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ABSTRACT 
When used in classrooms, personalized learning software allows 
students to work at their own pace, while freeing up the teacher 
to spend more time working one-on-one with students. Yet such 
personalized classrooms also pose unique challenges for teachers, 
who are tasked with monitoring classes working on divergent 
activities, and prioritizing help-giving in the face of limited time. 
This paper reports on the co-design, implementation, and 
evaluation of a wearable classroom orchestration tool for K-12 
teachers: mixed-reality smart glasses that augment teachers’ real-
time perceptions of their students’ learning, metacognition, and 
behavior, while students work with personalized learning 
software. The main contributions are: (1) the first exploration of 
the use of smart glasses to support orchestration of personalized 
classrooms, yielding design findings that may inform future work 
on real-time orchestration tools; (2) Replay Enactments: a new 
prototyping method for real-time orchestration tools; and (3) an 
in-lab evaluation and classroom pilot using a prototype of teacher 
smart glasses (Lumilo), with early findings suggesting that Lumilo 
can direct teachers’ time to students who may need it most. 
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1 INTRODUCTION 
In recent years, there has been increasing interest in personalized 
classroom models within K-12 education [25]. In personalized 
classrooms, students progress along individualized learning 
pathways, while the teacher’s role is transformed from that of a 
lecturer at the front of the class to that of a facilitator of students’ 
self-paced learning [28]. To support this kind of highly 
personalized instruction, schools are increasingly using 
personalized learning software for use in their classrooms [25]. 
     One form of personalized learning software, intelligent 
tutoring systems (ITSs) [17], allows students to work at their own 
pace while providing detailed, step-by-step guidance through 
complex learning activities. An advantage of such systems, when 
used in classrooms, is that they free up the teacher to spend more 
time working one-on-one with students (e.g., [12, 28]). However, 
they also present teachers with unique challenges, as teachers are 
tasked with monitoring classrooms that are likely working on a 
broad range of divergent educational activities at any given time 
[3, 21, 27]. Thus, there is a great need for usable real-time 
orchestration tools that can support teachers in monitoring 
personalized classrooms, and effectively allocating help and 
attention across students, in the face of limited time [3, 18]. 
     Prior work in Learning Analytics and Human-Computer 
Interaction has adopted user-centered and participatory 
approaches to the design of real-time awareness tools for teachers 
working in personalized classrooms (e.g., [1, 18, 21]). However, 
most of this work has focused on designing tools for university-
level instructors. Our own recent work has focused on better 
understanding K-12 teachers’ real-time information needs in 
personalized classrooms – using the notion of “teacher 
superpowers” as a probe to elicit key needs and desires that real-
time analytics might address [11]. In parallel, recent design and 
ethnographic work has begun to investigate the potential of 
emerging wearable technologies for teacher support (e.g., 
[11,26,29]). Such technologies hold great promise to enhance 
teacher awareness, while allowing teachers to keep their heads up 
and eyes focused on their classroom – acknowledging the highly 
active role teachers play in personalized classrooms [12, 26, 28].  
     While prior work suggests that teachers may prefer wearables 
over handheld devices for use in personalized classroom contexts 
[11, 26], this work has not involved the user-centered design and 
evaluation of an actual wearable orchestration tool. Building on 
findings from our prior user-centered design research with K-12 
teachers, in which teachers suggested the idea of having smart 
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glasses that could augment their real-time perceptions of 
students’ learning, metacognition, and behavior [11], this paper 
presents the first exploration, to our knowledge, of the use of 
smart glasses to support teachers in personalized classrooms. 
Working with sixteen K-12 math teachers, we have iteratively 
designed and developed Lumilo: mixed-reality smart glasses that 
support teachers in orchestrating personalized classrooms. We 
focus on classrooms in which students work with ITSs – 
leveraging these systems as “classroom sensors”, that can 
generate rich, actionable analytics to support teachers’ real-time 
decision-making. In particular, we use automated, real-time 
detectors of student learning and behavior within ITSs, to provide 
teachers with several of the “superpowers” identified in [11], 
discussed in the next section. 
     The structure of this paper is as follows: we first present our 
iterative co-design process with K-12 teachers. As part of this 
process, we introduce Replay Enactments (REs): a new 
prototyping method for real-time orchestration tools, which 
builds upon prior prototyping methods from both Learning 
Analytics [20, 21] and Human-Computer Interaction [23]. We 
then present Lumilo: a pair of mixed-reality smart glasses 
designed to support K-12 teachers in orchestrating personalized 
class sessions. Using REs, we find early evidence that teachers 
using Lumilo spend significantly more time attending to students 
who would otherwise learn less from the educational software 
alone. While prior work suggests that real-time awareness tools 
can successfully direct teachers’ attention to students or groups 
who are currently low performing (e.g., [16]), the present analyses 
represent the first evaluation of relationships with student 
learning gains (albeit in simulated classrooms). Finally, based on 
our findings from prototyping sessions and a classroom pilot, we 
present design opportunities for future teacher support tools, and 
directions for future research. 

2 BACKGROUND  

2.1 Intelligent Tutoring Systems in-the-wild 
Intelligent tutoring systems (ITSs) are a class of advanced learning 
technologies that provide students with step-by-step guidance 
during complex problem-solving practice and other learning 
activities. These systems continuously adapt instruction to 
students’ current ‘state’ (a set of measured variables, which may 
include moment-by-moment estimates of student knowledge, 
metacognitive skills, affective states, and more) [6]. Several meta-
reviews have indicated that ITSs can enhance student learning, 
compared with other learning technologies or traditional 
classroom instruction (e.g., [17]). However, ethnographic studies 
have revealed that, in K-12 classroom settings, teachers and 
students often use ITSs in ways not originally anticipated by ITS 
designers (e.g., [11, 12, 28]). For example, Schofield et al. found 
that rather than replacing the teacher, a key benefit of using such 
AI tutors in the classroom may be that they free teachers to 

provide more individualized help while students work with the 
tutor. Although students tended to perceive that teachers provide 
better one-on-one help than an ITS, they also preferred ITS class 
sessions over more traditional sessions – in part because of this 
shift in teacher-student interactions [28]. 

2.2 Intelligent tutors as teachers’ aides 
Recently, some work has begun to explore the value ITSs might 
provide to teachers in K-12 classrooms, and to investigate 
teachers’ needs and desires for real-time support in ITS 
classrooms. However, the design of effective support tools for 
teachers working in these contexts remains a largely open, 
challenging design problem [27]. In a series of user-centered 
design interviews with middle school math teachers, we 
previously conducted a broad exploration of teachers’ needs in K-
12 classrooms that use ITSs [11]. For example, in a generative card 
sorting exercise, we asked teachers what “superpowers” they 
would want during ITS class sessions, to help them do their jobs. 
Several of the superpower ideas that teachers generated centered 
on abilities to perceive information about individual students’ 
learning and behavior, in real-time. For example, we found that 
all interviewed teachers wanted to be able to instantly see when a 
student is “stuck” (even if that student is not raising her/his hand), 
to instantly detect when a student is off-task or otherwise 
misusing the software, and to be able to see students’ step-by-step 
reasoning, unfolding in real-time. 
     During this card sorting exercise, teachers also generated the 
idea of being able to see this information “floating over students’ 
heads”, directly within the physical classroom environment (cf. 
[29]). In a follow-up series of concept generation and validation 
[9, 23] studies with teachers, we found that teachers were 
particularly receptive to awareness tool designs that allowed them 
to keep their heads up, and their attention focused on the 
classroom. Teachers emphasized that some of the most useful 
real-time information comes from reading student body language 
and other cues that would not be captured by a dashboard alone. 
They gravitated towards the idea of wearing eyeglasses that could 
provide them with a private view of actionable information about 
their students in real-time, embedded throughout the classroom 
environment (e.g., through state indicators displayed directly 
above students’ heads) (cf. [29]). While these “teacher smart 
glasses” would have many of the same advantages as ambient and 
distributed classroom awareness tools for teachers, such as [1] and 
[3], they would not reveal sensitive student data for the whole 
class to see (cf. [3, 13]) – a risk that several teachers referred to as 
a “deal-breaker” for use in middle school classrooms [11]. 
     Finally, similar to earlier findings by Martinez-Maldonado et 
al. in the context of collaborative, multi-tabletop classrooms [16], 
we found preliminary evidence that teacher awareness of student 
struggle in ITS classrooms may be limited. Although teachers 
reported focusing their attention on students whom they thought 
needed help the most, teacher time allocation during ITS class 
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sessions was not significantly related to either students’ prior 
domain knowledge or learning gains [12]. These findings suggest 
that there is room for improvement via a real-time support tool. 

3    METHODS 
Building on the early design findings discussed above, we wanted 
to get a better sense of what real-time information about student 
learning and behavior would be most helpful to K-12 teachers 
during personalized class sessions. In addition to validating 
teacher desires for real-time support, as uncovered in [11], we 
wished to understand how teachers would envision using such 
information to inform their real-time decision-making during a 
class session. We also wanted to explore the idea of “teacher smart 
glasses” further, to understand their unique affordances. 
     To these ends, we conducted a series of iterative design studies 
with a total of 16 middle school math teachers, from 9 schools and 
6 school districts in Pittsburgh and surrounding areas. All 
participating teachers had previously used an adaptive learning 
technology in their classrooms, and 12 of 16 teachers had 
previously used an ITS as a regular component of their teaching. 

Table 1. Demographic information for schools 

School Region 

Free/Reduced 
Price Lunch 
(proxy for 

poverty rate) 

# of 
teach-

ers 

# teachers 
with < 2 
years’ 

experience 

A Rural 34% 4 0 

B Suburban 23% 1 0 

C Urban 36% 4 1 

D Urban 67% 1 0 

E Urban 63% 2 0 

F Suburban 99% 1 0 

G Suburban 78% 1 1 

H Suburban 71% 1 1 

I Urban 87% 1 1 

4  LOWER-FIDELITY PROTOTYPING 

4.1 Early prototyping and storyboarding 
To further explore teachers needs and desires for real-time 
support, prior to developing specific prototypes, we first 
conducted storyboarding and lo-fi prototyping [9] sessions with a 
series of 3 middle school math teachers from schools A, C, and F. 
For all studies, two researchers (the 1st and 2nd authors) visited 
middle schools and worked with teachers in their own classrooms. 
     In each session, a teacher sat down at her/his desk, in front of 
a computer screen showing a full-screen image of a classroom full 
of students working with personalized learning software. A 
researcher asked the teacher to put on a pair of plastic eyeglass 

frames, which the teacher was asked to pretend were “smart 
glasses”. As soon as the teacher put on these glasses, a researcher 
pressed a button on the computer, triggering additional layers of 
information to appear on top of the image (simulating the 
experience of using smart glasses). Floating text labels appeared 
over students’ heads, alerting teachers to current detected states, 
based on requests for “superpowers” reported in [11]. For 
example, by scanning the classroom, teachers could see that 
certain students were currently struggling in the software, 
potentially off-task, or frequently making careless errors. In 
addition, two class-level analytics displays popped up along the 
classroom’s whiteboard, visible only through the smart glasses – 
based on teachers’ expressed desires for real-time class-level 
information, identified in [11]. One of these displays showed a list 
of skills that multiple students in the class had practiced but few 
had mastered, and the other showed a sorted list of common 
errors that multiple students in the class had recently exhibited. 
     The image displayed a single moment during a class session, 
and the teacher was asked to think aloud while imagining how 
they might (or might not) act on the information they were seeing 
through their “smart glasses”, if this was a real class session. In 
the process, teachers were encouraged to remark on any 
information that was visible in the image but not so useful, or 
information that was not visible but might be useful to have, to 
guide their real-time decision-making. For example, although 
teachers expressed a desire to see when students are frequently 
making “careless errors” in the “superpowers” exercise [11], all 
teachers interviewed in the present study were uncomfortable 
with, and skeptical of the idea that a computer could make 
accurate judgments about student motivation. In line with prior 
design findings (e.g., [11, 16]), all teachers expressed a desire to 
see positive information about individual students, not just 
negative information. In particular, all teachers wanted to be able 
to see when students have been performing particularly well in 
the software recently. Teachers found this valuable for several 
reasons, including but not limited to: motivating themselves (since 
seeing nothing but negative alerts might be discouraging), 
motivating students (by identifying and praising students who 
have been doing well lately), and identifying students who may 
be underchallenged by the software. 
     To facilitate brainstorming, teachers were given a large, 
printed copy of the same classroom image shown on the screen, 
but with blank rectangles in place of the individual student labels 
and classroom analytics displays. Throughout each session, 
teachers could use these blank spaces to sketch out new ideas for 
real-time information that could be displayed about individual 
students or the whole class. Each time a teacher generated an idea 
for new information, a researcher would press the teacher to 
provide examples of how she or he envisioned using that 
information during a real class session. We found that this process 
of generating hypothetical usage examples often led teachers to 
refine their ideas, as they realized that more, or different, 
information may be needed to make certain decisions. The ideas 
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that a teacher generated during one study were ultimately 
incorporated into the version of the experience prototype [9] that 
we would show to the next teacher.  
     At opportune moments throughout each study, researchers 
also probed teacher reactions to particular classroom scenarios 
involving the use of smart glasses, using storyboards that were 
prepared before the study. We took a participatory storyboarding 
approach [9], in which the final panel or two of a storyboard was 
often left blank. This allowed teachers to fill in the details of how 
they would imagine a classroom scenario progressing, or what 
decisions they might make in a particular scenario, rather than 
relying entirely on a researcher-envisioned sequence of events.  
     During the first session, we found that it was challenging for 
teachers to imagine the actual experience of using mixed-reality 
smart glasses in the classroom. So, for the second and third 
prototyping sessions, we transitioned from prototyping purely in 
Photoshop towards mixing in an experience prototyping phase 
using real mixed-reality smart glasses (although with Wizard of 
Oz’d, static analytics). We used the Microsoft HoloLens [10], 
which enabled us to place readily-available, default assets at fixed 
spatial positions throughout a teacher’s classroom. When teachers 
then returned to the sketching and storyboarding exercises, they 
could ground their responses in this experience. 

4.2 Iterative mid-fidelity experience 
prototyping 
     Given that we had received many positive reactions to the 
concept of teacher smart glasses in early prototyping and 
storyboarding sessions – and had begun to get a more detailed 
sense of teachers’ real-time information needs, grounded in the 
sorts of in-the-moment decisions that this information might 
inform – we moved to mid-fidelity prototyping sessions. We next 
conducted prototyping sessions with a series of 5 math teachers, 
from schools C, E, G, H, and I. As before, for each of these studies, 
two researchers (the first and second authors) visited middle 
schools in Pittsburgh and surrounding areas and worked with 
teachers in their own classrooms. Each study lasted 90 minutes: 
the teacher wore the HoloLens during an hour-long experience 
prototyping [9] phase, while experimenting with different 
configurations of analytics displays and thinking aloud about 
likely use-cases. This was followed by a 30-minute semi-
structured post-interview in which teachers had the opportunity 
to reflect and provide more detailed design feedback. For these and 
subsequent studies, we focused on the context of middle school 
classrooms using tutoring software for equation- solving. 
    To quickly prototype design alternatives, we used HoloSketch 
[22], a HoloLens application for rapid prototyping of mixed-
reality experiences. Using HoloSketch, we were able to position 
2D assets – including mocked-up displays of student-level and 
class-level analytics – throughout a teacher’s classroom space. For 
example, when a teacher put the HoloLens on, the teacher could 
see indicator symbols (like those shown in Figure 1) floating over 

empty student seats, and class-level analytics displays appearing 
as “wall decorations”, which the teacher could reposition.  
     In the first study session, we included all indicator symbols and 
analytics displays that teachers had consistently requested to this 
point in early prototyping and storyboarding sessions. Then, in-
between prototyping sessions, we rapidly iterated on the design 
of individual student-level indicators and class-level displays and 
incorporated new ideas that teachers had generated during the 
previous session. Since these 2D assets were synchronized with 
the HoloLens app, we were also able to make modifications in 
real-time, based on teachers’ live design feedback, by editing 
assets on a laptop as a teacher viewed them through the HoloLens.  
     At least one instance of each indicator idea that teachers had 
generated (e.g., a “Zzz” symbol to indicate that a student had been 
idle for a while) was displayed, positioned over empty student 
seats, and a set of class-level dashboards were shown at the front 
of the classroom. As before, these displays were static, presenting 
a frozen moment in time. Throughout the prototyping sessions, 
the teacher had the opportunity to move about her/his classroom. 
The teacher was asked to think-aloud, imagining what actions she 
or he might take in a real class, in response to each indicator, and 
what other information might help in making these decisions. 
     In between sessions, we reflected on our areas of highest 
uncertainty. For each open question, we mocked up several design 
alternatives. Then, towards the end of each session, teachers were 
brought to the back of their classroom, where (in mixed-reality) 
we had arranged an immersive “gallery” of these new design 
alternatives. Teachers had the opportunity to reposition these 
information displays, and experiment by decorating their 
classrooms with different combinations of displays, while 
thinking aloud and providing design feedback. Based on this 
feedback, we iterated on the designs prior to the next prototyping 
session, providing opportunities to validate previous teachers’ 
expressed needs and design ideas. 

4.3 Highlighted design findings 
A PhD student (the first author of this paper) and two masters 
students then worked through transcriptions of approximately 12 
hours of video and audio recorded experience prototyping studies, 

 

Figure 1.  Consistently requested real-time indicators. 
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across 8 teachers, to synthesize findings using two standard 
techniques from Contextual Design: Interpretation Sessions and 
Affinity Diagramming [9]. Interpretation Sessions are aimed at 
helping design teams develop a shared understanding of collected 
interview and think-aloud data, by collaboratively extracting 
quotes representing key issues and insights. Affinity 
Diagramming is a widely-used design method, aimed at 
summarizing patterns across participants’ responses, by 
iteratively clustering these quotes based on content similarity, 
into a hierarchy of increasingly abstract, emerging themes [9, 11]. 
     We conducted several Interpretation Sessions, and the 
resulting 655 quotes were iteratively synthesized into 77 level-1 
categories, 23 level-2 categories, 10 level-3 categories, and 7 level-
4 categories. Key findings (level-4) are highlighted below. 
Student-level indicators 
Five major categories of student learning states and behaviors 
emerged from these co-design sessions, as shown in Figure 1. 
Teachers strongly preferred to keep these indicators simple – 
displaying a single graphical symbol above each student’s head 
(as in Figure 2, left), to avoid information overload. However, it 
was important to teachers that they could access brief 
elaborations on-demand (e.g., by gazing at an indicator, as in 
Figure 3, left), which could aid in understanding why an indicator 
was appearing for a student at a particular time. 
Sequences of student states can be information-rich 
In addition to seeing indicators reflecting a student’s current 
“state” teachers highlighted the usefulness of seeing detected 
states preceding the current state. For example, if a student is 
currently “idle” or “misusing the software” in some way, it can be 
useful to know whether that student was also recently struggling. 
Teachers would then interpret the prior struggle as a potential 
cause of the current behavior and respond accordingly. 
The classroom as a dashboard 
Teachers remarked that it felt natural to reference information 
displays that were distributed throughout their physical 

classroom spaces. In the absence of a dashboard, teachers were 
used to monitoring their students by scanning the physical 
classroom (e.g., reading student body language), and “patrolling” 
rows of student seats, to catch glances of students’ screens. One 
teacher remarked, “I would also use their body language to judge 
the situation, but the initial [alert] would help, so I know to go 
over there.” Teachers also revealed that they already used their 
classrooms as distributed information displays. For example, 
during a typical class session, teachers would often leave notes 
and images for themselves on boards or projected displays, to 
reference throughout the session. 
Need for selective shared awareness 
All participating teachers noted that the analytics they found most 
useful in informing their real-time decision-making tended to be 
ones they would not be comfortable sharing with students. 
Teachers expected that these analytics could do more harm than 
good, by promoting unhealthy social comparison and competition 
among students (cf. [1, 13]). As one teacher put it, “In middle 
school, kids don’t know what they don’t know [but] kids care so 
much about how they’re seen by others … [they] don’t want to 
look stupid or feel stupid.” However, teachers also noted they 
would want a mechanism to selectively share particular analytics 
during class. Five out of eight teachers suggested it would be 
useful to customize the visibility of analytics displays on a class-
by-class basis. All of these teachers anticipated an interaction 
effect in which real-time analytics might motivate higher-
achieving classes by promoting competition, but demotivate 
lower-achieving classes. 
Ground automated inferences in ‘raw’ student artifacts 
Much of the appeal of the glasses lay in their potential to offload 
the task of noticing key events in the classroom, via automated 
inferences. However, teachers also emphasized the importance of 
having access to “raw” student-generated artifacts in a familiar 
format. For example, the mock-ups of “deep-dive” screens shown 
in Figure 2 display individual students’ greatest “areas of 

   

Figure 2.  Design mock-ups that emerged during lower-fidelity prototyping sessions.  Left: Teacher’s default view of the 
class. Each student has an indicator display floating above her/his head, and two class-level analytics displays are 
positioned at the front of the class. One shows skills practiced by many students but mastered by few; the other shows 
errors recently exhibited by many students.  Right:  Deep-dive screens shown if a teacher ‘clicks’ on an indicator.  
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struggle”. For each area, raw examples of errors that the student 
has recently exhibited are also shown. Showing these example 
errors is crucial not only in helping the teacher perform further 
diagnosis, but also in supporting teacher trust (cf. [15]) or 
enabling the teacher to “override” the system’s judgments if 
needed. 
Enable teachers to “peek” at student solution paths 
In addition to presenting teachers with summaries of a student’s 
main areas of struggle, teachers generally wanted to be able to see 
a live feed of a student’s work within their current activity 
(perhaps annotated, as in Figure 2). Although we had anticipated 
that teachers would prefer to simply walk over to a student and 
observe that student’s screen directly, teachers noted that 
approaching students can cause them to alter their behavior, 
reducing the diagnostic usefulness of direct observations (cf. [12]). 
 “Invisible hand raises” 
Although most of teachers’ ideas focused on ways real-time 
analytics could help them regulate students’ learning, some 
teachers emphasized the importance of also creating 
opportunities to develop student help-seeking skills [2], often 
generating the idea of giving students an “Ask the teacher” button 
in the software, that would trigger a “raised hand” symbol within 
the glasses. Teachers expected that, by providing students with a 
way to request help that was not easily visible to other students, 
more students would feel comfortable asking (cf. [28, 29]). 
Otherwise, as one teacher put it, “for a number of students in my 
class, unless I [walk over], they are never going to say anything.” 

5 DEVELOPMENT OF A HIGHER-FIDELITY 
PROTOTYPE 
All prototyping sessions until this point had relied upon Wizard 
of Oz’ing analytics, presented “frozen” at a single time slice.  We 
next began prototyping the experience of using smart glasses to 
monitor a class session unfolding over time, using real student 
data and analytics. Based on findings from lower-fidelity 
prototyping, we created a mixed-reality application called Lumilo, 
developed with Unity3D for the Microsoft HoloLens [10], and 
capable of interfacing with a broad range of ITSs. 
     Using a newly-extended version of the CTAT/TutorShop 
architecture for ITS authoring and deployment, we developed an 
initial set of automated detectors of student learning and behavior, 
leveraging pre-existing student modeling techniques [6] to 
provide teachers with each of the key real-time indicators 
identified in the previous section. When embedded in the tutoring 
software, the real-time analytics generated by these detectors 
would then be streamed to the TutorShop learning management 
system, and finally to Lumilo, where they would update mixed-
reality displays in the teacher’s glasses. These displays consist of 
three main types: student-level indicators, student-level “deep-
dive” screens, and class-level summaries (as shown in Figures 2 
and 3). Student-level indicators and class-level summaries are 
always visible to the teacher by default – with student-level 

indicators appearing above corresponding students’ heads (based 
on teacher-configurable seating charts), and with class-level 
summaries appearing at teacher-configurable locations 
throughout a classroom. If a teacher gazed at a particular student’s 
indicator, a brief elaboration about the currently displayed 
indicator symbol would be displayed. For example, if a student 
was detected as recently struggling in the software, a teacher 
could glance at that student’s indicator to reveal how long this 
alert had been active, and whether the student seemed to be 
avoiding using the software’s built-in hints. If no indicators were 
currently active for a student, a circular outline would be 
displayed above that student’s head (as illustrated in Figure 2). 
     If a teacher clicked on a student’s indicator (either by using a 
small handheld clicker, or by making a tapping gesture in mid-
air), the teacher would see “deep-dive” screens for that student, 
containing more detailed information about a student’s path 
through their current problem, and any consistent areas of 
struggle that student might be exhibiting. The “current problem” 
deep-dive screen illustrated in Figure 2 displays an annotated live 
feed of a student’s work on their current problem. Each problem 
step is annotated with the number of hint requests (in yellow) and 
incorrect attempts (in red) that a student had made on that step. 
The deep-dive screens also allowed teachers to view recently active 
alerts, as shown beside the student’s name in Figure 3. 
     To support future design explorations, we engineered the 
initial prototype of Lumilo in a heavily-modular fashion, so as to 
be able to rapidly iterate on the design in-between future 
prototyping sessions, and even to make small adjustments within 
a single prototyping session, based on live teacher feedback. For 
example, alternative detector algorithms intended to measure the 
same teacher-identified construct (such as “unproductive 
struggle”) could be swapped in and out during a session, and thus 
tested in parallel. All detectors included in our initial prototyping 
sessions were drawn from the Educational Data Mining, Artificial 
Intelligence in Education, and Learning Analytics literatures – 
where many automated detectors of student learning and 
behavior have been introduced, based on students’ interactions 
within the software (e.g., [2, 4, 6, 14]). For example, in order to 
drive a real-time indicator of “system misuse”, we explored 
combinations of the Help Model [2] and a detector of 
unproductive “gaming-the-system” behaviors [6]. Similarly, to 
drive an indicator of “unproductive struggle”, we explored the use 
of simpler methods such as Beck and Gong’s detector of “wheel-
spinning” [4], as well as more sophisticated methods (e.g., 
“predictive stability” [14]). Each detector was implemented in a 
parameterized fashion, so that aspects of their behavior (e.g., alert 
thresholds) could be adjusted during and between sessions.  
     We also developed a new logging library for Lumilo, which 
automatically logs teacher actions during class sessions to 
DataShop, a major educational data repository [16]. For example, 
Lumilo can record time-stamped logs of a teacher’s physical 
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proximity to a given student at a given time, the target of a 
teacher’s gaze, and all teacher interactions with the tool.  

6 PROTOTYPING REAL-TIME ANALYTICS 
USING REPLAY ENACTMENTS 

6.1 Methods 
We next conducted a series of higher fidelity, iterative experience 
prototyping sessions, with a total of 10 math teachers, from 5 
schools (schools A, B, C, D, and E) and 3 school districts in 
Pittsburgh and surrounding areas. As before, all participating 
teachers had previously used at least one adaptive educational 
technology in their classrooms, and 7 out of 10 teachers had 
previously used an ITS as a regular component of their teaching. 

6.2  Replay Enactments  
In order to prototype the experience of using Lumilo in a 
classroom, we developed a new prototyping method for real-time 
teacher support tools: Replay Enactments. Much like other 
recently proposed prototyping methods in Learning Analytics, 
such as the simulation methods presented in [19, 20] and [21], 
Replay Enactments (REs) involve replaying log data from 
students’ interactions within educational software, to prototype 
real-time analytics and visualizations with teachers. However, in 
the spirit of recent HCI methods for prototyping radically new 
experiences (e.g., User Enactments (UEs) [23]), REs build on these 
approaches by emphasizing embodied role-playing in physical 
classroom spaces. In our own work, we have found that pushing 
teachers to role-play what they might actually say to a particular 
student at a given time often leads teachers to insights about ways 
an orchestration tool could be improved. In addition, we have 
found that asking teachers to role-play while actually navigating 
throughout a physical classroom space helps to create an illusion 
of “actually being there” while also providing early insight into 
potential effects of classroom layout (cf. [12]). In contrast to UEs, 
REs prototype an experience using authentic data and algorithms, 
evolving over time. Doing so allows for earlier observation of the 
interplay between human and machine judgments (cf. [7]), such 
as ways a system’s false positives and negatives may impact the 
experience of using a data-driven intelligent system. 

     In each Replay Enactment, we brought teachers into a 
computer lab at our university’s campus. At each empty seat in 
the lab, we had placed a name tag with a fabricated student name. 
On the corresponding computer screen, we had logged into the 
tutoring software, under the given student’s name. Using Lumilo, 
we had positioned holograms throughout the computer lab so that 
indicators, associated with corresponding student accounts in the 
software, would appear over “student” heads. Class-level analytics 
displays were also positioned along the walls of the computer lab. 
     Using a newly-developed log replay system, we were able to 
replay log data from an entire classroom of students, using 
datasets collected from a classroom study in which middle school 
students used Lynnette, an ITS for equation solving. When a 
researcher pressed a button in a web-based “controller” interface, 
the entire class sprung to life, replaying a 40-minute class session 
from beginning to end, at actual speed. The teacher wore Lumilo 
during this simulation phase and was asked to pretend that this 
was an actual class session, and to think aloud while moving 
throughout the room. If the teacher thought they might focus 
attention on a particular student at a particular time, the teacher 
was asked to talk to the student as if they were actually there. 
Teachers often became quite immersed in this task. One teacher 
remarked, about halfway through a session, “You know what? I’m 
acting like they’re really here now … I’m thinking that I’m gonna 
tell them something, and [the indicator] is gonna change.” 
     We ran separate REs with a total of 5 teachers. Each of these 
sessions began with a 35-minute training and familiarization 
phase during which the teacher could acclimate to using the 
system, followed by a 40-minute simulation phase, and 
concluding with a 15-minute post-interview, to elicit additional 
design feedback. To prototype the experience of using Lumilo 
under a broad range of classroom dynamics, we selected one 
dataset from a “remedial” middle school math class, one dataset 
from an “advanced” class, and one dataset from an “average” class 
(based on the tiering system used in the schools from which these 
datasets were drawn). We then randomly assigned datasets to 
study sessions, so that the remedial and average classes were 
simulated for two teachers each, and the advanced class was 
simulated for one teacher. To account for potential influences of 

    

Figure 3.   Point-of-view screenshots of teachers using Lumilo.  LEFT: Teacher’s view of student indicators, immediately 
following a pilot study in a live classroom.  RIGHT: Teacher’s view of deep-dive screens. 
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classroom layout, different computer labs – with a range of spatial 
layouts – were used across sessions. 
     During these REs, we elicited teacher feedback not only on 
Lumilo’s interactions and the visual presentation of analytics, but 
also on the particular choices of analytics used to drive Lumilo’s 
real-time indicators. During the training and familiarization phase 
of each session, teachers were provided with definitions for each 
indicator symbol, which included brief summaries of a detector’s 
structure, the main features it relies upon, and the default values 
of any free parameters (such as alert thresholds). Within the 
simulation phase of each session, teachers frequently monitored 
students’ raw activity in the software – either by approaching a 
computer terminal, or by opening that student’s deep-dive. In 
doing so, they observed ways in which particular detectors may 
have been over- or under-sensitive (or were perhaps overlooking 
key features of student thinking and behavior entirely).  
     In-between RE sessions, and sometimes within a single RE, we 
would often iterate on the detectors and alert policies driving the 
real-time indicators, based on teachers’ feedback. For example, 
over time, the definition of the “struggling” indicator evolved to 
include not only a threshold on a student’s recent error rate, but 
also automated detection of student hint avoidance [6], as well as 
whether a student had been making good use of the software’s 
hints, yet remained “stuck” – with the corresponding “question 
mark” symbol glowing gradually brighter, the longer the student 
was stuck. By the final two sessions, teacher observations of over- 
or under-sensitivity, or semantic mismatches, had become rare. 
     Other design features that entered the prototype during this 
iterative process, based on teachers’ feedback, included the ability 
to set visual “timers” on an individual student by clicking-and-
holding on the student’s indicator. Teachers found this useful as 
a reminder to check back with a student – for example, if that 
student appears to be struggling currently, but it is unclear to the 
teacher whether the student might overcome this struggle on 
their own within the next several minutes. In addition, we found 
that teachers saw great value in the ability to monitor individual 
students’ activities, while either walking or physically attending 
to a student seated across the classroom. As such, we enhanced 
Lumilo so that a teacher could have the “deep-dive” screen “tag 
along” with them as they walked (instead of hanging in space near 
the given student and visible only when looking in that direction).   
Finally, to give teachers’ “eyes in the back of their heads” (cf. [11]), 
we enabled teachers to configure ambient, spatial sound 
notifications. For example, if a student was misusing the software, 
a teacher could privately perceive a soft notification, as if it were 
emanating from that student’s location in the classroom.    

6.3 Evaluating effects of Lumilo on teacher 
attention allocation 
Prior to piloting Lumilo in live K-12 classrooms, we wanted to 
better understand its potential effects on teacher behavior. In 
particular, we wanted to investigate whether and how Lumilo 

might influence teacher time allocation (cf. [16]) across students 
of varying prior domain knowledge and learning rates within the 
software, compared with business-as-usual (i.e., without an 
orchestration tool). We ran an additional series of 6 Replay 
Enactments, across which Lumilo’s design was held constant. For 
each session, replay data from a 40-minute class session was used. 
The replay data was randomly selected from a pool of 5 “average” 
and “remedial” classes. An “average” class was replayed in 4 
sessions, and a “remedial” class was replayed in the remaining 
two. Advanced classes were omitted from the selection pool, given 
little between-student variance in test scores. To minimize 
potential effects of names or seating positions, replayed students 
were randomly assigned names and positions in each session.  
     In Lumilo, the indicators positioned above students’ heads 
double as proximity sensors within a physical space. Using these 
mixed-reality sensors, a teacher’s allocation of time to a given 
student was measured as the cumulative time (in seconds) that she 
or he spent within a 4 ft radius of that student. If a teacher was 
within range of multiple students, time was accumulated only for 
the nearest student. We used hierarchical linear modeling (HLM) 
to predict teachers’ time allocation across replayed “students” as 
a function of either students’ prior domain knowledge (measured 
by a pretest in the original class session) or students’ learning 
during the class (measured by a posttest, controlling for pretest). 
As is the case in a typical classroom study, teachers did not have 
access to pre- or post-test data, and this data was not used by 
Lumilo. Using 2-level models, with students nested in classrooms, 
provided a better fit than 1-level or more complex models. 
Standardized coefficients for student-level variables are provided 
in row 2 of Table 2. As shown, teachers using Lumilo in REs spent 
significantly more time attending to “students” with relatively 
lower pretest scores, or posttest scores (controlling for pretest).  
     By contrast, in an in-vivo classroom study that we previously 
ran with 4 teachers across 7 real middle school classrooms, 
students worked with Lynnette while teachers monitored and 
helped their students (without access to a real-time awareness 
tool). Performing the same analysis as above, but this time with 
data from this classroom study (with time allocation recorded via 
manual classroom coding), we again found that 2-level models 

Table 2.   Relationships between teacher time allocation (in 
seconds) and students’ prior knowledge and learning. 

* p < 0.05, ** p< 0.01, *** p < 0.001 

class type using 
Lumilo? 

pretest post | 
pre 

sample size 
(teachers, 

classrooms, 
avg. class size) 

Live No 6.29 -5.49 (4, 7, 16) 

RE Yes - 4.66* - 21.19** (6, 3, 15) 

Live Yes -73.75*** 5.34 (1, 1, 15) 
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provided the best fit. Coefficients for these models are provided in 
Table 2 (row 1). Although all teachers reported attempting to 
devote most of their time to students whom they expected would 
struggle most with the material, we found no significant 
relationships between students’ pre- or posttest scores and 
teacher time allocation. We take this contrast as evidence that 
Lumilo may aid teachers in focusing on and helping students with 
lower prior knowledge. Early results from a 1-hour pilot study, 
with one teacher using Lumilo in a real classroom (Table 2, row 3) 
were consistent with this finding.  
     More importantly, we take these results as preliminary 
evidence that Lumilo may successfully aid teachers in identifying 
those students who would have gone on to exhibit the lowest 
learning in a real classroom session – potentially representing a 
subset of students who benefit the least from working with the 
tutoring software alone, and who may stand to benefit the most 
from a teacher’s help. Since Replay Enactments remove the 
possibility of a causal arrow from teacher behavior to students’ 
learning within the software, this method enables us to investigate 
counterfactuals such as the above, for different forms of teacher 
augmentation. Conversely, classroom studies – although costly to 
run – allow investigation of effects of a tool in the context of many 
competing influences on a teacher’s attention and judgment. 

6.4   Highlighted design findings 
As before, we conducted Interpretation Sessions and Affinity 
Diagramming, based on approximately 18.5 hours of audio/video 
recorded think-aloud data and design feedback from Replay 
Enactments with 10 teachers, along with design feedback 
collected immediately following the classroom pilot. The resulting 
486 quotes were iteratively synthesized into 43 level-1 categories, 
26 level-2 categories, 13 level-3 categories, and 5 level-4 
categories. Key findings from this synthesis (level-4 categories) 
are highlighted below, representing directions for future work: 
Value of continuous, real-time feedback on instruction. 
Although Lumilo did not provide direct feedback to teachers 
about potential effects of their instructional interventions on 
student learning and behavior, teachers frequently inferred 
causality by monitoring changes in student and class state, 
following an intervention. In fact, teachers were often tempted to 
do so even during Replay Enactments, in which no students were 
actually present. In the middle of one Replay Enactment, a teacher 
remarked: “You know what? I’m acting like [the students] are 
really here now. … I’m thinking that I’m gonna tell them 
something and [the indicator] is gonna change”. Teachers 
emphasized that receiving more direct, live feedback about the 
effects of their instructional interventions could help them adjust 
their instruction on-the-spot, and perhaps even improve over time 
(particularly if this feedback were constructive).  
When many students need help, on different topics, at the 
same time, choice can be anxiety-inducing. 
During Replay Enactments, teachers realized that when they were 
made more aware of student struggle, they became more aware of 
their limited ability to actually help all of their students. The main 

way teachers proposed addressing this was through dynamically 
adjustable alert thresholds, which could help them better focus 
their attention during times when many students may need help 
at once, or in otherwise chaotic classroom environments. As one 
teacher put it, “I’m going to be able to handle different [numbers 
of alerts] in different classes … I’d want to be able to control that.”    
Action recommendations in addition to awareness support.  
As we moved to higher-fidelity prototyping, teachers consistently 
noted that it would be helpful to have explicit recommendations 
from the system, to help prioritize among students and/or to 
decide how best to help a student. For example, one teacher 
suggested that it would sometimes be helpful to receive 
recommendations for “conversation starters,” (e.g., to help a 
teacher avoid providing “too much” scaffolding).  It is clear from 
earlier design explorations, however, that such a system would 
require careful design, to respect teachers’ autonomy [11]. 
Automated support for dynamic, adaptive peer-matching. 
Teachers noted that it would be useful to receive live support from 
Lumilo in adaptively assigning students to serve as peer tutors for 
others, throughout the course of a class session (cf. [8, 24, 28]). 
Such dynamic peer-matching would enable teachers to offload 
some help sessions to students: “I would let them go, for a while, 
so I could focus my attention elsewhere in the room.” In turn, 
teachers envisioned devoting time to students who might benefit 
more from a teacher’s assistance than from peer tutoring. 
Trade-offs between interpretability and accuracy. 
Although teachers had expressed a preference for simpler, more 
interpretable analytics in lower-fidelity prototyping sessions, it 
became clear during higher-fidelity prototyping sessions that the 
strength of this preference was heavily dependent on the 
underlying construct that an indicator purported to measure. For 
example, when it came to detection of “system misuse” it was 
important to teachers that they could easily understand (and 
explain to students) precisely the patterns of behavior that had led 
to this classification. By contrast, teachers were more open to the 
use of “black box” algorithms for detecting potential 
“unproductive struggle” if this meant alerting them to these 
students earlier (after which, teachers could apply their own 
judgment, using other available information). 

7 DISCUSSION AND FUTURE WORK 
In this paper, we report on the iterative co-design, development, 
and evaluation of Lumilo: mixed-reality smart glasses that 
augment K-12 teachers’ real-time perceptions of their students’ 
learning, metacognition, and behavior as students work with 
personalized learning software. While prior work has explored the 
use of smart glasses to facilitate live instructor feedback in 
university lecture contexts [29], the current work represents the 
first exploration of the affordances of smart glasses to support 
teachers in orchestrating personalized, self-paced classroom 
sessions. Longer term, we envision generalizing wearable 
cognitive augmentation such as Lumilo to a broader range of 
personalized learning environments. Advances in multimodal 
learning analytics may reduce Lumilo’s dependence on data 
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streams from educational software, particularly if combined with 
advances in student modeling [6]. Furthermore, it may soon 
become possible to implement Lumilo within a lighter-weight pair 
of spatially aware smart glasses than the HoloLens [5]. 
     We also present Replay Enactments (REs): a new prototyping 
method for real-time orchestration tools, combining prior 
methods from Learning Analytics [19, 20, 21] and Human-
Computer Interaction [23]. REs facilitate investigation into the 
effects of particular tool designs, prior to deploying these in live 
classrooms, by immersing teachers in embodied simulation 
exercises using previously collected interaction logs from real 
students. For example, in our studies, REs provided early insight 
into potential affective consequences of enhanced awareness. We 
present results from a classroom study, revealing that, although 
K-12 teachers report focusing their attention on students whom 
they expect need help most, teacher time allocation (in the 
absence of a support tool) was not significantly related to 
students’ prior knowledge or learning (cf. [12, 16]). Through REs 
we find that in simulated classrooms, Lumilo directs teachers’ 
time towards students who would otherwise exhibit lower 
learning within the ITS. A single-session pilot provides early 
evidence that, in a live classroom, Lumilo may have the same 
effect. These students may represent those learners for whom the 
support provided by the software alone is least effective, and who 
would benefit most from a teacher’s help. 
     Finally, our findings provide novel insights into teachers’ 
needs and desires for real-time support in K-12 classrooms using 
ITSs, many of which we expect will generalize to a broader range 
of personalized learning environments. In the next phase of this 
work, we will continue to pilot Lumilo with teachers and students 
in live middle school classrooms. As we move into live classrooms 
we plan to increasingly inform the design of Lumilo with insights 
from classroom usage data. There is a scarcity of empirical 
knowledge about the effects real-time analytics might have on 
teacher-student interactions, and ultimately, on student learning 
[12, 27]. Even less is known about the effects particular design 
features of orchestration tools may have [27]. In upcoming studies, 
we plan to use Lumilo as a research tool, towards understanding 
how human and AI instruction can best be combined, to achieve 
outcomes greater than either can achieve alone. 

ACKNOWLEDGMENTS 
This work was supported by NSF Award #1530726, and by IES 
Grant R305B150008 to CMU. Opinions do not represent the views 
of NSF, IES or the U.S. ED. Special thanks to Jonathan Sewall, 
Octav Popescu, Peter Schaldenbrand, Zac Yu, Mary Beth Kery, 
Jodi Forlizzi, Lu Chen, and all participating students and teachers. 

REFERENCES 
[1] Alavi, H.S., Dillenbourg, P. and Kaplan, F. 2009. Distributed Awareness for 

Class Orchestration. EC-TEL (2009), 211–225. 
[2] Aleven, V., Roll, I., McLaren, B.M. and Koedinger, K.R. 2016. Help Helps, but 

only so Much: Research on Help Seeking with Intelligent Tutoring Systems. 

IJAIED. 26, 1 (2016), 205–223. 
[3] Alphen, E. Van 2016. Lernanto : Using an Ambient Display During 

Differentiated Instruction. CHI. (2016), 2334–2340. 
[4] Beck, J.E. and Gong, Y. 2013. Wheel-spinning: Students who fail to master a 

skill. AIED (2013), 431–440. 
[5] Border, J., Haddick, J. and Osterhout, R. 2016. See-through near-eye display 

glasses with a light transmissive wedge shaped illumination system. 
US20160187654 A1. 2016. 

[6] Desmarais, M.C. and Baker, R.S.J.D. 2012. A review of recent advances in 
learner and skill modeling in intelligent learning environments. UMUAI. 22, 
(2012), 9–38. 

[7] Dove, G., Halskov, K., Forlizzi, J. and Zimmerman, J. 2017. UX Design 
Innovation: Challenges for Working with Machine Learning as a Design 
Material. CHI (2017), 278–288. 

[8] Diana, N., Eagle, M., Stamper, J., Grover, S., Bienkowski, M., & Basu, S. (2017). 
Automatic Peer Tutor Matching: Data-Driven Methods to Enable New 
Opportunities for Help. In EDM (2017), 372-373. 

[9] Hanington, B.M. and Martin, B. 2012. Universal methods of design : 100 ways to 
research complex problems, develop innovative ideas, and design effective 
solutions. Rockport Publishers. 

[10] HoloLens - Microsoft: 2017. https://www.microsoft.com/en-us/hololens. 
[11] Holstein, K., McLaren, B.M. and Aleven, V. 2017. Intelligent tutors as teachers’ 

aides: exploring teacher needs for real-time analytics in blended classrooms. 
LAK (2017), 257–266. 

[12] Holstein, K., McLaren, B.M. and Aleven, V. 2017. SPACLE: investigating 
learning across virtual and physical spaces using spatial replays. LAK (2017), 
358–367. 

[13] Jivet, I., Scheffel, M., Drachsler, H. and Specht, M. 2017. Awareness Is Not 
Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. 
EC-TEL (2017), 82–96. 

[14] Käser, T. and Gross, M. 2016. When to stop ? - Towards Universal Instructional 
Policies. LAK (2016), 289–298. 

[15] Kay, J. (2000). Stereotypes, student models and scrutability. In ITS (2000), 19-30. 
[16] Koedinger, K., Liu, R., Stamper, J., Thille, C. and Pavlik, P. 2017. Community 

based educational data repositories and analysis tools. LAK (2017), 524–525. 
[17] Kulik, J.A. and Fletcher, J.D. 2016. Effectiveness of Intelligent Tutoring 

Systems: A Meta-Analytic Review. RER. 86, 1 (2016), 42–78. 
[18] Martinez-Maldonado, R., Clayphan, A., Yacef, K. and Kay, J. 2015. 

MTFeedback: Providing Notifications to Enhance Teacher Awareness of 
Small Group Work in the Classroom. IEEE TLT. 8, 2 (2015), 187–200. 

[19] Martinez Maldonado, R., Kay, J., Yacef, K., & Schwendimann, B. (2012). An 
interactive teacher’s dashboard for monitoring groups in a multi-tabletop 
learning environment. In ITS (2012), 482-492. 

[20] Martinez-Maldonado, R., Pardo, A., Mirriahi, N., Yacef, K., Kay, J. and 
Clayphan, A. 2016. LATUX: An iterative workflow for designing, validating 
and deploying learning analytics visualisations. JLA. 2, 3 (2016), 9–39. 

[21] Mavrikis, M., Gutierrez-Santos, S. and Poulovassilis, A. 2016. Design and 
Evaluation of Teacher Assistance Tools for Exploratory Learning 
Environments. LAK (2016), 168–172. 

[22] Mixed Reality Design Labs: 2017. https://github.com/Microsoft/MRDesignLabs/. 
[23] Odom, W., Zimmerman, J., Davidoff, S., Forlizzi, J., Dey, A. and Lee, M.K. 

2012. A Fieldwork of the Future with User Enactments. DIS (2012), 338–347. 
[24] Olsen, J. (2017). Orchestrating Combined Collaborative and Individual 

Learning in the Classroom (Doctoral dissertation). 
[25] Pane, J., Steiner, E., Baird, M., Hamilton, L. and Pane, J. 2017. Informing 

Progress: Insights on Personalized Learning Implementation and Effects. RAND.. 
[26] Quintana, R., Quintana, C., Madeira, C. and Slotta, J.D. 2016. Keeping Watch: 

Exploring Wearable Technology Designs for K-12 Teachers. CHI (2016), 
2272–2278. 

[27] Rodríguez-Triana, M.J., Prieto, L.P., Vozniuk, A., Boroujeni, M.S., 
Schwendimann, B.A., Holzer, A. and Gillet, D. 2017. Monitoring, Awareness 
and Reflection in Blended Technology Enhanced Learning: A Systematic 
Review. IJTEL. 9, 2–3 (2017), 126–150. 

[28] Schofield, J.W., Eurich-Fulcer, R. and Britt, C.L. 1994. Teachers, Computer 
Tutors, and Teaching: The Artificially Intelligent Tutor as an Agent for 
Classroom Change. AERJ. 31, 3 (1994), 579–607. 

[29] Zarraonandia, T., Aedo, I., Díaz, P. and Montero, A. 2013. An augmented 
lecture feedback system to support learner and teacher communication. 
BJET. 44, 4 (2013), 616–628. 


