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Abstract. When used in K-12 classrooms, intelligent tutoring systems (ITSs)
can be highly effective in helping students learn. However, they might be even
more effective if designed to work together with human teachers, to amplify
their abilities and leverage their complementary strengths. In the present work,
we designed a wearable, real-time teacher awareness tool: mixed-reality smart
glasses that tune teachers in to the rich analytics generated by ITSs, alerting
them to situations the ITS may be ill-suited to handle. A 3-condition experiment
with 286 middle school students, across 18 classrooms and 8 teachers, found
that presenting teachers with real-time analytics about student learning,
metacognition, and behavior had a positive impact on student learning, com-
pared with both business-as-usual and classroom monitoring support without
advanced analytics. Our findings suggest that real-time teacher analytics can
help to narrow the gap in learning outcomes across students of varying prior
ability. This is the first experimental study showing that real-time teacher ana-
lytics can enhance student learning. This research illustrates the promise of
AIED systems that integrate human and machine intelligence to support student
learning.
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1 Introduction

When educational technologies are used in K-12 classrooms, human teachers play
critical roles in mediating their effectiveness [33, 37, 41]. The term classroom
orchestration has been widely used to describe the planning and real-time management
of classroom activities [15]. Supporting teachers in orchestrating complex, but effec-
tive, technology-enhanced learning has been recognized as a critical research and
design challenge for the learning sciences [16, 39, 43].

In recent years, several real-time teacher awareness tools have been designed and
developed to address this challenge (e.g., [1, 5, 19, 30, 31, 40, 43]). These tools are
often designed to augment teachers’ “state awareness” during ongoing learning
activities [39, 43], for example, by presenting teachers with real-time analytics on
student knowledge, progress, metacognition, and behavior within educational software.
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The design of such tools is frequently motivated by an assumption that enhanced
teacher awareness will lead to improved teaching, and consequently, to improved
student outcomes. Some prior work has found evidence for positive effects of real-time
teacher analytics on student performance within educational software (e.g., [30]). Yet
there is a paucity of empirical evidence that a teacher’s use of real-time awareness tools
(e.g., dashboards) can improve student learning, and scientific knowledge about the
effects such tools have on teaching and learning is scarce [32, 39, 44].

In the present work, we investigate the effects of a real-time awareness tool for
teachers working in K-12 classrooms using intelligent tutoring systems (ITSs), an
important but underexplored area of AIED research. Intelligent tutors are a class of
advanced learning technologies that provide students with step-by-step guidance during
complex learning activities. ITSs have been found, in several meta-reviews, to sig-
nificantly enhance student learning compared with other learning technologies or
classroom instruction (e.g., [25]). When used in K-12 classrooms, ITSs allow students
to work at their own pace, while also freeing up the teacher to spend more time
working one-on-one with students [41]. A common intuition is that, in many situations,
human teachers may be better suited to support students than ITSs alone (e.g., by
providing socio-emotional support, supporting student motivation, or flexibly provid-
ing conceptual support when further problem-solving practice may be ineffective). Yet
ITSs are not typically designed to work together with teachers, in real-time, to take
advantage of these complementary strengths [7, 19, 35, 45]. ITSs might be even more
effective if they were designed not only to support students directly, but also to amplify
teachers’ abilities to help their students (cf. [7, 21, 38]).

We present Lumilo [19]: mixed-reality smart glasses, co-designed with middle-
school mathematics teachers, that tune teachers in to the rich analytics generated by
ITSs (cf., [10]). By alerting teachers in real-time to situations the ITS may be ill-suited
to handle on its own, Lumilo facilitates a form of mutual support or co-orchestration
[35] between the human teacher and the Al tutor. We conduct an in-vivo experiment
using Lumilo to investigate the effects of this form of teacher/Al co-orchestration on the
ways teachers interact with students during in-school lab sessions with ITS software,
and how, in turn, students learning processes and outcomes are affected. We test
whether students measurably learn better when their teacher has access to real-time
analytics from an ITS, compared to current practice with ITSs (where the teacher does
not use a real-time awareness tool), and compared to a simpler form of classroom
monitoring support [39], common in widely-used classroom-management systems
(e.g., [11, 18, 26]).

2 Methods

2.1 Linear Equation Tutor

We investigate the effects of a teacher’s use of a real-time awareness tool in the context
of middle school classrooms using Lynnette, an ITS for linear equations. Lynnette is a
rule-based Cognitive Tutor that was developed using the Cognitive Tutor Authoring
Tools [3]. It has been used in several classroom studies, where it has been shown to
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significantly improve students’ equation-solving ability [27, 28]. Lynnette provides
step-by-step guidance, in the form of hints, correctness feedback, and error-specific
messages as students tackle each problem in the software. It also adaptively selects
problems for each student, using Bayesian Knowledge Tracing (BKT) to track indi-
vidual students’ knowledge growth, together with a mastery learning policy [13].
Students using Lynnette progress through five levels with equation-solving problems of
increasing difficulty. These range from simple one-step equations at Level 1 (e.g.,
x + 3 = 6), to more complex, multi-step equations at Level 5 (e.g., 2(1 —x) + 4 = 12).

2.2 Real-Time Teacher Awareness Tool

We created a real-time support tool for K-12 teachers who use ITSs in their classrooms.
To this end, we adopted a participatory design approach [17] in which we directly
involved teachers at each stage, from initial needs-finding [19, 21] to the selection and
tuning of real-time analytic measures through iterative prototyping [19, 20]. The
prototype that emerged from this iterative co-design process (described in greater detail
in [19-21]), was a pair of mixed-reality smart glasses called Lumilo.

Lumilo tunes teachers in to the rich analytics that ITSs generate: It presents real-
time indicators of students’ current learning, metacognitive, and behavioral “states”,
projected in the teacher’s view of the classroom (Fig. 1, left). The use of transparent
smart glasses allows teachers to keep their heads up and focused on the classroom,
enabling them to continue monitoring important signals that may not be captured by the
tool alone (e.g., student body language and looks of frustration [19, 21]). The smart
glasses provide teachers with a private view of actionable, real-time information about
their students, embedded throughout the classroom environment, thus providing many
of the advantages of ambient and distributed classroom awareness tools (e.g., [1, 5]),
without revealing sensitive student data to the entire class [5, 19].

Over the course of the design process, Lumilo’s information displays shifted
towards strongly minimalistic designs (with progressive disclosure of additional ana-
lytics only upon a teacher’s request), in accordance with the level of information
teachers desired and could handle in fast-paced classroom environments. Lumilo pre-
sents mixed-reality displays of three main types, visible through the teacher’s glasses:
student-level indicators, student-level “deep-dive” screens, and class-level summaries
(as shown in Fig. 1). Student-level indicators and class-level summaries are always
visible to the teacher by default, at a glance. Student-level indicators display above
corresponding students’ heads (based on teacher-configurable seating charts), and
class-level summaries can display at teacher-configurable locations throughout the
classroom [19]. As shown in Fig. I(bottom-left), if a teacher glances at a student’s
indicator, Lumilo automatically displays a brief elaboration about the currently dis-
played indicator symbol (i.e., how long the alert has been active and/or a brief
explanation of why the alert is showing). If no indicators are currently active for a
student, Lumilo displays a faint circular outline above that student (Fig. 1, top-left). If a
teacher clicks on a student’s indicator (using either a handheld clicker or by making a
‘tap’ gesture in mid-air), Lumilo displays “deep-dive” screens for that student. As
shown in Fig. 1(right), these screens include a “Current Problem” display, which
supports remote monitoring, showing a live feed of a student’s work on their current
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problem. Each problem step in this feed is annotated with the number of hint requests
and errors the student has made on that step. In classroom observations, we have found
that because Lumilo enables monitoring of student activities from a distance (i.e.,
across the room), teachers using Lumilo often interleave help across students: While
helping one student at that student’s seat, the teacher might provide quick guidance to a
struggling student across the room (Fig. 2, right).
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Fig. 1. Teacher’s point-of-view while using Lumilo. Top row: illustrative mock-ups; Bottom
row: screenshots captured through Lumilo (taken after the end of a class session, to protect
student privacy) [19]. Left: Teacher’s default view of the class through Lumilo. Right: Deep-dive
screens that pop-up if a teacher ‘clicks’ on a student’s indicator.

The deep-dive screens also include an “Areas of Struggle” screen, which displays
the three skills for which a student has the lowest probability of mastery. For each skill
shown in “Areas of Struggle”, the student’s estimated probability of mastery is dis-
played, together with a concrete example of an error the student has made on a recent
practice opportunity for the skill. In addition, in the current study, a class-level sum-
mary display was available to the teacher: the “Low Mastery, High Practice” display
(illustrated on the left, in the top row images of Fig. 1). This display shows the three
skills that the fewest students in the class have mastered (according to BKT), at a given
point in the class session, out of those skills that many students in the class have
already had opportunities to practice within the software [19].

The student indicators displayed by Lumilo (Fig. 2, left) are ideas that were gen-
erated by teachers in our design studies [19, 21] and implemented using established
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Fig. 2. Left: Indicators displayed by Lumilo [20]. Right: Teacher using Lumilo during class.

student modeling methods (e.g., [2, 4, 9, 13, 14, 23]). The analytic measures and their
corresponding visual alerts were iteratively refined based on prototyping feedback from
teachers [19], as well as causal data mining of teacher and student process data from
classroom pilots using Lumilo [20]. The resulting prototype updates real-time student
indicators based on the outputs of sensor-free detectors, including detectors of student
hint abuse and hint avoidance [2, 4], gaming-the-system [8], rapid/non-deliberate step
attempts or hint requests [2], and unproductive persistence or “wheel-spinning” [9, 23].
In addition, Lumilo indicates when a student has been idle for two minutes or more and
may be off-task (cf. [6]), when a student has been exhibiting a particularly “low” or
“high” recent error rate (less than 30% or greater than 80% correct within the student’s
most recent 10 attempts) (cf. [23, 34]), or when a student is making errors on a given
problem-solving step, despite having already exhausted all tutor-provided hints for that
step [2]. By directing teachers’ attention, in real-time, to situations the ITS may be ill-
suited to handle, Lumilo is designed to facilitate productive mutual support or co-
orchestration [35] between the teacher and the ITS, by leveraging the complementary
strengths of each (cf. [22, 35, 38, 45]).

2.3 Experimental Design, Participants, and Procedure

In this study, we investigated the hypothesis that real-time teacher/Al co-orchestration,
supported by real-time analytics from an ITS, would enhance student learning com-
pared with both (a) business-as-usual for an ITS classroom, and (b) classroom moni-
toring support without advanced analytics (a stronger control than (a), as described
below).

To test these hypotheses, we conducted a 3-condition experiment with 343 middle
school students, across 18 classrooms, 8 teachers, and 4 public schools (each from a
different school district) in a large U.S. city and surrounding areas. All participating
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teachers had at least 5 years of experience teaching middle school mathematics and had
previously used an ITS in their classroom. The study was conducted during the first
half of the students’ school year, and none of the classes participating in this study had
previously covered equation-solving topics beyond simple one-step linear equations
(eg,x-2=1).

Classrooms were randomly assigned to one of three conditions, stratified by tea-
cher. In the Glasses+Analytics condition, teachers used the full version of Lumilo,
including all displays described above. In the business-as-usual (noGlasses) condition,
teachers did not wear Lumilo during class, and thus did not have access to real-time
analytics. We also included a third condition (Glasses) in which teachers used a
reduced version of Lumilo with only its monitoring functionality (i.e., without any of its
advanced analytics). This condition was included because prior empirical findings
suggest that students’ mere awareness that a teacher is monitoring their activities within
an ITS may have a significant effect on student learning (e.g., by discouraging, and thus
decreasing the frequency of maladaptive learning behaviors such as gaming-the-
system) [22, 42]. In the Glasses condition, teachers only retained the ability to “peek”
at students’ screens from any location in the classroom, using the glasses (although
without the line-by-line annotations present in Lumilo’s “Current Problem” screen). All
of Lumilo’s student indicators were replaced by a single, static symbol (a faint circular
outline) that did not convey any information about the student’s state. Further, the
“Areas of Struggle” deep dive screens and the class-level displays were hidden. Our
aim in providing this stripped-down version of Lumilo was to encourage teachers to
interact with the glasses, thereby minimizing differences in students’ perceptions
between the Glasses+Analytics and Glasses conditions. The Glasses condition bears
some similarity to standard classroom monitoring tools, which enable teachers to peek
at student screens on their own desktop or tablet display (e.g., [11, 18, 26]).

All teachers participated in a brief training session before the start of the study.
Teachers were first familiarized with Lynnette, the tutoring software that students
would use during the study. In the Glasses+Analytics and Glasses conditions, each
teacher also participated in a brief (30-min) training with Lumilo before the start of the
study. In this training, teachers practiced interacting with two versions of the glasses
(Glasses and Glasses+Analytics) in a simulated classroom context. At the end of this
training, teachers were informed that, for each of their classes, they would be assigned
to use one or the other of these two designs.

Classrooms in each of the three conditions followed the same procedure. In each
class, students first received a brief introduction to Lynnette from their teacher. Students
then worked on a computer-based pre-test for approximately 20 min, during which
time the teacher provided no assistance. Following the pretest, students worked with
the tutor for a total of 60 min, spread across two class sessions. In all conditions,
teachers were encouraged to help their students as needed, while they worked with the
tutor. Finally, students took a 20-min computer-based post-test, again without any
assistance from the teacher. The pre- and posttests focused on procedural knowledge of
equation solving. We used two isomorphic test forms that varied only by the specific
numbers used in equations. The tests forms were assigned in counterbalanced order



160 K. Holstein et al.

across pre- and post-test. The tests were graded automatically, with partial credit
assigned for intermediate steps in a student’s solution, according to Lynnette’s cog-
nitive model.

In the Glasses and Glasses+Analytics conditions, we used Lumilo to automatically
track a teacher’s physical position within the classroom (cf. [36]), relative to each
student, moment-by-moment (leveraging Lumilo’s indicators as mixed-reality prox-
imity sensors [19, 20]). Teacher time allocation was recorded per student as the
cumulative time (in seconds) a teacher spent within a 4-ft radius of that student (with
ties resolved by relative proximity). Given our observation that teachers in both of
these conditions frequently provided assistance remotely (i.e., conversing with a stu-
dent from across the room, while monitoring her/his activity using the glasses), teacher
time was also accumulated for the duration a teacher spent peeking at a student’s screen
via the glasses. In the noGlasses condition, since teachers did not wear Lumilo, time
allocation was recorded via live classroom coding (using the LookWhosTalking tool
[29]) of the target (student) and duration (in seconds) of each teacher visit. In addition
to test scores and data on teacher time allocation, we analyzed tutor log data to
investigate potential effects of condition on students’ within-software behaviors.

3 Results

Fifty-seven students were absent for one or more days of the study and were excluded
from further analyses. We analyzed the data for the remaining 286 students. Given that
the sample was nested in 18 classes, 8 teachers, and 4 schools, and that the experi-
mental intervention was applied at the class level, we used hierarchical linear modeling
(HLM) to analyze student learning outcomes. 3-level models had the best fit, with
students (level 1) nested in classes (level 2), and classes nested in teachers (level 3). We
used class track (low, average, or high) as a level-2 covariate. Both 2-level models,
(with students nested in classes) and 4-level models (with teachers nested in schools)
had worse fits according to both AIC and BIC, and 4-level models indicated little
variance on the school level. We report r for effect size. An effect size r above 0.10 is
conventionally considered small, 0.3 medium, and 0.5 large [12].

Effects on Student Learning. To compare student learning outcomes across experi-
mental conditions, we used HLMs with test score as the dependent variable, and test
type (pretest/posttest, with pretest as the baseline value) and experimental condition as
independent variables (fixed effects). For each fixed effect, we included a term for each
comparison between the baseline and other levels of the variable. For comparisons
between the Glasses+Analytics and noGlasses conditions, we used noGlasses as the
condition baseline. Otherwise, we used Glasses as the baseline.

Across conditions, there was a significant gain between student pretest and posttest
scores (#(283) = 7.673,p = 2.74 * 10713, r = 0.26,95% CI [0.19, 0.34]), consistent with
results from prior classroom studies using Lynnette [27, 28], which showed learning gain
effect size estimates ranging from r = 0.25 to r = 0.64. Figure 3 shows pre-post learning
gains for each condition. There was a significant positive interaction between student
pre/posttest and the noGlasses/Glasses+Analytics conditions (#(283) = 5.897,



Student Learning Benefits of a Mixed-Reality Teacher Awareness Tool 161

p=1.05%10"%r=0.21,95% CI[0.13, 0.28]), supporting the hypothesis that real-time
teacher/Al co-orchestration, supported by analytics from an ITS, would enhance student
learning compared with business-as-usual for ITS classrooms.

Decomposing this effect, there was a significant positive interaction between student
pre/posttest and the noGlasses/Glasses conditions (#(283) = 3.386, p = 8.08 * 10™%,
r=0.13, 95% CI [0.02, 0.23]), with a higher learning gain slope in the Glasses con-
dition, indicating that relatively minimal classroom monitoring support, even without
advanced analytics, can positively impact learning. In addition, there was a significant
positive interaction between student pre/posttest and the Glasses/Glasses+Analytics
conditions (#(283) = 2.229, p = 0.027, r = 0.11, 95% CI [0.02, 0.20]), with a higher
slope in the Glasses+Analytics condition than in the Glasses condition, supporting our
hypothesis that real-time teacher analytics would enhance student learning, above and
beyond any effects of monitoring support alone (i.e., without advanced analytics).
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Fig. 3. Student pre/post learning, by experimental condition. Error bars indicate standard error.

Aptitude-Treatment Interactions on Student Learning. We next investigated how
the effects of each condition might vary based on students’ prior domain knowledge.
Lumilo was designed to help teachers quickly identify students who are currently
struggling (unproductively) with the ITS, so that they could provide these students with
additional, on-the-spot support. If Lumilo was successful in this regard, we would
expect to see an aptitude-treatment interaction, such that students coming in with lower
prior domain knowledge (who are more likely to struggle) would learn more when
teachers had access to Lumilo’s real-time analytics [19, 20].

We constructed an HLM with posttest as the dependent variable and pretest and
experimental condition as level-1 covariates, modeling interactions between pretest and
condition. Figure 4(top) shows student posttest scores plotted by pretest scores (in
standard deviation units) for each of the three conditions. As shown, students in the
Glasses condition learned more overall, compared with the noGlasses condition, but the
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disparity in learning outcomes across students with varying prior domain knowledge
remained the same. For students in the Glasses+Analytics condition, the posttest by
pretest curve was flatter, with lower pretest students learning considerably more than in
the other two conditions. There was no significant interaction between
noGlasses/Glasses and student pretest. However, there were significant negative
interactions between student pretest scores and noGlasses/Glasses+Analytics
(t(46) = —2.456, p =0.018, r=-0.15, 95% CI [-0.26, —0.03]) and Glasses/
Glasses+Analytics (#(164) = —2.279, p = 0.024, r = —0.16, 95% CI [-0.27, —0.05]),
suggesting that a teacher’s use of real-time analytics may serve as an equalizing force
in the classroom.
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Fig. 4. Student posttest scores (top) and teacher attention allocation (bottom), plotted by student
pretest scores, for each experimental condition. Shaded regions indicate standard error.
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Effects on Teacher Time Allocation. As an additional way of testing whether the
real-time analytics provided by Lumilo had their intended effect, we fit an HLM with
teacher time allocation, per student, as the dependent variable, and student pretest
score, experimental condition, and their interactions as fixed effects. Figure 4 (bottom)
shows teacher time, plotted by student pretest, for each condition. As shown, in the
Glasses+Analytics condition, teachers tended to allocate considerably more of their
time to students with lower prior domain knowledge, compared to the other conditions.
There was no significant main effect of noGlasses/Glasses on teacher time allocation
(#(211) = 0.482, p = 0.63, r = 0.03, 95% CI [0, 0.14]), nor a significant interaction
with pretest. However, there were significant main effects of noGlasses/Glasses+An-
alytics (1(279) = 2.88, p=4.26%107, r=0.17, 95% CI [0.06, 0.28]) and
Glasses/Glasses+Analytics (#(278) = 2.02, p = 0.044, r = 0.12, 95% CI [0.01, 0.23])
on teacher time allocation. In addition, there were significant negative interactions
between student pretest and noGlasses/Glasses+Analytics (#(279) = —2.88,
p=428* 10_3, r=-0.17, 95% CI [-0.28, —0.05]) and Glasses/Glasses+Analytics
(1(275) = —3.546, p = 4.62 * 10*, r = —0.23, 95% CI [-0.33, —0.11]).

We also investigated how teachers’ relative time allocation across students may
have been driven by the real-time analytics presented in the Glasses+Analytics con-
dition. Specifically, we examined whether and how teacher time allocation varied
across conditions, based on the frequency with which a student exhibited each of the
within-tutor behaviors/states detected by Lumilo (i.e., Lumilo’s student indicators,
described in Sect. 2.3). We constructed HLMs with teacher time allocation as the
dependent variable, and the frequency of student within-tutor behaviors/states, exper-
imental condition, and their interactions as fixed effects. Row 3 of Table 1 shows
relationships between student within-tutor behaviors/states and teacher time allocation
across students, for the Glasses+Analytics vs. noGlasses (GA v. nG) comparison. As
shown, teachers’ time allocation across students appears to have been influenced by
Lumilo’s real-time indicators. Compared with business-as-usual (Row 3, Table 1),
teachers in the Glasses+Analytics condition spent significantly less time attending to
students who frequently exhibited low local error, and significantly more time
attending to students who frequently exhibited undesirable behaviors/states detected by
Lumilo, such as unproductive persistence (or “wheel-spinning”).

Table 1. Estimated effects of condition (rows) on teachers’ allocation of time to students
exhibiting each within-tutor behavior/state (columns). Cells report estimated effect sizes: ***
p <0.001, ** p < 0.01, * p<0.05, ~ 0.05 <p <0.07

High | Hint Hint High Idle Low Rapid Unproductive
local | abuse or |avoidance | error local attempts | persistence
error | gaming after error (“wheel-spinning”)
hints
G v.nG n.s. n.s. n.s. n.s. n.s. 0.13~ n.s. n.s.
GAv.G |0.20% |0.17* 0.19% 0.18* 0.22%% | —0.51%** | n.s. 0.35%%%
GA v.nG |0.16** | 0.10~ | 0.14* 0.11~ | 0.17%% | —0.23*** | n.s. 0.247#%%
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Rows 1 and 2 of Table 1 show estimates for Glasses vs. noGlasses (G v. nG) and
Glasses+Analytics vs. Glasses (GA v. G), respectively. As shown, there were no
significant differences in teacher time allocation due to the introduction of the glasses
themselves, suggesting Lumilo’s overall effects on teacher time allocation may result
primarily from teachers’ use of the advanced analytics presented in the GA condition.

Effects of Classroom Monitoring Support and Real-Time Teacher Analytics on
Student-Level Processes. To investigate potential effects of experimental condition
on the frequency of student within-tutor behaviors and learning states detected by
Lumilo, we constructed HLMs with students’ within-tutor behaviors/states as the
dependent variable, and pretest score and experimental condition as fixed effects. Row
3 of Table 2 shows estimated effects of classroom condition on the frequency of
student within-tutor behaviors/states, for Glasses+Analytics vs. noGlasses (GA v. nG).

Table 2. Estimated effects of condition (rows) on the frequency of student within-tutor
behaviors/states (columns): *** p < 0.001, ** p < 0.01, * p < 0.05, ~ 0.05 < p < 0.07

High Hint Hint High Idle |Low Rapid | Unproductive
local abuse or | avoidance | error local attempts | persistence
error gaming after error (“wheel-spinning”)
hints
G v. nG —0.36 ** | —0.21%* | —0.32** | n.s. 0.23*% | 0.34%** | n.s. n.s.
GAv.G —0.12~ |ns. n.s. n.s. ns. |ns. n.s. —0.20~
GA v. nG | —0.47%%% | —0.28%% | —0.41%** | —0,30%** | 0.26* | 0.42% | —0.34** | —0.15%

Compared with business-as-usual, students in the Glasses+Analytics condition
exhibited less hint avoidance or gaming/hint abuse, were less frequently detected as
unproductively persisting or making rapid consecutive attempts in the tutoring software
and exhibited less frequent high local error. In addition, students in the Glasses+An-
alytics condition were more frequently idle in the software, and more frequently
exhibited low local error. Row 1 of Table 2 suggests that that the introduction of the
glasses, even without real-time teacher analytics, may have had a considerable influ-
ence on students’ behavior within the software. By contrast, there were no significant
differences between the Glasses+Analytics and Glasses conditions. These results
suggest that, despite the ostensible positive effects of real-time teacher analytics on
student learning outcomes, some of the largest effects of Lumilo on students’ within-
tutor behavior may result primarily from teachers’ use of the monitoring support
provided in the Glasses condition, rather than from a teachers’ use of advanced
analytics.

4 Discussion, Conclusions, and Future Work

We conducted a 3-condition classroom experiment to investigate the effects of a real-
time teacher awareness tool on student learning in ITS classrooms. Our findings
indicate that teachers’ use of Lumilo, a real-time awareness tool, resulted in higher
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learning gains with the ITS. In addition, presenting teachers with real-time analytics
about student learning, metacognition, and behavior at a glance had a positive impact
on student learning with the ITS, above and beyond the effects of monitoring support
alone (without any advanced analytics). The real-time analytics provided by Lumilo
appear to have served as an equalizing force in the classroom: driving teachers’ time
towards students of lower prior ability and narrowing the gap in learning outcomes
between students with higher and lower prior domain knowledge.

Interestingly, part of Lumilo’s overall effect on student learning appears to be
attributable to monitoring support alone. Follow-up correlational analyses suggested
that a teacher’s use of the glasses, with monitoring support (i.e., support for peeking at
a student’s screen remotely), but without advanced analytics, may reduce students’
frequency of maladaptive learning behaviors (such as gaming/hint-abuse) without
significantly influencing teachers’ time allocation across students. These results suggest
that the observed learning benefits of monitoring support may be due to a motivational
effect, resulting from students’ awareness that a teacher is monitoring their activities in
the software (cf. [22, 42]), and/or due to a novelty effect. It may also be that the
monitoring support provided in the Glasses condition had a positive effect on teacher
behavior that is not reflected in the way they distributed their time across students (e.g.,
an effect upon teachers’ verbal or non-verbal communication). Future work is needed to
tease apart these explanations.

Although much prior work has focused on the design, development, and evaluation
of teacher analytics tools, very few studies have evaluated effects on student learning
[24, 32, 39, 44]). The current study is the first experimental study to demonstrate that
real-time teacher analytics can enhance students’ learning outcomes, within or outside
the area of AIED and intelligent tutoring systems.

We see several exciting directions for future work. The current study involved
teachers with at least five years of mathematics teaching experience. However, our
prior design work with teachers indicated that less-experienced teachers may often
struggle to generate effective on-the-spot help, in response to real-time analytics from
an ITS [19, 22]. Thus, a promising direction for future design research is to investigate
differences in needs for real-time support across teachers with varying levels of
experience. In addition, while the current study was conducted over a single week of
class time, future longitudinal studies may shed light on whether and how the effects of
real-time teacher analytics and monitoring support may evolve over longer-term use
(c.f. [32]). More broadly, an exciting direction for future work is to better understand
and characterize the complementary strengths of human and automated instruction, to
explore how they can most effectively be combined (cf. [21, 35, 38]).

In sum, this research illustrates the potential of AIED systems that integrate human
and machine intelligence to support student learning. In addition, this work illustrates
that the kinds of analytics already generated by ITSs, using student modeling tech-
niques originally developed to support adaptive tutoring behavior, appear to provide a
promising foundation for real-time teacher awareness tools.
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