagues to join in solving this challenge. 
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