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Abstract. Chemistry students, like students in physics, mathematics, and other technical 
disciplines, often learn to solve problems algorithmically, applying well-practiced 
procedures to textbook problems.  But often these students do not understand the 
underlying conceptual aspects of the problems they solve algorithmically.  One approach 
to overcoming this problem is to have students solve chemistry problems in a virtual 
laboratory (VLab), a software environment that simulates a real experimental setting and 
supports inquiry learning of chemistry concepts.  We propose to further assist chemistry 
students in their conceptual learning through having pairs of students collaborate on 
problems, assisted by computer-mediated collaboration scripts that guide the student 
through the stages of scientific experimentation and that can adapt to a particular student’s 
(or dyad’s) skills.  In the early stages of the CoChemEx (COllaborative CHEMistry 
EXperimentation) project, we have performed a preliminary, low-tech study comparing 
how singles and dyads solve chemistry problems using the VLab with and without scripts. 
In this paper, we define the problem and research hypotheses we address, discuss our 
approach and technology, and report on early progress. 

1 Introduction 

A central issue in chemistry education is teaching students to problem solve conceptually rather 
than simply apply mathematical equations.  Research in chemistry education has shown that 
students tend to learn and solve problems “algorithmically” but often do not grasp the deeper 
conceptual aspects of chemistry and reasoning necessary to be more creative and flexible 
problem solvers [1, 2]. While chemistry students often have success on problems that are very 
similar to ones illustrated in a textbook or demonstrated in a classroom, they tend to struggle 
with problems that could be solved with similar techniques but are not obviously of the same 
type (e.g., the source and target problems do not share surface features).  This difficulty is due to 
students lacking the conceptual understanding of chemistry to recognize similar core problems 
that come in “different clothes.” 

There is some evidence in chemistry education research indicating that collaborative 
activities can improve conceptual learning [3, 4]. Other studies, while not focused specifically on 
conceptual versus algorithmic learning, have demonstrated increased performance, as well as 
motivational benefits of collaborative learning in chemistry [5, 6].  In general, however, there is 
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a paucity of controlled experimentation on the potential benefits of collaborative learning in 
chemistry. However, such evidence exists in math [7], biology [8], physics [9, 10], and scientific 
experimentation [11].  Some of our own experimental work in collaborative learning has led to 
promising preliminary results in conceptual learning in the domain of algebra [12].  In sum, 
results from collaborative learning research convinced us that it would be worthwhile 
investigating the advantages of collaborative activities on the acquisition of conceptual 
knowledge in chemistry.  

Our plan is to support collaborating students through the use of collaboration scripts, 
prompts, questions, and assigned roles that guide students through collaborative work (e.g., [13, 
14]).  Much research has shown that fruitful collaboration does not generally occur by itself 
(e.g., [15]). Collaborative partners often do not engage in productive interactions and thus miss 
the opportunity to benefit from their collaboration. In order to ensure that students can actually 
profit from their collaboration, it is important that collaborative partners learn how to work 
together in productive ways. Research in the area of collaborative inquiry learning, particularly 
relevant to the experimental framework we have in mind (and to the interests of this workshop), 
has also uncovered a need for scaffolded collaboration [16].  Also relevant is work in scientific 
scaffolding, an area we currently have less knowledge of but will review and assess during the 
next stage of our project (e.g.,  [17]). 

In general, we believe that it would be best to scaffold collaboration in an adaptive fashion, 
emphasizing and fading structured support for collaboration according to the particular needs of 
the collaborators.  Some work has uncovered the dangers of over-scripting; that is, providing too 
much structure and support for collaboration [18].  Identifying and being sensitive to such 
situations in real time will require adaptation.  Some of our work suggests this direction, as well: 
Results of one study [19] indicated that collaboration scripts were beneficial both to 
collaboration and domain learning.  However, in a more recent study [20] it was found that 
students observing a model of collaboration (i.e., a worked collaboration example) collaborated 
better and learned more than students who followed a script.  One possible conclusion is that 
students were overwhelmed by the concurrent demands of collaborating, following the detailed 
script instructions, and trying to learn through reflection. Taken together, these studies strongly 
suggest that different students, under different circumstances, may benefit from different types of 
collaboration support; a collaborative learning system that can adapt its support might prove 
quite powerful. In summary, the two primary hypotheses of our project, with the second built on 
the first, are: 

H1: Computer-mediated collaboration within an experimental framework, and facilitated 
by collaboration scripts, can promote the creation and strengthening of conceptual 
stoichiometry knowledge components.  

H2: Computer-mediated collaboration within an experimental framework, and facilitated 
by adaptive collaboration scripts, can promote the creation and strengthening of 
conceptual stoichiometry knowledge components. 

Our goal is to help students actively process the material they encounter, moving them away 
from the mechanical, algorithmic approach taken by many chemistry students.  We believe the 
collaborative setting will increase the likelihood that students capitalize on the learning events 
offered by the experimental chemistry environment.  Further, we believe that students at 
different levels of knowledge and skills will benefit more or less from collaborative support, so 
we intend to enforce and/or fade support based on dynamic estimations of each student’s skills 
and an assessment of the on-going collaboration. 

In this paper, we first discuss the technical and pedagogical approaches we plan to take, 
describing the existing technologies and scripting approach we will use to test our hypotheses. 
We are a multi-disciplinary team, composed of computer scientists, educational psychologists, 
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and artificial intelligence specialists, and the technical members of our team have, in part, 
previously developed the technologies that will be used.   Our pedagogical approach is also 
based on the prior research of the educational psychologists on our team.  We next discuss the 
work that we have thus far done, in particular a “low-tech” study (i.e., a study involving some 
technology, but also work on paper) to test some of our ideas. We will discuss what we have 
learned from the study and how these lessons will impact our way forward.  Finally, we discuss 
our future plans; in particular how we plan to build from the general concept discussed above to 
a full-fledged collaborative software system that will be used to support scientific inquiry 
learning and test the hypotheses H1 and H2. 

2 Technology Integration in the CoChemEx project 

To test our hypotheses, we are in the process of developing collaborative extensions to the VLab 
software, a web-based software tool that supports chemistry experiments [21], by integrating it 
with an existing collaborative software environment, Cool Modes [22], and then running studies 
that compare individual learning with scaffolded, collaborative learning.  Figure 1 illustrates our 
concept regarding a collaborative inquiry environment and also shows the VLab and Cool 
Modes software.   What is shown in the figure is not yet implemented; rather, it is a storyboard 
containing individual pieces of software that we will integrate as part of the final system.   

 
Figure 1: A mock-up of how students will collaboratively solve stoichiometry problems in the CoChemEx system.  

This is the workspace seen by one of the collaborators. 

The VLab, indicated on the left side of the figure, was developed by Dave Yaron, a 
chemistry professor on the faculty of Carnegie Mellon University, to support students in solving 
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problems in a virtual chemistry laboratory.   The VLab software, which is currently implemented 
to be run stand-alone, i.e., by a single student on a single machine, provides virtual versions of 
many of the physical items found in a real chemistry laboratory, including chemical substances, 
beakers, Bunsen burners, etc.  It also has meters and indicators that provide real-time feedback 
on substance characteristics, such as molarity.  The idea behind the VLab is to provide the 
student with a “genuine” laboratory environment in which they can run experiments to solve 
given chemistry problems.  Thus, the VLab can be seen as one way to support inquiry learning. 

Cool Modes, the application within which VLab will run (the rest of what is shown in Figure 
1), is a collaborative software tool designed to support “conversations” and shared graphical 
modeling facilities between collaborative learners on different computers.  It provides users with 
a variety of plug-in objects, such as the “chat” area shown on the right side of the figure and a 
graphical argument space, each of which has its own semantics and underlying representation. 
All users have access to a shared workspace, essentially what is shown in Figure 1, which is 
visible to all collaborators and may be updated by any participant in the collaboration.  Cool 
Modes has been used in a wide variety of collaborative learning and working scenarios, 
involving discussion maps, interactive simulations, and the joint construction of formal models.   

Recent Cool Modes extensions support the use of inquiry and collaborative scripts through 
explicitly defined representations [23]. New objects adhering to a well-defined API may be 
added to Cool Modes.  We will use a design pattern that called the “Scalable Adapter” as a 
means to allow the VLab and the pre-existing plug-in components of Cool Modes to exchange 
data with one another.   Use of this design pattern is part of a more general project in which the 
technical partners on the CoChemEx project (i.e., Harrer, Pinkwart, Scheuer, and McLaren) to 
connect differently targeted learning environments to one another. 

3 The Pedagogical Approach 

We will use an adaptive scripting approach in an attempt to promote the collaborative processes 
that we hypothesize to be helpful to conceptual learning in chemistry. A simple illustration of 
how this might work is shown in Figure 1.  As the student collaborates with his or her partner 
(working on a separate computer), he or she will have access to a number of tools.  The VLab 
provides the basic experimental tool and will be the core collaborative component.  The chat 
window, shown on the right, supports free-form communication between the students, in 
particular a way to explain, ask/give help, and co-construct conceptual knowledge. An 
“argument space,” not shown in the figure but which will be available on the tabs labeled 
“Step1: Plan & Design” and “Step 3: Interpret & Conclude” in Figure 1, will allow the 
collaborators to discuss their hypotheses and results and also to communicate general ideas.  We 
hope this tool will scaffold a conceptual understanding of the experimental process.  A 
“Notepad” tab will allow each of the participants to record their notes and ideas using free-form 
text.  Finally, the “Step 1,” “Step 2,” and “Step 3” tabs implement a script to guide the students’ 
experimental process.  In Figure 1, the collaborating students are working on “Step 2: Test” in 
which they collaboratively perform an experiment with the VLab. 

Since the students are not likely to chat or use the other helpful collaborative mechanisms 
without prompting or support, the script is intended to prompt the students to take certain steps 
and ask one another questions. Our idea is to have the students initially follow the steps shown in 
the tabs, modeled informally on the steps of the experimental process [24, 25], and then allow 
more open exploration after the first pass.  During the experimental steps the students will be 
prompted with questions intended to elicit explanations, reflection, and help giving/receiving. 
Scripting is not a simple process of coercing students to take prescribed steps; it can also provide 
a means for students to reflect on and learn the experimental and problem solving process.  For 
instance, if the collaborators veer far from the script and/or appear to show a lack of conceptual 



 

 
5 

understanding in their use of the tools within Cool Modes, it may be an opportunity for the script 
to present a prompt with a question, such as, “Did you know that you combined unequal 
amounts of A and C?  Can you explain why you did this?”  Providing such a dynamic reaction, 
based on the specific actions of and knowledge about the collaborators, is one of the stiffest 
challenges on this project and one we intend to address with machine learning techniques, as 
discussed in the concluding section of this paper. This example is intended only to provide a 
glimpse of the adaptive scripting idea we have in mind. 

Our approach to scripting is to guide the collaborating students through phases of scientific 
experimentation and problem solving. The specific approach we have adopted – and have tested 
in the study described in the following section – is based on the kinds of cognitive processes 
identified as typically used by experts as they solve scientific problems experimentally [24, 25].  
For instance, de Jong has identified Orientation (identification of main variables and relations), 
Hypothesis generation, Planning (schedule for inquiry process), Experimentation (changing 
variable values, predictions, interpreting outcomes), Monitoring (maintaining overview of 
inquiry process and developing knowledge), and Evaluation (reflecting on acquired knowledge) 
as steps that scientists take.  Our idea, again illustrated in Figure 1, is to guide students through 
steps such as these but in a less strict and somewhat simplified manner.  For instance, “Step 1: 
Plan & Design” corresponds to de Jong’s Orientation, Hypothesis generation, and Planning 
steps. 

Our system will give students general guidance on these steps and prompt them with relevant 
questions as they solve a VLab problem collaboratively.  This approach is similar to that of 
White and colleagues [26] who also provided guidance to students collaboratively solving 
scientific problems through the prompting of metacognitive steps in scientific reasoning (e.g., 
Question, Hypothesize, Investigate). Van Joolingen and colleagues have also developed a 
collaborative environment, Co-Lab, designed to scaffold students as they step through scientific 
problem solving [27].  However, our aim differs from both of these prior efforts in that we will 
specifically test how such an approach can bolster the collaborators’ conceptual knowledge of 
domain content.  Furthermore, we intend to explore how we can make the approach more 
effective through the use of AI techniques that adapt the script and feedback to students. 

4 The “Low-Tech” Study 

The first step of our project was to run a preliminary study of the pedagogical approach (i.e., 
collaborative scripting) described above, as well as to evaluate the use of the VLab and problems 
that can be solved with it.  We refer to this as a “low-tech” study because while the subjects in 
the study did use the VLab, they did not use the full collaborative system conceptualized above 
and illustrated in Figure 1, since the system is currently under development.  Furthermore, the 
study was intentionally done with a small N, as it was designed to give us initial impressions, 
rather than a summative evaluation. The bottom line is that such a study cannot tell us whether a 
system like that in Figure 1 could lead to conceptual learning gains or test hypotheses H1 and 
H2, but the results can provide ideas and clues about how to design and implement a system, 
which was the primary goal of the study. 

4.1 Method 

4.1.1 Design and Participants 
We tested and compared four conditions in a 2 x 2 design, as shown in Table 1. A total of 24 
subjects participated, with 4 in each of the cells of the table (i.e., 4 individuals in each of the 
singles conditions, 4 dyads in each of the dyad conditions). 



 

 
6 

Table 1: 2 x 2 Design of Low-Tech Study 

 Dyads/Singles 

Scripted Dyads (N=4) Scripted Singles (N=4) Script yes/no 
Unscripted Dyads (N=4) Unscripted Singles (N=4) 

The participants were students at two U.S. universities, most of whom but not all, were 
enrolled in first or second semester chemistry classes. 12 females and 12 males participated. 
Participants enrolled for the study using a Survey Monkey website, in which they filled out a 
brief pre-questionnaire, containing three pretest questions used to assess the students’ chemistry 
knowledge. Sixteen of the subjects were assigned to dyads, using the pre-questionnaire scores to 
pair students homogeneously (i.e., out of a total possible score of 8, subjects were paired if their 
scores were within 2 points of one another).  The pretest scores were also used to balance the 
conditions (i.e., some high scoring singles/dyads were placed in the scripted condition, some in 
the unscripted condition). Four of the 24 subjects reported that they had used the VLab before.  
Each subject was paid $30 (U.S.) for participation. 

4.1.2 Procedure and Materials 
The subjects and dyads were asked to go through the following four phases.  

Phase 1 – Pretest & Preliminaries.   Participants were welcomed, the consent form was read to 
them, and they were asked to sign the form and fill in a short questionnaire, containing 
background questions (e.g., “How often do you use a computer?” “Rate your knowledge in 
stoichiometry.”), as well as a single pretest chemistry problem, which, along with the pre-
questionnaire and posttest chemistry problems, were chosen based on their coverage of 
important conceptual knowledge components in chemistry (e.g., molarity, solution volume, law 
of definite proportions), as defined by our chemistry expert (the CMU chemistry professor 
mentioned previously).  The pretest and posttest problems were isomorphic to one another, as 
regards the conceptual components covered. 
Phase 2 – Familiarization.  Participants sat in front of a computer where they watched short 
chemistry videos, covering subject matter relevant to the problems they would subsequently be 
asked to solve in Phase 3 (i.e., limiting reagents, titration).  Subjects were given a step-by-step 
explanation of the use of the VLab (which was available over the web on the computer) and 
were instructed to follow the steps on the computer to familiarize them with VLab use. 
Participants were also given a “reference sheet” with chemistry content that could be used as an 
aid during the solving of problems in Phase 3. 

Phase 3 – Problem Solving.  Participants were asked to solve two stoichiometry problems using 
the VLab – the “Oracle” problem, involving limited reagents, and the “DNA” problem, 
involving titration.  They were given approximately a half-hour to solve each problem, with the 
order of problem presentation balanced across conditions.  According to their condition, the 
subjects were given different materials.  The unscripted conditions (both singles and dyads) were 
given general instructions on paper, which said, for instance, that they could use scratch paper 
and a calculator as aids.  The unscripted singles were asked to speak out loud as they solved the 
problems, while the unscripted dyads were asked to collaborate and discuss the problems, but 
with no additional guidance or instruction provided. The scripted conditions (both singles and 
dyads) were given similar general instructions on paper, except that they were also given a paper 
script containing the experimentation steps identified by de Jong [24] with each step having 
associated instructions (e.g., “Come up with an experiment for each hypothesis”) and/or 
questions to discuss (e.g., “What chemical principles might you need?”).  The subjects in both 
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scripted conditions were instructed to follow the steps sequentially, as much as possible, and to 
tic mark the associated instructions and questions as they completed and/or discussed them.  As 
in the corresponding unscripted conditions, the singles were asked to speak out loud about what 
they were doing and thinking, while the scripted dyads were asked to talk with one another. In 
all conditions, the experimenter encouraged the participants to speak out loud, while in the 
scripted conditions, the experimenter additionally encouraged the subjects to follow the steps of 
the script and tic mark completed steps, if they were not doing so.  Camtasia, a screen and audio 
recording software tool from TechSmith Corporation, was used to record all of the steps taken in 
the VLab, as well as all speaking by participants.   In addition, VLab actions were logged to a 
database. 

Phase 4 – Posttest & Exit Interview.  All participants were asked to complete a brief post-
questionnaire (e.g., “Rate the difficulty of the problems”) and to solve two posttest questions of 
moderate difficulty.  The participants were also interviewed by the experimenter (and recorded 
by Camtasia) regarding their impression of the study and materials (e.g., “Did the videos help 
you solve the problems?” “Do you have any suggestions for improving the experimentation 
steps?” (scripted conditions only)). 

4.2 Results 
Most of the participants (and dyads) completed all four phases of the study in 2 to 3 hours, with 
an average problem-solving time of 20 minutes for the DNA problem, and 37 minutes for the 
Oracle problem. The average problem-solving time and the number of problems solved by 
condition are shown in Table 2. 

Table 2: Problem-Solving Times and Numbers of Problems Solved by Condition 

Condition N Avg. Time DNA Avg. Time Oracle Solved DNA Solved Oracle 
Scripted Dyads 4 19 min 43 min 3 2 
Scripted Singles 4 20 min 39 min 3 1 
Unscripted Dyads 4 18 min 27 min 4  31 
Unscripted Singles 4 21 min 36 min 2 2 

The Oracle problem appeared to be harder for most participants as reflected by the problem-
solving times, but also by the number of singles/dyads who correctly solved the problems: 12 of 
16 solved the DNA problem, while only 8 of 16 singles/dyads correctly solved the Oracle 
problem.  

Table 3: Pre-Posttest Results of the Low-Tech Study (Highest possible score on pre- and posttest = 5) 

Condition N Pretest (stdev) Posttest (stddev) Gain (stddev) 
Scripted Dyads 8 4.44 (0.82) 4.31 (0.88) -0.13 (0.52) 
Scripted Singles 4 3.88 (1.11) 4.38 (1.25)  0.50 (1.48) 
Unscripted Dyads 8 3.56 (0.62) 4.06 (1.37)  0.50 (1.49) 
Unscripted Singles 4 4.38 (0.63) 4.38 (0.63)  0.00 (1.08) 

The pretest, posttest, and gain (posttest – pretest) results are given in Table 3. Due to the 
small sample size we cannot report meaningful statistical results. However, descriptively, the 
data reveal no substantial differences in the gain scores between the four conditions. The scripted 
dyad condition performed the poorest in the pre-post test analysis; it was the only group that 
scored lower on average on the posttest than the pretest. 

However, we have done a preliminary analysis of the VLab logs, calculating how many 
times each VLab action (e.g., add flask, mix solution, move object) was taken, on average, in 
                     
1 In one session we had technical problems; the fourth dyad would probably also have solved this problem. 
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each condition. One interesting finding was that the scripted conditions performed far fewer 
“mix solutions” actions (singles = 64.1; dyads = 75.5) than the unscripted conditions (singles = 
151.1; dyads = 238.3). We will return to this result in the discussion below. 

Due to the large amount of video, audio, and log data generated during the study, we have 
not fully analyzed these materials yet.  We anticipate a full analysis of the data will be completed 
by the summer of 2007, and we will fully report the results in a subsequent paper (and during the 
talk at the workshop). 

4.3 Discussion 

The scripted dyad condition performed the poorest in the pre-post test analysis; it was the only 
group that scored lower on average on the posttest than the pretest (-0.13; see Table 3). 
Moreover, in the interviews after the problem solving the scripted dyads unanimously expressed 
the view that the script was not helpful. Comments included: 
• "it's just the type of thing you kinda do automatically … that scientific method stuff you 

learned about in middle school“ 
• "it was a little bit much … just with all the detail … I think just naturally solving the 

problem we go through most of this stuff …“ 
On the other hand, there is some evidence that both collaboration and scripting made a 

positive difference. With respect to collaboration, notice, from Table 2, that the collaborative 
conditions solved more problems than the singles conditions: the dyads solved 12 problems (7 
DNA, 5 Oracle) while the singles solved only 8 problems (5 DNA, 3 Oracle).  This effect cannot 
be explained as a time effect as Table 2 shows: the dyads used less time for their problem 
solving (18.5 min DNA, 35 min Oracle) than the singles (20.5 min DNA, 37.5 min Oracle).  

Furthermore, the scripted conditions, both singles and dyads, performed far fewer “mix 
solution” actions in solving both the Oracle and DNA problems, meaning they took less steps to 
achieve similar results – a measure of efficiency. This result could indicate that even though 
students did not find the script helpful, it did help to improve their experimentation: by following 
the script students might have designed their experiments according to their hypotheses, rather 
than pursuing a trial and error strategy. We will take a closer look at the collaborative processes 
to find out if this impression is correct, and if so, why it is not reflected in the pre-post gains. (It 
should be noted that the standard deviations were rather high on the number of mix solutions 
actions taken.  Again, this data will require additional analysis.) 

Finally, perhaps the combination of collaborating with a partner, following the script, and 
using the VLab on the computer may have proved too much for the scripted dyads. The scripted 
singles had only two of these problem-solving aids to work with (i.e., the script and the VLab) 
and achieved the highest gain (0.5, tied with the unscripted dyads; see Table 3) with greater 
satisfaction with the scripts: 2 out of 4 self-reported that the scripts were helpful, e.g. “It 
challenged me to consider my own thought process and because of that I think I was able to 
solve the second problem faster.“ 

5 Conclusion 

We are not discouraged about collaborative scripting, despite the mixed results of the first, 
exploratory study.  It was not especially surprising that the scripted dyads reported problems in 
dealing with the paper-based script, along with everything else they had to do – especially if they 
believed they had already internalized the experiment script.  As mentioned earlier, some of our 
previous work had already led to the observation that overload is possible when dyads of 
students work with scripts [20].  We intend to investigate ways to avoid the apparent cognitive 
load experienced by the scripted dyads by (1) having students collaborate on certain 
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experimentation phases, while working individually on others [19], e.g. having students first 
work individually with the experimentation script on problems, followed by scripted 
collaboration on other problems, and (2) investigating ways we can provide adaptive online 
feedback that is sensitive to the cognitive load on and progress of the students.  We have already 
reacted to the complexity of the script uncovered in this first study by consolidating and reducing 
the scientific steps the students must take in the design of our system.  More specifically, the 
three steps illustrated by the tabs in Figure 1 are a pragmatic simplification of the experimental 
steps suggested by de Jong and Klahr/Dunbar in earlier work. 

Not visible in Figure 1 is our intention to use argumentation and discussion graphs as a 
means for supporting collaboration between students.  For instance, suppose that while the 
collaborating students are working on “Step1: Plan & Design” from Figure 1, they are 
encouraged to use an argumentation tool.  With such a tool, the students could make claims, 
provide supporting facts, and make counter-claims about their ideas and beliefs.  Such an 
approach might allow students to better understand one another’s ideas, as well as reflect on their 
own ideas.  In addition, taking such an approach will allow us to leverage the AI work we are 
doing on another project, ARGUNAUT, in which we are using machine-learning techniques to 
identify salient features of e-discussions for the purpose of providing guidance to a 
teacher/moderator [28]. Our initial results on the ARGUNAUT project have been very 
promising.  Such an approach could be used as a key component of an adaptive collaboration 
system, with machine learning classifiers used to identify when students are (or are not) using 
appropriate collaborative and domain problem solving techniques. 

As previously explained, we have not yet had the opportunity to analyze fully the large 
amount of data generated during the study.  We believe this data will prove very valuable in 
assessing how students interact with the VLab, how they collaborate with and without a script, 
and, consequently, how we should implement scripts and adaptive scaffolding in a collaborative 
system – one that we hope will lead to better conceptual learning in chemistry. 
Acknowledgements. The Pittsburgh Science of Learning Center (PSLC), NSF Grant # 0354420, 
provided support for this research. 
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