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Abstract 
To foster more robust student learning, when should 
instruction provide information and assistance to students and 
when should it request students to generate information, 
ideas, and solutions?  In different forms, this dilemma for 
instructors has been a part of debates on education since 
Plato.  However, it is fair to say that we remain far from a 
precise and sound scientific response. We believe this 
“Assistance Dilemma” is one of the fundamental unsolved 
problems in the cognitive and learning sciences.  To address 
this dilemma, we suggest a four step strategy for more clearly 
articulating the problem and tackling it with computational 
models that can be used to make precise, replicable, and 
testable predictions about when instructional assistance 
should be given vs. withheld. We illustrate these steps on two 
different dimensions of instructional assistance. On the 
“problem spacing” dimension, we present a computational 
model that generates precise predictions of the kind we call 
for.  On the more complex “example-problem” dimension, we 
illustrate how the field is at a point where such a precise 
computational model may be possible. 
 

Keywords: Learning; problem solving; cognitive modeling; 
computational modeling, cognitive psychology; education. 

The Assistance Dilemma as an Open Problem 
This paper discusses the Assistance Dilemma: “How should 
learning environments balance information or assistance 
giving and withholding to achieve optimal student 
learning?” (Koedinger & Aleven, 2007). This question 
presents a dilemma not only because numerous 
experimental results sometimes indicate benefits and other 
times indicate costs of greater instructional assistance, but 
also because we lack sufficient cognitive theory to predict 
when instructional assistance will be beneficial or harmful. 

The goal of resolving the Assistance Dilemma is to have a 
predictive theory of what instructional methods best achieve 
“robust learning”. Robust learning is operationalized by one 
or more post-instruction measures: transfer, long-term 
retention, or accelerated future learning. Because time is so 
valuable for students and instructors, we are also concerned 
with learning efficiency, that is, how much instructional 
time is needed to achieve robust learning outcomes. 

We describe the Assistance Dilemma as a fundamental 
open research problem for the learning sciences. We define 
assistance broadly to not only include explicit instructional 
guidance or scaffolds, but also any change in the 

instructional environment that increases immediate 
performance or reduces mental effort.  Thus, a change that 
may put greater demands on the learner (a difficulty) during 
instruction is lowering assistance. 

Table 1 illustrates the Assistance Dilemma by 
highlighting how the level of assistance during instruction is 
not correlated with learning outcomes. As shown in the first 
row, sometimes instructional assistance can be a “crutch” 
that harms learning (e.g., if I always tie my child’s shoes, 
she will never learn how to do it on her own) while 
sometimes assistance can be a “scaffold” that bootstraps 
learning (e.g., if I show my child how to tie her shoes, she 
will have an example from which to learn herself). Notice 
that our use of “assistance” describes methods and 
affordances employed during instruction. To reduce 
potential confusion, we will not use “assisting” learning but 
“improving” or “enhancing” learning when referring to the 
longer-term consequences of instruction on future student 
performance outside the instructional environment. 

 
Table 1: Assisting Performance During Instruction May 

Aid or Harm Learning 
 

Instructional 
support 

Poor learning 
outcome 

Better learning 
outcome 

High assistance  
(less demanding) 

crutch scaffold 

Low assistance 
(more 
demanding) 

undesirable 
difficulty; 
extraneous 

load 

desirable 
difficulty; 

germane load  

 
The second row of Table 1 illustrates how lower levels of 

assistance (or inversely putting greater demands on students 
during instruction) can sometimes lead to poorer learning 
and other times lead to better learning. A long line of 
research on “cognitive load theory” (e.g., Sweller, Van 
Merriënboer, & Paas, 1998) suggests how some typical 
forms of instruction, like homework practice problems, put 
“extraneous” processing demands (or “extraneous load”) on 
students that may detract from learning. Higher levels of 
assistance or guidance, for instance in the form of more 
frequent use of worked solution examples, lead to both more 
efficient learning and better transfer. 
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However, another line of research on “desirable 
difficulties” suggests ways in which making task 
performance harder during instruction, for instance, by 
delaying feedback, enhances learning (Schmidt and Bjork, 
1992). And even within the cognitive load line, researchers 
have identified situations where lower assistance or greater 
demands lead to be better learning. For instance, Paas and 
Van Merrienboer (1994) found that while worked examples 
made performance easier during instruction and led to better 
learning, introducing greater variability in example content 
made performance harder during instruction but also led to 
better learning. The researchers suggested that some 
instructional forms reduce extraneous cognitive load, like 
worked examples in this case, but others, like example 
variability increase “germane” cognitive load.  

The Assistance Dilemma is at the heart of many 
“education wars” with “traditionalists” typically advocating 
forms of greater assistance (e.g., Kirshner, Sweller, Clark, 
2006; Mayer, 2004) and “reformers” advocating less 
assistance (e.g., Jonassen, 1991). Long-standing notions like 
zone of proximal development (Vygotsky, 1978), aptitude-
treatment interactions (Cronbach & Snow, 1977), or model-
scaffold-fade (Collins, Brown, & Newman, 1990) suggest 
that instructional assistance should be greater for beginning 
learners and be reduced as student competence increases. 

Such long-standing notions and the more recent extensive 
experimental research on cognitive load, desirable 
difficulties, etc. might lead one to wonder “what’s the 
dilemma?”  Just give novices more assistance and fade it 
away as they become more expert. However, current theory 
does not predict how much assistance to initially provide nor 
when and how fast to fade it. Further, it does not provide 
predictive guidance as to when an instructional demand is 
“germane” or “extraneous”, “desirable” or “undesirable.” 
Despite much relevant research and many different 
characterizations of the fundamental problem, the 
Assistance Dilemma remains unresolved because we do not 
have adequate cognitive theory to make a priori predictions 
about what forms and levels of assistance yield robust 
learning under what conditions. We need to get beyond 
over-simplified dichotomies and “tighten the inferential web 
that ties experimental studies together.” (Newell, 1973) 

A Plan of Attack 

Defining Assistance Levels 
Higher assistance during instruction may come in the more 
direct or explicit form of providing more information to 
students, for instance, by showing or telling them an idea 
rather than asking them to generate it themselves. However, 
in our conceptualization, higher assistance can also come 
implicitly from any kind of instructional affordance or 
scaffold that makes an instructional activity easier for 
students. The higher the assistance, the less mental effort 
required on the part of the student and/or the more likely the 
student performs correctly on the immediate instructional 
activity. Of course, the key point of the Assistance Dilemma 

is that just because higher assistance makes local 
performance better (or reduces mental effort) does not mean 
it will lead to enhanced learning. An interesting illustration 
of this point comes from the human-computer interaction 
literature where Gilmore (1996) demonstrated that changes 
to a computer interface that improve user performance do 
not necessarily improve learning. For instance, a more direct 
manipulation interface for controlling a transportation 
system simulation made control easier, but participants 
learned less about the system then those using a more 
cumbersome interface. 

Steps Toward Resolving the Assistance Dilemma 
As indicated in the examples above, there are many possible 
dimensions of assistance including giving lots of example 
solutions vs. withholding them (problems), giving vs. 
withholding immediate feedback, giving low vs. high 
variability examples. The first step in our suggested plan of 
attack for addressing the Assistance Dilemma is to select a 
single dimension of assistance on which to focus an 
extensive research program. We are not going to find a 
generic resolution that works across all dimensions. 

The second step is to collect, summarize, and integrate the 
relevant literature on that dimension. What studies have 
explored different levels of assistance and what have the 
effects been on measures of robust learning and learning 
efficiency? Such integration has been a key goal of the 
Pittsburgh Science of Learning Center and we have been 
using a wiki (learnlab.org/research/wiki/) for a broader 
community to share in this process of collection, 
summarization, and integration. 

The third step is to characterize a set of conditions and 
parameters that can be used as part of a precise theoretical 
model that makes “computable” predictions about robust 
learning efficiency. Whether such a model is a mathematical 
model or a full cognitive model embedded in a cognitive 
architecture is perhaps less important than its being usable 
by other researchers to make precise and replicable 
predictions. This step is by no means an easy one and, in 
fact, the main goal of this paper is to frame the challenge 
and illustrate it with two examples of efforts at different 
stages of progress 

Of course, a theoretical model should not only be able to 
explain and integrate past results, but make new predictions. 
Thus, the fourth step is to apply and test the model in new 
settings, domains, and/or with new student populations. The 
model should be used to make a priori predictions (i.e., 
before a study is run) about the level of assistance (fixed or 
adaptive) that will achieve optimal robust learning 
efficiency. Then new experiments should be run to test 
those predictions. 

A Success Case: The Practice Spacing 
Dimension of Instructional Assistance 

We first illustrate our plan of attack on the "practice 
spacing" dimension of instructional assistance. Practice 
spacing is the time interval between successive practices of 
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a to-be-learned fact. For instance, if I’m learning Chinese 
vocabulary by studying Chinese-English word pairs, the 
practice spacing is the time between when I practice a 
particular pair (e.g., xie2zi to shoes) and when I practice that 
pair again. A straightforward instructional prescription 
based on the “spacing effect” is that practice should be as 
widely spaced as possible (Pashler et al., 2007).  By this 
view, wide spacing is a kind of “desirable difficulty”—
while it makes successful retrieval more difficult during 
instructional practice, it leads to more robust learning, 
particularly long-term retention. This conclusion is 
supported by a great amount of research (e.g. Pashler, 
Zarow, & Triplett, 2003). However, this research usually 
fails to note that the higher level of difficulty during spaced 
practice results in more errors and an increased need to 
consume valuable practice time in error correction and 
reteaching (Pavlik Jr. & Anderson, accepted). This 
downside of wide spacing is particularly apparent early in 
learning when the probability of error after a long retention 
interval is quite high.  

Thus, we have an instance of the Assistance Dilemma: 
Should instruction provide more assistance, in the form of 
shorter practice intervals, so as to make learning trials 
proceed more quickly or should instruction provide less 
assistance, in the form of longer spacing intervals, so as to 
maximize the gain in long-term retention for each trial?  
Following our plan of attack what we need is a set of 
conditions and parameters that provide for theoretical 
predictions about how much robust learning is achieved per 
instructional unit for different levels of assistance on this 
dimension.  

Pavlik and Anderson (accepted) has done just that by 
developing a model that characterizes these conditions and 
parameters for a paired-associate practice task (e.g., learning 
Chinese-English word pairs) similar to tasks used by other 
researchers of spacing effects (e.g. Pashler, Cepeda, Wixted, 
& Rohrer, 2005). Because the model is quantitative (based 
on the ACT-R architecture, Anderson & Lebiere, 1998; 
Pavlik Jr. & Anderson, 2005), it can precisely characterize 
the conditions of spacing, recency from prior practice, 
frequency of practice, and history of prior success to make 
predictions about the future effect of more practice as a 
function of these conditions. Having this quantitative model 
that relates current practice to future performance (i.e., 
learning) allows one to compute directly the best resolution 
to the assistance dilemma in the form of the optimal spacing 
interval. . 

The key to this method is the realization that it should 
account for instructional time or “time on task” and 
characterize the cost-benefit trade-offs that best predict 
efficiency in robust learning. The idea that cost-benefit 
information must be considered is not new (Atkinson & 
Paulson, 1972), but Pavlik’s fine-grained formalization of 
the cost-benefit structure for spaced practice is a unique 
example of a method that allows us to resolve the assistance 
dilemma in a specific domain. Equation 1 predicts robust 
learning efficiency gain (effm) to be achieved for studying a 

particular fact at a particular time based on a history of prior 
practice opportunities. We are interested in how different 
levels of assistance, in this case the length of the spacing 
interval, affect this equation. When all else is equal (e.g., 
frequency of prior practice), the spacing interval is 
monotonically related to the “activation level” of a fact in 
memory (the m in Equation 1): The longer the spacing, the 
lower activation (the learner forgets). Thus, the x-axis in 
Figure 1 can be read as either the level of assistance (high to 
low), the spacing interval (narrow to wide), or the activation 
level of a fact after that spacing level has been experienced. 

 

effm =
pmbsucgm ( )1 pm bfailgm + 

pm( )tm fixedsuccosts + ( )1 pm fixedfailcosts +  
(1) 

 
In Equation 1 pm is the probability of recall, tm is the time 

cost of recall, bsuc scales the gain from a successful recall, 
bfail scales the gain from the review after a failure to recall, 
gm captures the long-term increase in activation at a specific 
desired retention interval, fixedsuccost captures the 
perceptual motor costs of practice when the result is success 
and fixedfailcost captures the time costs of failure and the 
review following failure. The activation is the m in the 
subscripts of key variables p, b, and g indicating they are all 
a function of m. The Equation can be read as the expected 
learning benefit of retrieval success (pm*bsuc*gm) or failure 
((1-pm)*bfail*gm) divided by the expected instructional time 
costs of success (pm (tm + fixedsuccosts)) or failure ((1-
pm)fixedfailcosts).  

To determine whether an item being learned is at the point 
of maximal future learning per second of current practice, 
Equation 1 is optimized. The behavior of this equation 
depends only on the activation of the item being learned. If 
activation is high (which the model says occurs when there 
have been many practices, recent practice, previous widely 
spaced practices, or more successful practice) then pm is 
high, tm is low, and gm is low. Because we have this equation 
we can compute Figure 1, which shows how the efficiency 
computation (effm) depends on activation. The shape of the 
function depends on model parameters that are determined 
by fitting the model to prior student data. 

As Figure 1 shows there is an optimum point at which 
learning efficiency is maximal, that is, learning per second 
is optimized. According to this figure, facts should receive 
practice whenever their activation is at the optimal point. 
Equation 1 (and the other equations behind it) represent a 
major step (step #3 above) toward the resolution of the 
assistance dilemma as applied to spaced practice of simple 
facts. Having this computational model also allows the 
researcher to run simulation studies and make predictions. 
In the case where the experiment being simulated is very 
similar to old experiments such predictions can be fairly 
accurate and have been shown to capture at least the general 
patterns of later data gathered in the experiment simulated 
(Pavlik Jr. & Anderson, accepted). In this experiment Pavlik 
and Anderson began with a model of task conditions, 
student variability, and specific task parameters and used 
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this information to simulate students running through the 
experimental conditions (e.g., an optimized condition and a 
wide spacing condition). The simulated student model was 
given experimental tasks and generated either correct or 
incorrect answers as predicted by the model. The simulated 
student also produced latencies that allowed a simulation of 
time on task. The optimized condition contained a separate 
student-tracking model that uses the Equation 1 to pick the 
next fact for the student to practice. This student-tracking 
model picks a fact, which based on the time since its last 
practice, is closest to the maximum gain point shown in 
figure 1. 

 
 
Figure 1. Robust learning efficiency score as a function of 

the level of assistance on the “practice spacing” dimension. 
The x-axis varies from low assistance, which is achieved by 

wide spacing that results in low activation of a fact at the 
time of instruction, to high assistance, which is achieved by 

narrow spacing that results in higher activation.  
 
Such predictive simulation is not limited to situations 

where all the prior parameters have been determined 
experimentally. If good parameter guesses for another task 
can be made, the simulation can be used to estimate the 
shape of Figure 1 in that task. For example, if the failure 
costs are very low (e.g., as in training recognition rather 
than recall), the inverted-u shape disappears and wide 
spacing is optimal. Similarly, if forgetting is negligible (e.g., 
because highly-integrated knowledge structures can be 
quickly acquired), then the model no longer captures a 
benefit for spacing and massed practice is predicted as 
optimal. These examples highlight how the model can be 
used to make novel predictions and that the approach may 
not always recommend a middle ground solution. 

This approach has been implemented in a computerized 
training program (http://optimallearning.org) and studies of 
its use in practice are showing learning benefits, for 
instance, in learning Chinese vocabulary (Pavlik Jr., Bolster, 
Wu, Koedinger, & MacWhinney, 2008). 

A Case in Progress: The Example-Problem 
Dimension of Instructional Assistance 

Another assistance dimension that we are exploring is the 
example-problem dimension. This dimension involves a 

continuum in which students are provided with problems, 
examples, or combinations of problems and examples. From 
lowest to highest assistance, points along this dimension 
include (a) problem solving only, (b) integrated worked 
examples and problems, (c) examples only. 

Many prior experiments (e.g., Paas, 1992; Schwonke et 
al, 2007; Sweller & Cooper, 1985; Trafton & Reiser, 1993) 
point to a learning advantage for greater use of worked 
examples (b or c beat a) with advantages typically shown in 
both learning efficiency and transfer. Summarizing this 
work, Clark & Mayer (2003) articulated the worked-
example principle: “Replace some practice problems with 
worked examples.”  The practical power of this principle 
has been particularly highlighted in a series of recent lab 
and classroom in vivo experiments.  Greater use of examples 
in already well-proven intelligent tutoring systems has been 
experimentally shown to lead to even further gains in robust 
learning efficiency in studies of student use of intelligent 
tutors in geometry (Schwonke et al, 2007), physics 
(Ringenberg & VanLehn, 2006), and chemistry (McLaren, 
Lim, & Koedinger, 2008).  

 Cognitive load theory is the leading explanation of the 
worked example principle  (c.f. Sweller, Van Merriënboer, 
& Paas, 1998).  This theory suggests that problem solving 
produces “extraneous cognitive load” because of the 
resources needed to store and manage problem-solving 
goals. With their working memory so stressed, students 
have little left to engage in generative learning processes. In 
contrast to problems, worked examples free those resources 
for learning processes like the induction and refinement of 
new knowledge components. 

Cognitive load theory provides a clear explanation for the 
benefits of examples, but does explain why including 
problems in instruction should be beneficial.  It seems to 
suggest that worked examples alone, a high-assistance 
approach, would be the least taxing on cognitive resources 
and thus best for learning. In fact, few studies have made the 
relevant direct comparison of examples only (c above) vs. 
integrated examples and problems (b). We only know of one 
such study (Stark, Gruber, Renkl, & Mandl, 2000) and it 
demonstrated that, contrary to a straightforward application 
of cognitive load theory, learning from the examples-only 
condition was significantly worse than learning from the 
integrated examples and problems condition. Contrary to 
calls for maximal guidance (Kirshner et al., 2006), it 
appears that mid-level assistance (integrated examples and 
problems) leads to better robust learning efficiency than 
lower (all problems) or higher (all examples) levels of 
assistance. There are also strong theoretical reasons for why 
problems have some, perhaps complementary, benefits over 
examples including the generation and testing effects (e.g., 
Hausmann & VanLehn, 2007; Pashler, Bain, Bottge, 
Graesser, Koedinger, McDaniel, et al., 2007). 

Like the levels on the practice spacing dimension, the 
accumulating data on points along the example-problem 
dimension provide a starting point for developing a 
predictive theory. Unlike the practice spacing dimension, we 
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are only beginning to formulate parameters and mechanisms 
that would lead to an equation like Equation 1 (see more 
below). Without such a computational model, we do not 
have a reliable and replicable way to make predictions about 
the benefits and costs of different combinations of examples 
and problems for students at different levels of competence. 

Nevertheless, the evidence thus far seems to indicate that 
such an equation would be plotted as an inverted-U such as 
the abstract graph shown in Figure 2.  It appears the greatest 
robust learning efficiency is achieved in the mid-level with a 
balanced use of examples and problems and learning is 
either or both worse and less efficient when the assistance is 
higher (all examples) or lower (all problems).  

 

 
Figure 2. Abstract graph of the example-problem 

dimension based on existing evidence. 
 
With respect to our “plan of attack” on this dimension, we 

are engaging in step 3, attempting to clearly define the 
parameters and conditions that are relevant to formulating a 
predictive theory. In our efforts it has become clear that we 
need more experiments that explore a range of possible 
combinations and orderings of examples and problems.  To 
clearly establish the inverted-U, we need all three conditions 
in a single study: all problems, integrated examples and 
problems, and all examples.  To our knowledge, such a 
three-condition “bracketing” study has not been performed. 

Nevertheless, the large body of experimental evidence 
collected within this dimension highly suggests an inverted-
U curve such as the abstract graph shown in Figure 2.   
While we have yet to formulate a variable (or set of 
variables) comparable to “activation” on the practice 
spacing dimension, the activation and/or utility metrics in 
ACT-R are reasonable candidates. In early stages of 
learning, ACT-R predicts that students learn by solving 
problems by analogy whereby they recall or seek out similar 
examples and use them as a basis for analogical inference 
(Anderson, Fincham, & Douglass, 1997).  By studying 
isomorphic examples first, as in the mid-level of Figure 2, 
students may be increasing the activation of relevant 
components of these examples that can then be better 
recalled during analogical problem solving.  In a 

complementary way, subsequent problem solving provides 
opportunities for learners to prune (or lower the utility of) 
incorrect knowledge that inevitably results from the 
inductive character of analogical processes (c.f., Matsuda, 
Cohen, & Koedinger, 2008). 

This analysis is just a hint of the direction that needs to be 
pursued to create a predictive model for this dimension. 
Building on Schwonke et al (2007), on-going work is 
exploring the benefits of adaptive “fading” of examples 
(given steps) into problems (requested steps). Such work not 
only requires the creation of a candidate computational 
model, but is also providing fine-grain longitudinal log data 
of individual learner interactions.  These provide the basis 
for more precise characterization of conditions and 
parameters for predictive modeling. 

Other Assistance Dimensions 
To fully address the Assistance Dilemma, the many other 
dimensions of instructional assistance must be examined 
through extended programs of experimental research, 
integrative reviews, and the development of precise 
computational models. Examples of other assistance 
dimensions include feedback timing, example variability, 
interface affordances, implicit and explicit instruction, 
scripted and unscripted peer collaboration, self-explanation 
prompting, metacognitive scaffolds, etc. The Pittsburgh 
Science of Learning Center is supporting researchers from 
Germany to California in developing a better understanding 
of robust learning and exploring the Assistance Dilemma 
along a number of such dimensions (see 
learnlab.org/research/wiki). 

Conclusions 
The Assistance Dilemma raises the question of whether in 
instruction it is better “to give or to receive.” It is not a new 
idea per se, but we think it is critical to a) recognize it as a 
fundamental unsolved problem in cognitive science and b) 
frame a strategy for addressing this problem. We presented 
a four-step strategy and illustrated two cases of pursuing the 
strategy.  The analysis presented in this paper raises serious 
questions about framing debates about instruction as a 
binary choice (e.g., direct instruction vs. constructivism). 
While such dichotomizing engenders attention and energy, 
it does not advance scientific understanding nor the 
development of productive methods for instructional 
engineering.   
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