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ABSTRACT 
Classroom experiments that evaluate the effectiveness of 
educational technologies do not typically examine the effects of 
classroom contextual variables (e.g., out-of-software help-giving 
and external distractions). Yet these variables may influence 
students’ instructional outcomes. In this paper, we introduce the 
Spatial Classroom Log Explorer (SPACLE): a prototype tool that 
facilitates the rapid discovery of relationships between within-
software and out-of-software events. Unlike previous tools for 
retrospective analysis, SPACLE replays moment-by-moment 
analytics about student and teacher behaviors in their original 
spatial context. We present a data analysis workflow using 
SPACLE and demonstrate how this workflow can support causal 
discovery. We share the results of our initial replay analyses using 
SPACLE, which highlight the importance of considering spatial 
factors in the classroom when analyzing ITS log data. We also 
present the results of an investigation into the effects of student-
teacher interactions on student learning in K-12 blended 
classrooms, using our workflow, which combines replay analysis 
with SPACLE and causal modeling. Our findings suggest that 
students’ awareness of being monitored by their teachers may 
promote learning, and that “gaming the system” behaviors may 
extend outside of educational software use. 
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1. INTRODUCTION 
In recent years, there has been a growing interest within the 
learning analytics and educational data mining communities in 
multi-modal learning analytics: the collection and integrated 
analysis of diverse data streams (e.g., computer log files, motion 
sensor logs, field observations, and audio recordings) to obtain a 
richer picture of student learning (e.g., [32, 33, 43]). Some of this 

work has focused on blended learning contexts – introducing 
methods for measuring and studying learning-related interactions 
that cross physical and virtual spaces. For example, Baker et al. 
studied relationships between students’ behavior patterns within 
educational software and their interactions with peers and teachers 
in the physical classroom by analyzing computer log streams that 
were synchronized with quantitative field observations [13]. 

In parallel, there have been recent calls for added rigor in the 
design of learning analytics tools for teachers and students. If 
monitoring, awareness, and reflection tools for classrooms are to 
be effective, the design of these tools will likely benefit from a 
theoretically and empirically informed understanding of the causal 
mechanisms by which they could positively impact student 
learning [30, 33]. This may include, for example, understanding 
the dynamics of learning environments in which such tools will be 
used, and identifying any existing teacher or student practices 
with which they may conflict [32, 46]. In addition, a better 
understanding of the nature and effects of both teacher and student 
decision-making in such environments will likely be essential to 
the design of tools that can promote more effective decision-
making  [33, 37]. 
We are currently designing real-time learning analytics tools to 
help K-12 teachers more effectively guide their students as they 
work with adaptive educational technologies in the classroom. To 
inform our design process, we wish to examine the effects that 
teacher-student interactions have on student learning over 
relatively short time periods (seconds to hours, corresponding to 
Newell’s ‘cognitive’ and ‘rational’ bands of action [44]).  

To this end, we introduce the Spatial Classroom Log Explorer 
(SPACLE), a prototype tool that facilitates the discovery of 
relationships between teacher activity, classroom layout, and 
student learning and behavior in blended classrooms. Unlike 
existing tools for retrospective analysis of blended class sessions 
(e.g., [1, 15]), SPACLE visualizes user-selected, moment-by-
moment analytics about student and teacher behaviors within their 
spatial context. Although students’ out-of-software behaviors and 
spatial positions in the classroom are very rarely considered in 
analyses of log streams from educational software, there is reason 
to suspect that spatial factors may impact learning (e.g., [21]). 
Some existing tools allow researchers to quickly alternate between 
analyzing software log data and examining webcam or screen 
recordings from students’ computers (e.g., [1]). While such tools 
can reveal rich features of individual and small-group learning 
sessions (including on-task conversations and student affect), they 
are not designed to reveal broader relationships between the 
spatiotemporal dynamics of the classroom and students’ learning. 
SPACLE enables researchers to visualize moment-by-moment 
analytics about both out-of-software interactions and students’ 
current learning and behavioral states (as computed from software 
logs) over a spatial map of the classroom in which the data was 
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collected. By visualizing a relatively small set of features within 
an interactive replay of a class session, SPACLE may enable 
faster detection of qualitative patterns across students than would 
be feasible from higher-dimensional stimuli such as live 
classroom observations or video recordings. And like other forms 
of log replay – including screen replays [28, 39] and low-fidelity 
text-based replays [40] of students’ interactions within 
educational software – SPACLE allows researchers to examine 
different sets of analytics across multiple replay sessions, using 
the same data set. 

In this paper, we illustrate how SPACLE supports analysis of 
classroom behaviors and provide initial findings from an 
investigation of student-teacher interactions in classrooms using 
intelligent tutoring systems. These findings suggest, for instance, 
that student “gaming the system” behaviors [13, 34] may extend 
to interactions occurring outside of the software. Finally, we 
discuss how SPACLE can inform the evidence-based design of 
real-time monitoring and awareness tools for teachers working in 
blended classrooms.  

2. BACKGROUND 
Intelligent tutoring systems (ITSs) are advanced learning 
technologies that allow students to work at their own pace: 
providing step-by-step guidance during complex problem-solving 
practice and continuously adapting instruction to students’ current 
state (a set of measured variables, which may include estimates of 
student knowledge, affective states, metacognitive skills, and 
more) [10, 25]. Several meta-reviews have indicated that ITSs can 
enhance student learning in classroom settings, compared with 
traditional classroom instruction and other forms of educational 
technology [17, 19, 20]. Another key advantage of adaptive 
educational technologies such as ITSs may be that, when they are 
used in classrooms, they can free the teacher to move throughout 
the classroom and provide one-on-one support to students who 
may need it most [8, 23].  
ITSs also generate a wealth of data from students’ interactions 
within the software, which have enabled fine-grained process 
analyses of student learning and behavior. For example 
educational data mining methods have been used to study the 
effects of students’ off-task and gaming-the-system behaviors 
(e.g., [6, 13]), cognitive and affective states such as frustration, 
concentration, and confusion (e.g., [12]), and various micro-level 
features of ITSs’ instructional design (e.g., [7]) on student 
learning with these systems.  

Although ITSs are often designed for use in K-12 schools, the ITS 
literature has rarely studied the effects of elements of classroom 
context on students’ learning with ITSs [1, 24]. For example: 
recent field studies suggest that a large proportion of K-12 
students’ help-seeking behavior, when using ITSs in classrooms, 
may occur entirely outside of the software; but the ITS literature 
tends to study the effects of within-software aspects of students’ 
help-related behaviors rather than out-of-software behaviors such 
as asking a teacher for help [4, 6]. While “in-vivo” classroom 
studies aim to study the effectiveness of ITSs in the presence of 
contextual variables that are likely to be present in real-world 
classrooms (e.g., help from a teacher or peer, external distractions 
affecting individuals or groups of students, collaboration between 
students, etc.), they do not typically measure the effects of the 
contextual variables themselves – instead treating these as noise 
[26, 27, 37] (though see [1, 13]). 

There is reason to expect, however, that some of these contextual 
variables may be important mediators of student learning. In 
particular, gaining a better understanding of the effects of teacher-

student interactions in classrooms using ITSs may be crucial to 
understanding these systems’ effectiveness in real-world contexts. 
For example, a large-scale, two-year evaluation study of Carnegie 
Learning’s Algebra I tutor suggested that variability in the out-of-
software support teachers provided to students may have been at 
least partly responsible for inconsistent results across evaluation 
years [29]. Similarly, recent work has found that the extent to 
which teachers override ITSs’ built-in, mastery learning based 
problem selection may negatively impact student learning [31]. 

3. EXPLORING MULTIMODAL 
CLASSROOM DATASETS THROUGH LOG 
REPLAY 
Even when an “in-vivo” classroom study is primarily designed to 
test preconceived hypotheses (e.g. the effectiveness of a particular 
educational technology design), researchers sometimes collect 
qualitative classroom observations during the course of the study. 
These observations can allow researchers to gain a richer picture 
of what went on during a given class session, which may in turn 
help explain and interpret study results. Often times, these 
qualitative observations lead to unexpected discoveries, which can 
later be investigated more thoroughly through targeted follow-up 
experiments and observation sessions or educational data mining. 
For example, classroom observations of students’ misuse of ITSs 
inspired a line of experimental and data mining work dedicated to 
uncovering the underlying causes behind these behaviors, as well 
as design work dedicated to intervening on these underlying 
causes [34]. Similarly, our current work was originally inspired by 
informal classroom observations of teachers’ interactions with 
their students during lab sessions, in the context of in-vivo 
experiments that were not intended to study (and did not explicitly 
consider the effects of) teacher-student interactions. 

We have developed SPACLE1 to extend this observation process, 
by enabling researchers to interactively re-examine classroom 
ITS-use sessions, within a virtual map of the classroom layout 
(c.f. [9]), while visualizing moment-by-moment analytics about 
individual students. SPACLE replays are multimodal in the sense 
that they combine multiple data streams – visualizing both 
analytics about students’ out-of-software interactions (e.g., 
whether or not a student is raising her/his hand, talking to a peer, 
or talking to the teacher), and analytics generated from students’ 
interactions within the software, such as whether students are 
inactive, abusing the tutor’s help functions [6], making frequent 
careless errors [11], “stuck” on a current activity [5], confused, 
frustrated, or engaged in their current task [2].  

In each replay session, SPACLE allows researchers to specify the 
analytics they would like to examine about the teacher, the 
students, and/or any summary information they would like to 
display at the class level (e.g. the percentage of the class that is 
“stuck” on their current task at a given time). These analytics can 
be implemented as custom plugin scripts, subject to minimal input 
and output constraints. Then, given a map of the classroom layout 
where observations took place, as well as a mapping from student 
identifiers to their seating positions within the classroom (both of 
which may be obtained, in approximate form, by asking a teacher 
to provide a printed or hand-drawn copy of the seating chart), 
SPACLE can generate visual replays that preserve potentially 
important spatial information.  
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Specifically, researchers can import a class roster and an image 
(e.g., a scanned drawing) of a classroom layout into SPACLE, and 
then construct a virtual map of the classroom within the interface, 
by dragging, rotating, and resizing graphical representations of 
students (which are automatically generated, and pre-labeled, 
based on the class roster) into place, using the image as a guide. 
Each student is represented as a small circle with a rectangle 
directly above it (representing the student’s computer screen) and 
a name or other identifier directly below it. Researchers can then 
choose to visualize moment-by-moment analytics about students 
by assigning certain analytics to appear either in students’ circles 
(typically used to visualize out-of-software behaviors such as 
hand raising), or on their “computer screens” (typically used to 
visualize analytics about within-software interactions). In 
addition, if analytics about teacher behavior are present in a 
synchronized dataset, these can be visualized via a free-floating 

circle, which can change position on the map to represent the 
teacher’s location in the classroom at a given time. 

Aside from teacher position, all other analytics are visualized 
through color. For continuous-valued or ordinal analytics, colors 
can be assigned to two arbitrary end points within the range of 
values a given metric can assume, and these analytics will be 
visualized by interpolating between the two colors. For 
categorical analytics, colors can be assigned individually to 
different categories. Figure 1 shows a series of screenshots from a 
replay session (showing time slices several minutes apart). In this 
replay, the time elapsed since each student’s last within-software 
interaction is displayed on their “computer screens”, with end 
points of 30 seconds and 90 seconds. So, if a student has spent 30 
or fewer seconds inactive, that student’s screen will appear black, 
and if the student has spent 90 seconds or more inactive, the 
screen will appear bright green. In between 30 and 90 seconds of 
inactive time, a student’s screen will appear to gradually transition 
from black to green. The teacher’s position and current activities 
are also visualized in this replay, with “on-task conversation” 
indicated by an orange circle, and “inactive/distracted or off-task 
conversation” indicated by a blue circle. What is striking is the 
amount of inactivity in the third frame, during a period when the 
teacher is inactive, in the back of the classroom. 

By examining a limited set of variables within a single replay 
session, researchers may be able to detect qualitative patterns 
across multiple students more rapidly than would be possible by 
watching video recordings or conducting live classroom 
observations [35]. And by visualizing different sets of analytics 
across multiple replay sessions, researchers can iteratively explore 
questions about potential mediators of student learning and 
behavior within the software. After formulating hypotheses based 
on replay analyses of a small number of classrooms, researchers 
can investigate further through quantitative modeling on larger 
samples. In addition to facilitating interactive replays, SPACLE 
can generate synchronized datasets that enable educational data 
mining techniques to be easily applied. 

SPACLE is currently designed to work with ITS log data from 
DataShop, an open repository for data from educational 
technologies that currently houses over 700 data sets, many of 
which have been used in secondary analyses.2 Prior to generating 
replays, SPACLE first synchronizes records of out-of-software 
events in the classroom (e.g. student and teacher behaviors, or 
class-level disruptions) with log data generated from students’ 
interactions within the software. The records of out-of-software 
behaviors may be generated by hand (i.e., field observations 
conducted by human observers), or, in the future, via automated 
means such as sensors placed throughout the classroom (e.g. [21, 
32]) or machine-learned detectors that attempt to infer out-of-
software behaviors from ITS log data (e.g. [3]). The primary 
requirements SPACLE imposes on these out-of-software logs are 
that they either include continuous measurements (e.g. moment- 
by-moment recordings of a teacher’s location and movements in 
the classroom) or discrete observations marked with approximate 
start and end times for a given behavior. 

In our work thus far we have focused on using SPACLE to better 
understand and interpret the effects of classroom dynamics on 
student learning with ITSs – though we have also begun exploring 
broader uses of SPACLE as a design tool (see Discussion). In the 
next section, we illustrate how we’ve used SPACLE as a bridge 
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Figure 1. A sequence of screenshots from a replay of a class 
session generated by SPACLE. In the displayed classroom 

there is a long row of desks in the center of the room, 
oriented vertically, and several horizontal rows of desks on 
either side of it. Student names are obscured in this image. 

Students’ inactive time, ranging from 30 seconds or less 
(black) to 90 seconds or more (bright green), is visualized on 

their “computer screens”. The teacher circle takes on two 
colors (orange: on-task conversation with a student, blue: 

inactive/distracted or off-task conversation). 

 



between qualitative analysis of classroom observation data and 
larger-scale data mining, in our own early investigations into 
potential effects of teacher behavior in ITS classrooms. After 
confirming that the ITS used in our study was effective overall 
(via analysis of students’ pre- and posttest scores), we began 
exploring potential mediators of student learning (both within and 
outside of the software). Over the course of these explorations, we 
have gradually moved from contextually richer methods 
(classroom observations and replay analysis on small samples) to 
more generalizable methods (correlational analyses and causal 
modeling on larger samples), and then back again to aid in 
interpretation and additional exploration (see Figure 2).  

4. CASE STUDY 
4.1 Data Collection 
The data we report in this study were originally collected during a 
classroom experiment aimed at evaluating how analytics 
generated from students’ interactions with an ITS, presented on a 
prototype teacher dashboard, could help teachers plan more 
effective lectures for subsequent class sessions. However, the data 
analyzed in this paper are from a class period during which 
students worked with ITSs and teachers did not yet have access to 
a dashboard. Thus, these teachers often relied on direct 
observations of their students’ computer screens, while walking 
around the classroom, in order to monitor their students’ progress. 
This is a typical situation when teachers use ITSs in their classes. 

In this study, 299 middle school students used Lynnette, an ITS 
for algebraic equation solving [14, 16], for 60 minutes, spread 
across up to two class sessions. Students’ performance in equation 
solving was measured before and after using Lynnette via 
computer-based pre- and posttests, which were focused on 
measuring procedural skills. We used two test forms, which were 
identical up to the particular numbers used in equations. Test 
forms were presented in counterbalanced order across pre- and 

post-test. Test items were graded automatically, based on the 
correctness of students’ final responses (i.e. without providing 
partial credit for intermediate steps in equation solving). 

We collected live classroom observations from a sample of 9 out 
of 17 classrooms taught by 4 teachers, with a total of 151 students. 
Students who were absent during any of the pretest, ITS-use 
sessions, or posttest were excluded from subsequent analyses, 
leaving 135 students in total. In the remainder of this paper, only 
data from these 135 students are considered. Due to privacy 
concerns, we were unable to video record class sessions. Instead, 
during each class session, a member of our research team sat in 
the back of the classroom (in order to minimize any disturbance 
caused by their presence) and recorded coarse-grained field 
observations of teacher and student behavior. We recorded 
observations using LookWhosTalking3, a tool for coding live 
classroom observations, developed at our institution, which was 
customized with a coding scheme we designed to facilitate both 
coding and eventual analyses. This coding scheme was adapted 
from the Baker-Rodrigo observation method protocol (BROMP) 
[42], and the TA observation protocol developed by Stang et al. 
[18]. We extend the TA observation protocol by distinguishing 
between different types of teacher interactions with students – 
namely, distinguishing whether a teacher is monitoring/observing 
a student or holding a conversation with that student, and further 
distinguishing between on-task and off-task teacher-student 
conversations (c.f. [13, 42]). 
Following BROMP, up-to-date seating charts were elicited from a 
teacher prior to each class session, both to enable coding of 
student-teacher interactions, and for use as classroom maps during 
replay analysis [42]. Field observers recorded instances in which 
students raised or lowered their hands, and coded teacher behavior 
with reference to 6 broad categories:  

1. On-task conversation: The teacher is engaged in a 
discussion with a student about the activity she/he is 
currently working on 

2. Off-task conversation: The teacher is engaged in an 
unrelated discussion with the student. 

3. Talking to class: The teacher is addressing the entire 
class (e.g., giving a “mini-lecture” based on observations 
made during a lab session) 

4. Monitoring: The teacher is watching the class from a 
fixed location (e.g., the teacher’s desk), or standing 
behind a student and scanning that student’s computer 
screen over her/his shoulder (disambiguated by the 
teacher’s current location, as described below) 

5. Outside the room: the teacher is not in the classroom 
6. Inactive: the teacher is in the classroom, but engaged in 

an activity other than one of the above (e.g., grading 
papers or checking email) 

Within each of the broad behavior categories above, the position 
of the teacher in the classroom was recorded if the behavior 
persisted for at least two seconds. The teacher’s position was 
coded either as the name of a student the teacher was standing 
behind (if the teacher was directly monitoring that student, or 
engaged in an on-task conversation), or a description of another 
location in the classroom, such as the teacher’s desk. These field 
observations were then synchronized offline, using SPACLE, with 
the DataShop log data generated by Lynnette. 
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Figure 2. A spectrum of methods for understanding student 

learning in classrooms using educational technologies. 

 



4.2 Analyses and Results 
4.2.1 Pre-post analysis 
A student’s prior knowledge of equation solving (as measured by 
the pretest) was a strong predictor of their posttest score (r = 0.79, 
p < .001). Students went from an average of 43% on the pretest to 
52% on the posttest – a significant improvement (F(1, 133) = 
17.66, p < .001).  

4.2.2 Replay Analysis 
On average, teachers spent roughly 47% of their time either 
inactive or outside of the room. The proportions of time teachers 
were observed engaging in each of the other coded activities, 
within the remainder of the time, are reported in Table 1.  
 

Table 1. Frequency of coded teacher and student behaviors 
during teachers’ active time. Top row: average percentage of 

teachers’ active time that was spent engaged in each of the 
coded behavior categories. Bottom row: average percentage of 

students for which a category was observed at least once. 
  

 

Teacher-
student: 
On-task 
conversa

tion 

Teacher-
student: 
Off-task 
conversa

tion 

Teacher: 
Talking 
to class 

Teacher: 
Monitori

ng 

Student: 
Hand-
raising 

Teacher 
time 33% 19% 4% 44% n/a 

% of 
students 28% 7% n/a 34% 26% 

 

In examining replays of a small number of class sessions, we 
observed a number of unexpected patterns – often re-running the 
replay with different combinations of analytics in order to explore 
particular questions more deeply. Almost immediately, we noticed 
that the teachers in our study tended to actively monitor their 
students in concentrated bursts, interleaved with (often lengthy) 
idle periods in which the teacher might either monitor the whole 
class from a fixed position in the room, or attend to an unrelated 
activity. During periods in which teachers were walking around 
the classroom, they occasionally provided students with 
apparently unsolicited feedback (i.e. feedback that was not 
preceded by the student raising her/his hand) based on their 
observations while watching a student’s computer monitor over 
her/his shoulder. 

In these replays, teachers appeared to selectively monitor certain 
students while consistently passing others by. In interviews with 
some of these teachers, they noted that they monitor their students 
strategically during computer lab sessions, relying on prior 
knowledge about their students’ abilities and behavioral 
tendencies. In particular, two of the teachers we interviewed 
emphasized that they tend to focus on monitoring students who 
they expect are more likely to be off-task (e.g. browsing external 
websites instead of working with the software). However, replays 
displaying the amount of time each student spent inactive in the 
software suggested that teachers tended to neglect certain regions 
of the classroom, and overlooked students who truly tend towards 
greater time off-task.  

For example, Figure 3 shows a group of students, on the right side 
of the classroom, who spent a large amount of time inactive over 
the course of a class session. Yet the teacher spent very little time 

in this region of the room, and almost no time directly monitoring 
any of these students’ screens. This may be viewed as evidence 
that teachers’ intuitions are limited when it comes to judging 
which students are more likely to engage in off-task behavior. It is 
also possible that students sitting in regions of the room where a 
teacher is more active are more likely to remain on-task. Indeed, 
our replay analyses lend some support to this interpretation, as 
students frequently appeared to go off-task when the teacher 
moved to another region of the classroom, but then resumed 
working with the software once the teacher started moving in their 
general direction. And many students appeared to go off-task 
during periods in which the teacher was either inactive or outside 
of the room (see Figure 1).  

A major takeaway from these replay analyses was that we might 
have previously underestimated the importance of spatial factors 
in the classroom when analyzing ITS log data. Although our 
original goal in collecting classroom observation data was to 
investigate the effects and predictors of teachers’ helping 
behaviors in the classroom, replay analyses revealed that teachers’ 
proximity seemed to have much more salient effects on student 
learning and behavior. A teacher’s location in the classroom 
appeared to be related to whether or not particular students chose 
to be on-task, and the activity of students sitting next to one 
another often appeared to be temporally synchronized (similar to 
the “distraction ripples” observed by Raca et al. [21]). 
Furthermore, when the teacher was either distracted or outside of 
the classroom, many students appeared to stop working with the 

Figure 3. A time-lapse image of a SPACLE replay, 
summarizing a 60-minute class session. In this replay, the 

amount of time each student spent inactive during the entire 
session is displayed – ranging from black (less time) to 

bright green (more time). Student names are obscured in 
this image. Brighter yellow student circles indicate more 

frequent hand raising, and more faded colors of the teacher 
circle indicate less time spent with a particular student. 

 



software entirely. And students’ willingness to raise their hands 
(as well as their likelihood of receiving help from the teacher as a 
result) appeared to increase during time intervals in which the 
teacher was nearby. 

4.2.3 Relationships between student-teacher 
interactions and student learning outcomes 
After using replay analysis to gain a richer qualitative picture of 
what went on in a small set of class sessions, we conducted 
quantitative analyses on the synchronized logs generated by 
SPACLE in order to investigate the robustness of some of the 
patterns we observed. Since we are ultimately interested in 
students’ learning outcomes, we began by examining relationships 
between frequencies of various student-teacher interactions 
(evaluated per-student) and students’ pre-post gains.  

As shown in Table 2, neither a student’s frequency of on-task 
conversations with the teacher nor their frequency of requesting 
help (via hand-raising) were significantly correlated with their 
performance at posttest, even when controlling for the student’s 
pretest score. Interestingly, the frequency with which a teacher 
directly monitored a student was the only measured aspect of 
students’ and teachers’ interactions in the classroom that 
correlated significantly with posttest, and the relationship with 
direct monitoring remains significant even when controlling for 
pretest. 
 

Table 2. Zero-order and partial correlations (controlling for 
pretest) between student-teacher interactions and posttest 

scores.  
p < 0.05, ** p < 0.01, *** p < 0.001  

 On-task 
conversation 

Off-task 
conversation 

Direct 
monitoring 

Hand 
raising 

Zero-order 
correlation 

0.00 
 

0.13 0.39*** 
 

-0.02 
 

Partial 
correlation 

-0.08 -0.14 0.20* -0.08 

 

In order to better understand the mechanisms by which this 
apparent link might arise, we adopt a causal model search 
approach, using directed acyclic graphs (DAGs) to represent the 
qualitative causal structure among measured variables. We used 
the PC algorithm in the Tetrad V program4 to search for an 
equivalence class of graphs that are consistent with a set of 
conditional independence constraints [22]. We included 
background knowledge about our experimental design as a search 
constraint: namely, that the pretest precedes all process variables, 
which in turn are all prior to the posttest. The PC algorithm is 
asymptotically reliable, and its primary limitations lie in its 
assumptions that the underlying causal dependencies between 
variables can be modeled with linear functions, and that there are 
no unmeasured common causes among variables.  

To relax the second of these assumptions, we also used the FCI 
algorithm to learn an equivalence class of graphs, represented by 
partial ancestral graphs (PAGs). PAGs are representationally 
                                                                    
4 Available at http://www.phil.cmu.edu/projects/tetrad/ 

richer than DAGs, and may contain edges representing 
uncertainty over the nature of pairwise relationships between 
variables [22]: 

• X à Y: X causes Y in every member of the equivalence 
class represented by this PAG. 

• X ↔ Y: X and Y share a latent common cause in every 
member of the equivalence class represented by this 
PAG. 

• X oà Y: Either X causes Y, X and Y share a common 
cause, or both. 

• X o—o Y: X is a cause of Y or Y is a cause of X. 
Alternatively, X and Y may share a latent common 
cause (either in the absence of a direct causal link 
between the two variables, or in addition to one). 

Figure 4 shows the model found by PC, with path coefficient 
estimates included. The model fits the data well (χ2 = 6.03, df = 
10, p = .81)5, and contains a number of properties that are 
consistent with findings in prior literature on the effects of student 
help-seeking behaviors on learning gains with ITSs. For example, 
under this model increased use of the ITS’s hint functionality 
appears to inhibit learning, overall [6]. Also, compatible with 
previous findings that on-task conversations with peers and 
teachers during ITS use may be negatively related to student 
learning overall, we find that on-task conversations with teachers 
appear to increase students’ error rates within the software [13]. 
However, we did not replicate Baker et al.’s finding of a negative 
relationship between on-task conversations and learning gains, 
instead finding no relationship  (perhaps owing, in part, to 
differences in the quality and effects of peer help and teacher 
help). Note that the observation of a negative relationship between 
on-task conversations and student error rates, and the absence of 
an observed relationship with learning gains may be, at least in 
part, due to a selection effect. Students who have more on-task 
conversations with the teacher are likely those who are having 
more difficulties in the software (for reasons that may not be 
captured by their performance on the pretest alone), and who are 
in turn likely to learn less [6, 13]. In addition, it is possible that a 
finer-grained coding of the nature or content of these on-task 
conversations would have revealed particular circumstances under 
which such conversations produce a measurable increase or 
decrease in student learning, as measured by posttest.  

The observed positive relationship between the frequency of 
direct monitoring by the teacher and student posttest scores 
appears to have been mediated, in part, by students’ hint-use 
behavior. One possibility this suggests – made more plausible by 
our observations during replay analyses – is that students who are 
more aware that the teacher is monitoring them are less likely to 
engage in maladaptive learning behaviors such as abusing 
software-provided hints, and are therefore more likely to learn the 
material. It is also possible, however, that the apparent link 
between teachers’ direct monitoring and student learning gains 
                                                                    
5 Note that in path analysis, the null hypothesis is that the 
estimated model is the true model, and the p-value represents the 
probability that a difference between the estimated and the 
observed covariance matrices at least as large as the realized 
difference would have been observed under the null hypothesis. 
As such, a p-value above a specified threshold (conventionally 
alpha = .05) implies that the model cannot be rejected.  
 



reflects a selection effect. For example, teachers may tend to more 
frequently monitor students who show signs of making progress 
in the software (or who the teacher believes are more likely to 
make progress). Interestingly, this model suggests that students 
with higher pretest scores may have been somewhat more likely to 
receive additional monitoring from the teacher. In a follow-up 
interview, one of the teachers in our study claimed to have 
intentionally placed a group of students in a relatively isolated and 
inaccessible area of the classroom, as these students were “a pain 

to deal with” – hinting at possible mechanisms by which this 
apparent bias could have arisen. 

Stang et al. recently found similar results at the university level 
[18]. In their study of interactions between teaching assistants 
(TAs) and students in the ‘hands-on’ laboratory sections of large 
introductory physics courses, these authors found that the 
frequency of TA-student interactions was a strong and positive 
predictor of student engagement (defined as on-task behavior), 
which was in turn a stronger predictor of student learning gains 
than their pretest scores. Compatible with our findings, the 
authors found that this relationship held for interactions that were 
initiated by TAs, but not for those initiated by students. In 
addition, very brief visits by the TA appeared to be just as 
effective as lengthy interactions. The authors posited that this 
might be due either to a “policing” effect (i.e., frequent 
interactions motivate students to not stray off-task), or a 
“ventilation” effect (i.e., TA-initiated visits open the door for 
productive conversations with students). To gain a sense of the 
relative plausibility of these two explanations in our own dataset, 
we ran follow-up replay analyses with SPACLE, across two 
teachers and class sessions -- visualizing the rate of student hint 
requests on each student’s “computer screen” by displaying a 
flash of color each time a student asked for a hint. These replays 
suggested that students might have been less likely to request 
hints when the teacher was nearby. In addition, students who were 
observed asking for multiple hints in rapid succession appeared to 
stop (or at least, pause) this behavior when the teacher was nearby 
or directly monitoring them – lending some support to Stang et 
al.’s “policing” hypothesis, while also remaining compatible with 
their “ventilation” hypothesis. 

Given the potential for confounding factors, we used the FCI 
algorithm to learn a PAG causal model, relaxing the assumption 
of no unmeasured common causes (see Figure 5). The learned 
structure is largely the same, except that this model encodes the 
possibility that pretest may be related to direct monitoring, off-
task conversation, hint use, and/or error rate by a common 
unmeasured cause, and that the same may be true for the 
relationships between direct monitoring and hint use, and on-task 
conversation and its children (hand raises and error rate). In 
addition, the learned structure suggests that students’ frequency of 
hand-raising shares common unmeasured causes with their 
frequency of off-task conversation and their within-software error 
rates (which in turn may share a common cause with students’ 
rate of hint-use) – perhaps indicating that these behaviors are 
symptoms of unmeasured cognitive, motivational, and affective 
states such as confusion and frustration [34]. However, the 
positive link between direct monitoring and student learning gains 
remains in every member of the equivalence class found by FCI. 

5. DISCUSSION AND FUTURE WORK 
We have introduced SPACLE, a prototype tool that facilitates 
exploratory, retrospective analyses of learning-related interactions 
that may cross over between virtual and physical spaces. In 
addition, we have demonstrated how SPACLE can support 
hypothesis generation, by using replay analysis to inform our own 
investigations into the effects of teacher-student interactions on K-
12 students’ learning with intelligent tutoring systems. We used 
SPACLE replays to inform quantitative log analyses in two ways: 
first as a means to quickly explore multimodal classroom datasets 
and identify important classroom behaviors that likely have an 
impact on learning, and second to continuously evaluate the 
relative plausibility of various, alternative hypotheses that were 
consistent with the results of our quantitative analyses. 

 
Figure 4. The model found by PC, with parameter estimates 
included. This model fits the data well: χ2 = 11.31, df = 12, p 

= .50. 

 
Figure 5. The PAG equivalence class found by FCI, which 

encodes the possibility of unmeasured common causes. 

 



Furthermore, through a combination of causal modeling and 
replay analysis with SPACLE, we have presented some 
convergent evidence for positive effects of teachers’ monitoring 
behaviors on student learning in classrooms using ITSs. 
Specifically, our findings from causal modeling suggest that 
students who receive more frequent monitoring from teachers in 
ITS classrooms may learn more, and that this effect may be 
partially mediated by students’ hint-use behavior within the 
software. Our use of SPACLE replays on a small subset of our 
data throughout the analysis process enabled us to evaluate the 
relative plausibility of various hypotheses that were compatible 
with these causal models. Students who are monitored by their 
teachers more frequently tend to engage less often in “gaming the 
system” behaviors such as hint abuse, and may also be less likely 
to go off-task.  
These findings extend those of Stang et al. [13] by suggesting that 
more frequent visits from a teacher may promote engagement and 
learning not only at the university level, but also among 
considerably younger students (7th-8th grade). Our findings also 
lend support to the authors’ prediction that their observed 
relationship between teacher visits and student engagement would 
generalize beyond their study’s setting (inquiry-based laboratory 
sessions in an introductory physics course). In addition, our 
findings may help interpret Stang et al.’s observation that a 
teachers’ frequency of interaction with a student predicts student 
engagement, independent of the length of these interactions. Our 
findings suggest that teachers’ interactions may not need to have a 
verbal component in order to be effective – that is, K-12 students’ 
mere awareness of being monitored may have a positive impact 
on their learning with self-paced systems such as ITSs.  

Without using SPACLE for our initial explorations, we likely 
would not have turned our attention, in the first place, to studying 
potential effects of teachers’ monitoring behaviors. Rather, we had 
originally collected classroom observations on teachers’ 
monitoring behavior in order to study potential teacher blind spots 
during blended lab sessions (e.g., failing to notice important 
opportunities to help students learn the material, or exhibiting an 
unconscious bias towards helping and monitoring certain subsets 
of students). Informally, SPACLE replays suggested that teachers 
tended to spend a significant amount of time inactive during lab 
sessions and often overlooked students who tended to spend more 
time off-task. Another one of our initial goals for these analyses 
was to model and understand how teachers decide which students 
to help, in order to understand how their help giving might be 
better allocated. Contrary to our initial expectations, however, the 
frequency of teachers’ verbal interactions with students was not a 
significant predictor of student learning, overall, even when 
examining on-task conversations only. 

These results should not be interpreted as suggesting that on-task 
conversations with a teacher cannot be helpful. Indeed, we expect 
that there exist many scenarios in which help from a human 
teacher is likely to be more effective than the support ITSs can 
currently offer. As mentioned, a selection effect may be 
responsible, at least in part, for the absence of an observed 
relationship between on-task teacher-student conversations and 
student learning gains. However, this absence does suggest that 
any overall positive effect of such conversations is not strong 
enough to offset the selection effect. It may also be that, 
consistent with prior work on the effects of student hint-use within 
ITSs, on-the-spot support from a human teacher during blended 
lab sessions is helpful only under particular circumstances [6]. For 
example, it may be that current ITSs are generally more effective 
at teaching procedural skills, whereas human teachers can be more 

effective at teaching conceptual knowledge [36]. Under this 
interpretation, our pre- and posttests may not have been able to 
capture the effects of students’ on-task conversations with their 
teachers, since these assessments were primarily designed to test 
students’ procedural knowledge in equation solving. It may also 
be that the effectiveness of a particular on-task conversation with 
a teacher depends jointly upon student traits (e.g., the student’s 
inclination to self-explain ideas presented by the teacher) and the 
type and quality of the help the teacher provides (e.g., completing 
a problem for the student as a worked example, versus prompting 
the student to work through the problem while verbalizing her/his 
thought process).  

Although the coding scheme used in the current study was not 
fine-grained enough to capture such distinctions, we view the 
investigation of circumstances under which help from a human 
teacher is more beneficial than help from an ITS (or vice-versa) as 
a promising direction for future work. Such research could inform 
the design of more synergistic blended curricula – combining the 
complementary strengths of both human teachers and ITSs. It 
could also inform the design of learning analytics tools to help 
teachers more effectively support their students while they work 
with learning technologies such as ITSs in the classroom. 

Several limitations of this work should be mentioned. The causal 
models shown in Figures 4 and 5 should not be viewed as the 
“true” models. First, although our data are from an experimental 
study, the data reported in this paper are from a portion of the 
study in which we did not directly intervene on any of the 
measured variables between pre- and posttest (except insofar as 
running an in-vivo classroom study can be considered an 
intervention in itself). As such, our data should be considered 
observational, and future experimental investigation is required to 
evaluate the causal nature of each link identified in our causal 
models. Second, by no means can we rely on the assumption 
made by our search algorithms, that the underlying relationships 
between our modeled variables are truly linear. Nonetheless, this 
model assumption is not unreasonable, as the relationships in the 
data we modeled appear approximately linear. Third, although our 
sample of 135 students is relatively large compared to many ITS 
studies, the reliability of our model search algorithms would be 
improved with access to larger samples, and it is generally 
impossible to compute confidence bounds when dealing with 
finite samples [45]. Fourth, although SPACLE allows us to 
quickly run exploratory replay analyses that capture 
spatiotemporal factors, time-series analyses could enable deeper 
analysis of individual links in our causal models by leveraging 
temporal precedence as a cue to causality (i.e., a scalable 
formalization of part of what human researchers do when 
observing SPACLE replays [35]). In our future work, we plan to 
apply algorithms for causal modeling from time-series data. 

It is also worth noting that we observed teachers over a relatively 
brief period (60 minutes) in this study, as we were interested in 
investigating student-teacher interactions on a small scale. It 
would be interesting to observe ITS classrooms over longer time 
periods, in order to study how teacher practices (and perhaps also 
their effects on student learning) may evolve over time. And 
finally, in this study a single human observer manually collected 
classroom observations of teacher-student interactions. This 
required us to use a very coarse-grained coding scheme, and also 
limited the number of classrooms we could feasibly observe. In 
future work, we will automate parts of the classroom data 
collection process (building on recent work by Prieto et al. [32]), 
using a combination of low-cost sensors and manual observations. 
A semi-automated approach may enable more detailed coding 



schemes by freeing human observers to focus on recording 
higher-level observations (e.g. semantic features of on-task 
conversations in the classroom).  

In addition to using SPACLE for exploratory data analysis, we 
have also begun exploring the use of SPACLE as a design tool. 
First, we’ve begun using SPACLE in our own design work, to 
support the iterative design and prototyping of analytics for use in 
real-time teacher dashboards. SPACLE allows designers to 
experiment with alternative analytics (e.g. different alert 
thresholds for behavior detectors, or different measures of the 
same psychological construct) and examine the consequences of 
particular choices in a tangible way. Second, we have begun 
exploring the use of SPACLE as a means to investigate the 
distance between teachers’ actual behavior in the classroom and 
their recollections of their activities. For example, after observing 
class sessions, we have asked teachers to walk us through their 
activities while student were working on computers, drawing their 
physical paths over top maps of their classrooms in the process. In 
comparing teachers’ recollections with SPACLE replays, we’ve 
observed that the replay often reveals a much lower amount of 
teacher activity (often fairly concentrated in particular regions of 
the classroom) than teachers’ recollections would suggest. In the 
future, we would like to explore the use of SPACLE-generated 
replays as “after action reviews” for teachers, to encourage them 
to reflect on their own activity patterns in the classroom. 
However, in order for such reflection tools to be used in teachers’ 
daily practice, outside of exploratory design studies, the collection 
of classroom observations would need to be heavily automated. 

In conclusion, our results have implications for the learning 
analytics, educational data mining, and intelligent tutoring 
systems communities. Using replay analysis with SPACLE, we 
generated a number of questions about the nature and effects of 
teachers’ on-the-spot decision-making during blended lab 
sessions. Through both replay analyses and causal modeling, we 
observed rich relationships between students’ out-of-software 
interactions in blended lab sessions using ITSs and their within-
software learning and behavior. Some of the most salient observed 
effects involved no verbal interactions between students and their 
teachers, but rather appeared to be due to spatial factors (e.g. the 
teacher’s position in the room, relative to a student) and perhaps 
classroom layout. We view these observations as suggestive that 
the influence of such out-of-software factors on student learning 
with ITSs and similar educational technologies has perhaps been 
under studied previously. Our finding that the frequency with 
which teachers monitor students is predictive of learning gains 
may indicate that one possible mechanism by which classroom 
monitoring tools such as real-time dashboards might be effective 
in promoting student learning is by simply making students aware 
that they are being monitored. In our future work, we plan to use 
SPACLE replays in conjunction with causal modeling, to 
construct models of teacher decision-making [32, 37] and identify 
additional links between teacher behavior and student learning. 
These models could in turn help inform the design of more 
effective learning analytics tools for teachers. Our findings also 
suggest that students may systematically take advantage of 
affordances offered by the physical classroom (e.g. teachers’ 
limited attention and perceptual abilities) in order to decide 
whether and when to go off-task or abuse hints (consistent with 
previously reported informal classroom observations [34]). This 
hints at the usefulness of a broader notion of “gaming the system” 
than has been used previously – taking into account student 
behaviors that extend outside of the software. 
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