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Abstract: Designers of teacher awareness tools (e.g., dashboards) must not only anticipate the 
effects analytics will have on awareness, but also how this enhanced awareness might affect 
teacher decision-making, and in turn, student learning. Yet teacher awareness tools are not 
commonly optimized to guide teacher behavior in ways that are productive for learning. In this 
paper, we introduce Causal Alignment Analysis (CAA), a framework for data-informed, iterative 
design of teacher awareness tools, which links the design of awareness tools to educational 
goals. We illustrate the usefulness of CAA with a case study, demonstrating the successful 
design alignment of an awareness tool with a causal path from teacher tool use to student 
learning. Over a sequence of four pilot studies conducted in both simulated and live classrooms, 
we demonstrate the iterative refinement of Lumilo, a real-time awareness tool, to draw teachers’ 
attention towards students who may benefit most from a teacher’s help. 

Introduction 
Supporting teachers in orchestrating complex classroom activities has been identified as a key research and design 
challenge for the learning sciences community (STELLAR, 2011; Tissenbaum et al., 2016). In recent years, 
several real-time awareness tools have been designed and developed to aid teachers in orchestrating complex 
technology-enhanced learning scenarios (e.g., Alavi & Dillenbourg, 2012; Holstein, Hong, Tegene, McLaren, & 
Aleven, 2018; Martinez-Maldonado, Clayphan, Yacef, & Kay, 2015; Mavrikis, Gutierrez-Santos, & 
Poulovassilis, 2016). These tools augment teachers’ “state awareness” during ongoing learning activities 
(Rodríguez-Triana et al., 2017). For example, such tools may present teachers with real-time analytics on student 
knowledge, progress, and metacognition within educational software (Tissenbaum et al., 2016). 

The design and development of real-time teacher awareness tools is often motivated by an assumption 
that enhanced teacher awareness will lead to improved teaching, and ultimately, to improved student outcomes. 
Yet there is a paucity of evidence to support these claims, and scientific knowledge about the effects that such 
tools may have on teaching and learning in real educational settings is scarce (Molenaar & Knoop-van Campen, 
2017; Rodríguez-Triana et al., 2017). As such, it is a challenging problem to design effective teacher awareness 
tools. Designers must not only anticipate the effects analytics may have on teacher awareness, but also how this 
enhanced awareness might affect teacher behavior, and how these changes in behavior will ultimately influence 
student learning. Compounding these challenges, while existing design workflows such as LATUX (Martinez-
Maldonado, Pardo, Mirriahi, Yacef, Kay, & Clayphan, 2016) support the user-centered design of awareness tools 
based on teacher feedback, there is a lack of standard methodology for the outcome-driven improvement of 
awareness tools, to achieve targeted educational goals. Furthermore, justifications for design decisions (e.g., what 
information to present in a dashboard) are rarely reported in the literature (Rodríguez-Triana et al., 2017). 

Researchers in other areas of educational technology research have adopted data-informed approaches 
to iteratively guide the design of technologies towards educational goals (e.g., Koedinger, Stamper, McLaughlin, 
& Nixon, 2013). For example, the design of intelligent tutoring systems (ITSs) sometimes includes an iterative 
refinement process, in which historical student data is leveraged to increase alignment between the software’s 
instructional design and the way students actually learn the material, as inferred from data (e.g., Liu & Koedinger, 
2017). By contrast, while teacher awareness tools are sometimes designed to be useful and usable, they are not 
typically optimized to guide teacher behavior in ways that are productive for learning. Given the complexity of 
designing teacher awareness tools, and the substantial causal distance between enhancing teacher awareness and 
enhancing student learning (Xhakaj, Aleven, & McLaren, 2017), bringing such outcome-driven approaches to the 
design of teacher awareness tools may be key to ensuring their effectiveness. In this paper, we introduce Causal 
Alignment Analysis (CAA): a framework for the data-informed iterative design of teacher awareness tools. We 
illustrate CAA via a case study, demonstrating the iterative improvement of a real-time awareness tool over a 
sequence of pilot studies. Finally, we discuss conclusions and directions for future work. 

Causal Alignment Analysis for teacher awareness tools 
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Beginning from a specification of educational goals (e.g., improving student learning or engagement), CAA 
involves gradually aligning the design of a teacher awareness tool with these goals, by repeatedly evaluating the 
tool’s effects along hypothesized causal paths from teacher tool use to targeted student-level outcomes. 
Specifically, CAA begins by generating answers to the questions below, which may represent open hypotheses 
where theory is absent or underspecified: 

1. What student outcomes do we wish the teacher awareness tool to support? 
2. What student-level processes promote or hinder progress toward the goals specified in (1)? 
3. What teacher-level processes promote or hinder the student-level processes identified in (2)? 
4. How can an awareness tool better support and promote the processes identified in (2) and (3)? 

Taken together, answers to these questions specify hypothesized causal paths from a teacher’s use of a particular 
awareness tool to enhanced student outcomes (as in Figure 1). Making the goals and hypothesized mechanisms 
of action of an awareness tool explicit early on may usefully constrain the design of an initial prototype. Once an 
initial prototype has been developed, Causal Alignment Analysis then involves prototyping the tool with teachers 
and students. Using data from these prototyping sessions, designers evaluate the alignment (or lack thereof) 
between the prototype’s observed effects on teacher behavior, and one or more hypothesized causal paths to 
improved student outcomes (cf. Xhakaj et al., 2017). Based on this analysis, designers can then refine the prototype 
with the goal of increasing alignment, thus increasing the chances that the tool will have a positive impact in the 
classroom. Finally, the prototyping cycle repeats, to evaluate the effectiveness of this realignment. 
 

 
Figure 1. Examples of hypothesized causal paths, based on prior literature, leading from teacher use of an 
awareness tool to improved student learning outcomes. Causal tiers are labeled with questions from CAA. 

 
Figure 1 shows examples of potential causal paths from a teacher’s use of an awareness tool to teacher and student 
level outcomes. For these examples, we consider the context of self-paced classrooms in which students work 
with educational software, while a teacher uses a real-time awareness tool to decide when, with which students, 
and how to provide additional assistance. From left to right, the diagram shows potential influences of a teacher 
awareness tool (Q4) on the behavior of the teacher using it (Q3), potential impacts of resulting shifts in teacher 
behavior on students (Q2), and finally, potential impacts of these student-level effects on student learning 
outcomes (Q1). Given that a teacher has limited time to provide one-on-one assistance, the top path in Figure 1 
posits that if teachers were alerted to critical situations (e.g., a student exhibiting a common misconception), they 
would be able to more effectively allocate time to students who need their attention the most, at the right moments 
(see Martinez-Maldonado et al., 2015). Thus, an awareness tool should be designed to alert teachers of such 
critical situations. In contrast to the top path – which represents a hypothesis that students using educational 
software would learn more from additional teacher assistance in certain situations – the second path, represents 
the hypothesis that students would benefit from more teacher attention, in general. Under this hypothesis, an 
awareness tool should be designed to encourage teachers to spend more time working with students, overall – 
perhaps by making teachers feel more informed, and thus increasing their overall “confidence to act” (van 
Leeuwen, Janssen, Erkens, & Brekelmans, 2015). The third causal path represents the hypothesis that, if the 
quality of a teacher’s one-one-one interactions with students were improved (e.g., more tailored to a student’s 
specific weaknesses), this would enhance student learning with the software (see van de Pol & Elbers, 2013). 
Furthermore, this path posits that if teachers were made more aware of student difficulties, this would lead teachers 
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to tailor their one-on-one interactions more closely to individual students’ needs. The fourth causal path posits a 
direct link from a teacher’s use of an awareness tool and a student-level effect. Under this hypothesis, students’ 
mere awareness that a teacher is monitoring their activities in the software contributes to their learning, perhaps 
by increasing engagement (Holstein, McLaren, & Aleven, 2017b). Finally, the bottom path represents a hypothesis 
that teachers’ use of a particular awareness tool positively impacts their classroom experience (Rodriguez-Triana 
et al., 2017), but has no notable effects on student outcomes. 

Despite showing a relatively small set of hypothesized paths – each specified at a high level of abstraction 
– Figure 1 illustrates the enormous breadth of the design space for teacher awareness tools. Focusing on different 
combinations of these paths may yield radically different tool designs. In addition to guiding the initial design of 
a teacher awareness tool alongside user-centered design methods (Holstein et al., 2018; Martinez-Maldonado et 
al., 2016), CAA can be used to inform the refinement of an existing awareness tool. A designer applying CAA to 
the refinement of an existing awareness tool would begin by considering the tool’s educational goals, and then 
work backwards from these goals (cf. Wiggins et al., 2001) to construct one or more hypothesized causal paths 
originating from a teacher’s use of an awareness tool (guided by existing data and theory where possible). By 
prototyping the awareness tool, and collecting outcome data, the designer would evaluate whether the tool is likely 
to have desirable effects along each node in the path, adjusting the design as needed. To illustrate the use of CAA 
in practice, we next demonstrate the iterative design improvement of a real-time awareness tool. 

Background: Co-design of a real-time teacher awareness tool 
In our prior work, we designed a real-time awareness tool for teachers working in K-12 classrooms using 
intelligent tutoring systems (ITSs): a class of advanced learning technologies that provide students with step-by-
step guidance during complex problem-solving practice. ITSs have been found, in several meta-reviews, to 
enhance student learning in classroom settings, compared with other learning technologies or traditional 
classroom instruction (e.g., Kulik & Fletcher, 2016). A key benefit of using ITSs in the classroom is that they free 
teachers to circulate throughout the room, providing more individualized help while students work with the 
software at their own pace (Schofield, Eurich-Fulcer, & Britt, 1994). However, ITSs are not typically designed to 
support teachers in helping their students (Holstein, McLaren, & Aleven, 2017a).  

We decided to focus our awareness tool design largely on the problem of supporting teachers in allocating 
scarce time and attention to those students who need it the most (the top path in Figure 1), during classes in which 
students work individually with ITSs. This focus was motivated, in part, by user-centered design work with middle 
school math teachers, which highlighted these decisions as a major challenge in orchestrating personalized 
learning (Holstein et al., 2017a; Martinez-Maldonado, et al., 2015). In addition, this focus was motivated by prior 
empirical results, suggesting that teachers’ decisions about whom to help, and when, may be impactful (e.g., 
Martinez-Maldonado et al., 2015). In particular, we focused on designing an awareness tool for classrooms using 
Lynnette, an ITS for equation solving (Long & Aleven, 2017). 

In the first phase of our design process, we wanted to better understand teachers’ expressed needs and 
desires for real-time analytics. We adopted a participatory design approach, working closely with 16 middle 
school math teachers (across 9 schools and 6 school districts, in a large U.S. city and surrounding areas). We 
directly involved teachers at each stage of the design process (cf. Martinez-Maldonado et al., 2016), including the 
selection and tuning of analytics through iterative user testing (Holstein et al., 2017a; 2018). The initial prototype 
that emerged from this iterative process was a pair of mixed-reality smart glasses (Figure 2, top-right) called 
Lumilo, which displays real-time indicators of students’ current learning, metacognitive, or behavioral 
“processes” (as shown in Figure 2, left), floating above students’ heads (Figure 2, bottom-right), while allowing 
teachers to keep their heads up and attention focused on the classroom (Holstein et al., 2018). The indicators 
displayed by the initial prototype of Lumilo were ideas generated and iteratively refined by teachers, and 
implemented using established student modeling methods (e.g., Beck & Gong, 2013; Desmarais & Baker, 2012). 
Together, these indicators can be taken to represent, in part, the phenomena that teachers expect require their 
attention and/or intervention. For example, four teachers argued that alerts about high local error would require 
immediate intervention. Otherwise, these teachers worried that repeated error-making in an ITS might entrench 
the errors, despite negative feedback from the software (see Metcalfe, 2017). Teachers also found some indicators 
valuable for other reasons. For example, we found that positive indicators about student performance were 
valuable to teachers, in part, because they found them personally motivating (Holstein et al., 2018).  

Iterative improvement of Lumilo, using Causal Alignment Analysis 
In addition to serving teachers’ expressed needs and desires, however, we want to design awareness tools that can 
measurably benefit students. Teachers’ intuitions about the most important opportunities for intervention may not 
always be correct (e.g., Baker, Walonoski, Heffernan, Roll, Corbett, & Koedinger, 2008). Therefore, in the next 
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phase of our design process, we used Causal Alignment Analysis to iteratively refine Lumilo’s design, to increase 
its chances of having a positive impact in the classroom. With respect to the first of CAA’s four 

         
Figure 2. Left: Full set of student-level indicators displayed by an early version of Lumilo. Top-right: Teacher 

using Lumilo. Bottom-right: Point-of-view screenshot (moments after the end of class). 
 
guiding questions, we had defined our learning objectives as the set of equation-solving skills that Lynnette tutors. 
In answer to CAA’s second and third questions, we adopted a causal model search approach to understand the 
relationships between Lumilo’s indicators and student learning outcomes – hypothesizing that teacher attention 
should be directed to student processes with a negative influence on learning. Finally, in response to CAA’s fourth 
question, we iteratively refined Lumilo to direct teachers’ time and attention towards these processes, over a 
sequence of in-lab and classroom pilot studies. Each step is discussed next, in turn. 

To answer CAA’s second question (“What student processes promote or hinder ...”), we sought to better 
understand the relationships between student processes detected by the current prototype of Lumilo (the student-
level indicators shown in Figure 2, emerging from our participatory design process) and student learning within 
Lynnette. To this end, we adopted a causal model search approach, using directed acyclic graphs (DAGs) to 
represent the causal structure among variables measured by Lumilo, and student assessment scores. We collected 
data from 115 middle school math students (across 7 classrooms and 4 teachers), each of whom worked with 
Lynnette for 60 minutes. In these classrooms, the teacher did not use an awareness tool (Table 1, Study 1). In all 
studies, we assessed students’ equation-solving skill with a pretest and posttest administered before and after using 
the tutor. We used two forms that were identical except for the specific numbers used in equations. We presented 
the forms in counterbalanced order across pre- and posttest.  

We then used the PC algorithm in the Tetrad V program to search for an equivalence class of DAGs, 
consistent with a set of conditional independence constraints (Spirtes et al., 2000). The PC algorithm is 
asymptotically reliable; its primary limitations are its assumptions that no unmeasured confounders are present, 
and that any underlying causal relationships between variables can be modeled by linear functions. To relax the 
former of these assumptions, we also used the FCI algorithm, which allows for the possibility of unmeasured 
confounders. The FCI algorithm learns an equivalence class, represented by partial ancestral graphs (PAGs), 
encoding uncertainty over the nature of pairwise relationships between variables (Spirtes et al., 2000). To inform 
both searches, we provided background knowledge about our study design as a search constraint: we specified 
that the pretest was prior to any process variables, and that all process variables preceded the posttest. 

Figure 3 (left) shows the DAG learned with the PC algorithm, including normalized coefficient estimates, 
to enable comparison of magnitudes. This model suggests that, of the indicators included in the initial prototype 
of Lumilo, three are potential direct causes of reduced student learning within the software: help abuse or gaming-
the-system (measured by the Help Model and gaming detector, reviewed in Desmarais et al., 2012), high local 
error (defined by teachers as an error rate greater than 80%, within the last 8 student actions on the current 
activity), and unproductive persistence (measured by the “wheel-spinning” detector, described in Beck & Gong, 
2013). This model fits the data well (χ2 = 18.33, df = 19, p = .50) (1). Figure 3 (right) shows the PAG learned 
with the FCI algorithm. In this figure, bidirectional links indicate the presence (and circle-origin links indicate the 
possibility) of unmeasured confounders. Otherwise, links indicate causal relationships. Wide links indicate no 
unmeasured confounders, and dark, wide links further indicate direct relationships. The PAG equivalence class 
found by FCI suggests that unmeasured confounders could potentially explain several of the links between 
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Lumilo’s indicators. Finally, in both causal models, gaming/help-abuse, unproductive persistence, and help 
avoidance (as measured by the Help Model, Aleven et al., 2016) are negatively linked to  

  
Figure 3. Left: model found by PC, with normalized coefficient estimates included.  Right: PAG equivalence 

class found by FCI, encoding the possibility of unmeasured common causes. 
 
student learning. The model found by FCI suggests that out of 7 negative teacher-generated indicator ideas 
implemented in Lumilo, only one is directly linked to student learning: unproductive persistence. Influences of 
help avoidance and gaming/help-abuse on learning may in turn be mediated through unproductive persistence. 

To determine how the design of Lumilo might be improved (the fourth question in CAA), we wanted to 
first understand how the current prototype of Lumilo influences teacher behavior, prior to deploying it in real 
classrooms. To this end, we conducted a series of simulated class sessions using a new prototyping method called 
Replay Enactments (REs) (Holstein et al., 2018). In each session, historical student interaction data were replayed 
in ITS interfaces, on separate computer screens in a classroom setting (but with no actual students present). 
Following a 35-minute training period in which teachers acclimated to using the tool and studied the definitions 
of each of Lumilo’s indicators, each teacher participated in a 40-minute replay session. In these sessions, teachers 
wore Lumilo, and were asked to think aloud while monitoring the “class”. If a teacher thought they would 
intervene with a certain “student” at a given time, the teacher would approach that “student” and enact the help 
session aloud. In addition to recording think-aloud data, we used Lumilo to automatically track the teacher’s 
physical position moment-by-moment (Holstein et al., 2018). 

First, we investigated how teachers’ time allocation across students during REs may have been 
influenced by each of Lumilo’s student-level indicators. Teacher time allocation was measured per student by the 
cumulative time (in seconds) spent within a 4-ft. radius of that student (resolving ties among students by 
proximity), as well as time spent monitoring the student’s activities via Lumilo’s deep-dive screens (Holstein et 
al., 2018). Table 1 (Study 2) shows group-normalized correlations between detected student processes and 
teachers’ time allocation during six REs. Real-time indicators that were not significant predictors of teacher time 
allocation are omitted. As shown, occurrences of four of Lumilo’s indicator alerts were significantly positively 
correlated with teacher time allocation. Second, to understand the degree to which the awareness tool might have 
directed teachers towards students most in need of help, as per the top path in Figure 1, correlations between 
student assessment scores and teacher time allocation are also shown in Table 1. Given that teachers did not have 
access to assessment scores during REs, and that it is not possible to influence learning during a replayed class, 
we take the correlation between teacher time allocation during REs and student posttest scores (controlling for 
pretest) as evidence that Lumilo can direct teachers’ time to students who would otherwise exhibit lower learning. 
However, this correlation was relatively small, suggesting room for improvement. 

Taken together, these analyses suggested various ways the design of Lumilo could be improved (Q4), to 
increase its alignment with the hypothesized causal path shown in Figure 4. Unproductive persistence was the 
weakest driver of teacher attention during REs, out of the indicators correlated with teacher time allocation (as 
shown in Study 2 of Table 1), despite being the one variable directly (and negatively) related to student learning 
in the causal model found by FCI. To better align Lumilo’s design with these analyses, the design should focus 
more explicitly on alerting teachers to cases of unproductive persistence, by increasing the salience of this alert 
and others that may serve as reliable early predictors. For instance, although help avoidance is a potential cause 
of unproductive persistence in the PAG found by FCI (and thus potentially valuable as an early predictor), it was 
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not a significant driver of teacher attention. Similarly, this model suggests that less emphasis should be placed on 
alerting teachers to high local error or rapid attempts in general, and more should be placed on alerting teachers 
to cases that constitute maladaptive help-use and/or gaming (Desmarais & Baker, 2012). As such, we next refined 
the prototype of Lumilo to place greater emphasis on alerts about unproductive persistence and persistent help 
avoidance. This included not only making the corresponding indicator symbols more visually salient than others 
(larger and brighter), but also drawing teachers’ attention to these alerts through ambient sound notifications. 
Meanwhile, we de-emphasized other alerts, including high local error and rapid attempts by making these 
indicators relatively dimmer and smaller. Furthermore, if a student was detected as unproductively persisting on 
one or more skills, avoiding help, or gaming/abusing-help, any other alerts for that student would be hidden at a 
glance (although still accessible upon a teacher’s request).  

 
Table 1:  Correlations between teacher time allocation, and detected student processes and test scores, 
* p < 0.05, ** p < 0.01, *** p <0.001. Rows show a series of studies, using successive versions of Lumilo 

 
 Study Context Process Variables (awareness tool alerts) Assessment 

Scores 
Stu-
dy 

type aware-
ness 

support 

sample 
(teachers, 
classes, 

students) 

total 
time 
(min) 

unpro-
ductive 
persist-

ence 

help 
avoid-
ance 

help 
abuse 

or 
gaming 

rapid 
attempts 

high 
local 
error 

pretest post | 
pre 

1 live none (4, 7, 115) 60 - 0.06 - 0.17* - 0.09 - 0.12 0.06 0.13 - 0.02 

2 RE Lumilo 
v1 

(6, 3, 90) 40 0.25* - 0.03 0.44*** 0.38*** 0.32** - 
0.06** 

- 
0.17** 

3 live Lumilo 
v2 

(1, 1, 15) 40 0.65* 0.61* 0.22 0.27 0.39 - 
0.84**

* 

0.40 

4 live Lumilo 
v3 

(2, 4, 84) 60 0.52*** 0.16* 0.07* 0.01 0.18 - 0.30* 0.16 

 
We next ran two more pilot studies, in live classrooms. The first of these studies was run with one teacher in a 
single, 80-minute class session. In this study, students worked with Lynnette for 40 minutes, while the teacher 
used Lumilo (version 2) to monitor and help students. Students’ domain knowledge in equation solving was 
measured before and after using the software, via computer-based pre- and posttests, as in prior studies. As shown 
in Study 3 of Table 1, students who were more frequently detected as unproductively persisting or avoiding help 
received significantly more teacher time during this single-classroom pilot, compared with students exhibiting 
other behaviors tracked by Lumilo, suggesting that the design refinements may have had the intended effect. 
Furthermore, the teacher’s attention during this single-classroom pilot was strongly and significantly focused 
towards students with lower prior domain knowledge (as measured by the pretest), and the correlation between 
teacher time allocation and student posttest score (controlling for pretest) was positive, despite a likely selection 
effect, although not statistically significant. 

Following this pilot, we made minimal design refinements to Lumilo, in an effort to ensure that alerts of 
unproductive persistence were emphasized (as potentially more critical) over alerts of help avoidance and 
gaming/help-abuse. In version 3 of Lumilo, if a student was detected as unproductively persisting in the software 
on one or more skills, any other alerts for that student would be hidden. We ran additional classroom pilots using 
Lumilo (version 3) in 4 classrooms. Students in each classroom worked with Lynnette for a total of 60 minutes 
while the teacher used Lumilo to monitor and help their students. As before, student domain knowledge was 
measured via 20-minute, computer-based pre- and posttests. As shown in Study 4 of Table 1, unproductive 
persistence was the strongest predictor of teacher time allocation, followed by help avoidance and gaming/help-
abuse. Classroom observations indicate that teachers continued to make use of all indicators presented by Lumilo 
(e.g., praising recent high performers or nudging inactive students), but tended to reserve in-depth remediation 
sessions for those students detected as unproductively persisting. Retrospective post-interviews corroborated this 
observation. However, teachers also reported frequently attending to “quick fix” alerts for students physically 
“en-route” to a particular student the teacher was targeting for remediation. 

In summary, in the first phase of our design process, we decided to focus on the problem of supporting 
teachers in allocating scarce time and attention to those students who may need it most. We adopted a participatory 
design approach, eliciting ideas for real-time analytics that teachers considered actionable, relevant to learning, 
or otherwise valuable to monitor. We leveraged pre-existing student modeling techniques to provide teachers with 
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these analytics, while iteratively prototyping them with teachers to ensure their usefulness and usability. In the 
next phase of our design process, we used CAA to iteratively align Lumilo’s design with a hyp- 

 
Figure 4. Hypothesized causal path from a teacher’s use of Lumilo to improved student learning. 

 
othesized causal path to improved learning outcomes, learned from data (a finer-grained instantiation of the top 
path in Figure 1, as shown in Figure 4). With respect to the first of CAA’s four guiding questions, we defined 
students’ learning objectives as the skills that Lynnette is intended to tutor, and assessed student learning with 
respect to these skills. In answer to CAA’s second and third questions, we adopted a causal model search approach 
to discover a critical subset of Lumilo’s indicators, representing student processes that most strongly influence 
learning outcomes with Lynnette. In turn, we hypothesized that students exhibiting these processes may benefit 
most from out-of-software, teacher interventions. Finally, with respect to CAA’s fourth question, we iteratively 
refined Lumilo – over a sequence of four pilot studies conducted in both simulated and live classrooms – to draw 
teachers’ time and attention towards these students. 

Conclusions and future work 
In this paper, we have introduced Causal Alignment Analysis (CAA): a design framework for the data-informed 
design and iterative improvement of teacher awareness tools, linking the design of these tools to educational goals. 
We have illustrated the application and usefulness of CAA through a case study, demonstrating the iterative design 
alignment of a real-time teacher awareness tool with a hypothesized causal path from teacher tool use to student 
learning (Figure 4). The resulting prototype augments teachers’ awareness of student learning, metacognition, and 
behavior, while also measurably directing their time towards a subset of student processes that appear to have a 
negative influence on student learning outcomes. 

While this case study may represent a step towards the design of teacher awareness tools that can 
measurably enhance student learning, it does not fully “close the loop” (Koedinger et al., 2013). To support 
iterative design, a CAA approach favors running larger numbers of small to mid-scale studies over running a 
single high-powered study. As such, it may not support strong causal inference. To better understand whether and 
how a teacher’s use of Lumilo influences student learning, we have recently conducted a larger-scale classroom 
experiment. Analyses of data from this experiment will enable us to investigate multiple hypothesized paths from 
teacher tool use to student learning (Figure 1), and thus to tease apart the distinct causal explanations that these 
paths represent. For example, although the analyses presented in this paper led to the improvement of Lumilo with 
respect to the hypothesized causal path pictured in Figure 4, it remains an open question whether the final link in 
this path (improved student learning) will hold in practice.  

While the case study presented in this paper focused on data-informed design optimization with respect 
to teacher attention allocation across students (the top path in Figure 1), there are many other causal paths along 
which an awareness tool might be optimized. For instance, even if teachers are made more aware of critical 
moments, it may not always be clear how to effectively respond. Our design work with teachers suggests that they 
often desire more direct support (e.g., action recommendations) for planning and enacting effective interventions 
– especially in personalized learning contexts, where planning time can be very scarce (Holstein et al., 2018). A 
promising direction for future work may be to use CAA to explore whether and how an awareness tool could be 
designed to measurably enhance the effectiveness of teacher-student coaching interactions. 

In summary, as the fast-growing research area of teacher awareness tools matures, we hope to see the 
design of these tools (within and beyond the academic Learning Sciences and Learning Analytics communities) 
increasingly guided by educational data and theory, in addition to user feedback. Causal Alignment Analysis 
provides a framework for making the goals and implicit assumptions behind the design of awareness tools explicit 
– in turn representing these assumptions as hypotheses to be continuously tested throughout a design process. 
Given the complexity of designing teacher awareness tools, we expect that such data-informed design approaches 
will be key to ensuring that they are not only useful and usable, but also beneficial for learning. 

Endnotes 
(1)  In path analysis, the null hypothesis is that the estimated model is the true model. The p-value represents the probability, 

under the null, of observing a difference between the estimated and observed covariance matrices at least as large as the 
realized difference; a p-value above a given threshold (conventionally alpha = .05) implies a model cannot be rejected. 
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