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Abstract. In this paper, we describe developmental and empirical steps we have taken toward
providing Cognitive Tutoring to students within a collaborative software environment. We have
taken two important steps toward realizing this goal. First, we have integrated a collaborative
software tool, Cool Modes, with software designed to develop Cognitive Tutors (the Cognitive
Tutor Authoring Tool). Our initial integration does not provide tutoring per se but rather acts as a
means to capture data that provides the beginnings of a tutor for collaboration. Second, we have
performed an initial study in which dyads of students used our software to collaborate in solving a
classification / composition problem. This study uncovered five dimensions of analysis that our
approach must use to help us better understand student collaborative behavior and lead to the
eventual development of a Cognitive Tutor for collaboration. We discuss our plans to incorporate
such analysis into our approach and to run further studies.
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INTRODUCTION

Intelligent Tutoring Systems (ITS) have long been used to provide one-on-one (machine-to-student) instruction
(Wenger 1987). We are interested, however, in using a software tutor to instruct multiple students collaborating
on a single problem. There have been steps toward providing tutoring in a collaborative environment (e.g.,
Goodman et al. 2003; Suthers 2003; Lesgold ef al. 1992), but many difficult challenges remain. For instance,
the space of possible actions among collaborating users is huge for even the simplest of problems, thus making
the analysis of learner behavior much more difficult for collaborative tasks than for the single-student case.

As a step toward addressing the complexities of a collaborative environment, we have created a tutor-
development methodology that leverages actual problem-solving data not only to guide ITS design, as has been
done in past work (e.g., Koedinger and Terao, 2002), but also to contribute directly to tutor implementation
(McLaren et al. 2004a; McLaren ef al. 2004b). Using this approach, called bootstrapping novice data (BND),
groups of collaborating students attempt to solve problems with a computer-based tool. While they work, the
system records their actions in a graphical representation that combines all of the groups' solutions into a single
graph that can be used as the basis for building a tutor and analyzing the collaboration. Our initial BND
implementation is realized through the integration of a collaborative modeling tool, Cool Modes (Collaborative
Open Learning and MODEling System) (Pinkwart 2003), and a tutor authoring environment, the Cognitive
Tutor Authoring Tools (CTAT) (Koedinger et al. 2004).

Our ultimate research aim is to develop better support for collaborative learning through cognitive tutoring.
In this paper, we describe two steps we have taken toward realizing this ambition: (1) an initial implementation
of the BND methodology and (2) a study using the BND approach, including the results and the implications
for further development of the methodology. The study we have performed reveals some interesting aspects of
the way dyads solved a particular collaborative problem. More importantly, it has pointed us in the direction of
improving our implementation of the BND methodology and realizing cognitive tutoring in a collaborative
environment.

In our initial implementation of the BND methodology, depicted in Figure 1, Cool Modes (shown on the
left) provides the graphical user interface, including a shared workspace that all collaborators in a session can
view and update, a palette with objects that users can drag onto the workspace, a chat area, and a private
workspace. Cool Modes sends messages about students' actions (e.g., "create an IS-A link") to CTAT’s



Behavior Recorder (also referred to as the "BR" and shown on the right of Figure 1), which stores the actions in
a behavior graph. Edges in the graph represent student actions and paths through the graph represent attempted
solutions to the problem. The current approach keeps track of the number of times actions are taken by the
various collaborating groups and presents these "traversal counts" on the edges of the behavior graph, e.g., 3
student dyads took the action from the "start state" Classification-Composition to Statel. Using CTAT, a tutor
author can subsequently transform the generated behavior graph into a Pseudo Tutor, or problem-specific tutor
(Koedinger et al. 2004), by adding or deleting edges, labeling correct or buggy behavior, and adding hints to the
edges. To use the finished graph as a tutor, the BR is switched to "model-tracing" mode in which student
actions are compared to the graph, instead of recorded, and error messages and hints are delivered to the student.
While our ultimate aim is use this approach to provide cognitive tutoring within Cool Modes, as well as other
collaborative environments, our initial focus is somewhat more modest: We want to analyze data that was
collected using the BND methodology to help us better understand both collaborative behavior and how we can
enhance the BND methodology to provide more useful analysis of that behavior. The preliminary study that we
have performed is an example of such an analysis.
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Figure 1: The student's view of the integrated Cool Modes (left) and the Behavior Recorder (right) environment.
This shared Cool Modes workspace is from a vehicle classification / composition task that was completed by a
dyad of collaborating students. The behavior graph at right shows the amalgamated solutions of different
collaborating groups of students.

DESCRIPTION OF THE STUDY

The research question in the preliminary study was whether, in a graphical problem-solving domain, an
organized arrangement of objects leads to quicker and better collaborative solutions than a disorganized
arrangement. We also wondered whether student rearrangement of the objects facilitates quicker and better results
and how this rearrangement might be conducted in a collaborative scenario. To explore these questions and test
how the BND methodology might be a useful analysis tool, we assigned 16 students to 8 dyads and asked each
dyad to solve an object-modeling problem using the Cool Modes / BR integrated system (one subject was a
class assistant). The objects in the given problem were vehicles (e.g., "Car") and parts of vehicles (e.g., "Tire").
The student dyads were asked to relate the objects using classification and composition links. The students were
volunteers from a "Modeling Techniques in Computer Science" course at the University of Duisburg, Germany.
Seven of the students (pairs 6, 7, 8 and one in pair 5) had had previous experience with Cool Modes. All
students received approximately 5 minutes of instruction on how to use the system before the experiment. The
student pairs worked at separate workstations, back-to-back in the same room. They shared a single Cool Modes
workspace.

To specify IS-A (i.e., classification) and PART-OF (i.e., composition) links between objects in the
workspace, the students used the Unified Modeling Language, a graphical modeling technique. To stimulate
collaboration we used an unequal resources design akin to jigsaw experiments (Aronson et al. 1978). One
student was provided with IS-A links only and one with PART-OF links only, so that no student could solve
the problem alone. Students communicated by typing statements into a chat box. The only other



communication permitted was the actual composition and repositioning steps taken by the students in the shared
workspace.

The 8 groups were randomly assigned to two experimental conditions. In Condition 1, pairs attempted to
solve a problem in which related objects were close to one another, providing an organized visual display of the
final network. For example, the two abstract classes “Vehicle” and “Vehicle Part” were located near the top of the
visual space, and most of the subclasses were located near their respective super classes. In Condition 2, pairs
solved a problem for which the objects were positioned in the workspace without any clear organizational
principle.

STUDY RESULTS AND ANALYSIS

All 8 dyads completed the task. Students’ solutions can be divided into three categories: good solutions (groups
5 and 8), incomplete solutions (groups 2, 6, and 7), and poor solutions (groups 1, 3, and 4). All three poor
solutions were in the disorganized condition, and two of the incomplete solutions were in the organized
condition. While one of the good solutions was in the organized condition, one was in the disorganized
condition. There were negligible differences in the time required to complete the task between the different
solution categories. The informal results suggested that a clearly organized problem state does not necessarily
lead to quicker and better solutions than a disorganized problem state, but does lead to different types of errors.
It is of course impossible to draw statistical conclusions about the relationship between the solutions and
starting conditions with such a small sample size, but we nevertheless have made some interesting informal
findings. We now describe those findings.

The conceptual distinctions between good, incomplete, and poor solutions were related to the errors
committed in solving the classification / composition problem. In the good solutions, errors reflected
misunderstandings about the meaning of classes. Otherwise, students correctly divided the objects into
subclasses and super classes and correctly placed the inheritance and composition edges. In the incomplete
solutions, students only connected one inheritance or composition link from each class. As a result, they had too
few links, and left out key relationships. In the poor solutions, students would often connect a class to multiple
ancestor nodes of the same lineage. For example, in Group 3, students connected "Car" to both "MotorVehicle"
and "Vehicle." The poor solution groups also typically created too many edges and were logically inconsistent
about the connection decisions they made.

Solutions can also be characterized by the way students tended to move nodes in the shared workspace. In
the good solutions, the students separated the two abstract classes, placing one at the top of the workspace and
the other at the bottom. IS-A and PART-OF links flowed in opposite directions and crossed only when
necessary. Objects were organized in rows that reflected their level of abstraction. In the incomplete solutions,
the two abstract classes were placed relatively close to one another, all links pointed in one direction, and there
were no crossed links. The objects tended to be clustered together and were organized into fewer rows than in
the good solutions, but the rationale behind the organization wasn't as clear. Finally, the poor solutions had the
abstract classes positioned without an obvious rationale. They had much longer edges pointing in all directions
and frequently intersecting with one another. As a result, the poor groups tended to use the entire shared
workspace.

We then analyzed the processes associated with the development of each solution. While working on the
problem, students could take three types of actions: chat actions, "talking" to a partner in a chat window, move
actions, repositioning an object in the shared workspace, and creation/deletion actions, creating or deleting
edges. Solution types showed differences in collaborative and task-oriented behavior. In terms of collaboration,
the students with the good solutions had different approaches. Group 8 worked completely collaboratively.
Members would take turns moving and creating objects and for a given group of objects, one member would
reposition objects while the other would create the edges. Conversely, the members of Group 5 worked
completely in parallel, coordinating their actions only to correct their partner's mistakes. In the incomplete and
poor groups, pair members shared the work. The poor groups were informal in their turn taking, while students
in the incomplete groups would alternate taking the initiative. With the exception of Group 5, groups decided on
their actions using the chat window and ensured that both members agreed on the actions being taken.

The three solution groups coordinated phases of chatting, moving, and creating/deleting differently. In the
good solutions, the approaches of two pairs were dissimilar. Group 8 collaborated by alternating chat phases,
move phases, and creation/deletion phases. Group 5 alternated between move phases and creation/deletion
phases, and primarily communicated visually. In both groups, adjacent phases referred to the same objects and
levels of abstractions, displaying a coherent problem-solving strategy. Both pairs were the only groups to have
more move actions than chat actions. The incomplete groups had fewer move actions, longer phases of chatting,
and fewer deletions. They adopted the inefficient strategy of discussing many future actions, creating a single
edge, and then repeating the discussion. On the other hand, they would consistently reorganize objects before
creating edges, which may have contributed to the tree-like organization of the classes. The poor groups engaged
in long phases of chatting or moving, but showed less coherence between the objects they were discussing,
objects they were creating, and objects they were moving. They deleted a lot of edges and tended to create
particular edges before repositioning them.  This disorganized approach probably led to the conceptual and



visual disorganization of their final solutions. Another difference was in terms of the selection of objects: Both
the good and the incomplete solutions would focus on objects based on their level of abstraction; they would
manipulate a given superclass and all its subclasses, and then move on to another group of objects. On the other
hand, students in the poor solutions appeared to let the problem organization guide their actions. They would
draw edges based on classes that were close to one other in the shared workspace, rather than classes that were
semantically related. Differences in object selection probably related to differences in the consistency of the final
solutions.

These results indicate that we should focus on five elements when evaluating students' performance (at least
on this particular task): conceptual understanding, visual organization, task coherence, task coordination, and
task selection, (see Table 1). These elements were chosen because they represent different relevant aspects of
student action that appeared to inform groups' solutions. Students within each solution type (good, incomplete,
and poor) tended to make the same types of mistakes within each of these categories.

Conceptual understanding refers to a pair's ability to correctly place the inheritance and composition edges,
while visual organization refers to a pair's ability to visually arrange the classes and edges in an appropriate
manner. These two elements are linked; conceptual understanding of the problem was often reflected in the
visual organization, and therefore conceptual steps tended to parallel organizational steps. For example, students
in the incomplete solution groups appeared to believe that they could create only one inheritance or composition
link extending from each object, and their solutions thus tended to take on rigid tree structures.

Conceptual Visual Task Coherence Task Coordination | Task Selection
Understanding Organization
Good Translation Based on Adjacent phases Balanced phases and |Based on
Solutions |mistakes abstractions referred to the same |work distribution abstractions
objects
Incomplete|Overly restricted |Based on a rigid, |[Chat phases referred |Strict turn-taking Based on
Solutions |definition of super [tree-like structure |to far more objects |and overly long chat [abstractions
class / subclass than subsequent phases
relationships phases
Poor Inconsistent Disorganized Little More informal turn |Based on
Solutions |definition of super correspondence taking and overly proximity
class / subclass between selected long phases
relationships objects in adjacent |(particularly of
phases deletion)

Table 1: Solution Types and Elements of Analysis

Task coherence, task coordination, and task selection reflect student strategies for collaborating on the
problem. Task coordination refers to skills in coordinating actions, without reference to the content of the
actions. It includes distributing the work among group members, and spending appropriate amounts of time in
each phase. The good groups exhibited successful task coordination, in part because they spent more time
moving objects than talking about them. Task coherence refers to the appropriateness of the content of student
actions. Students in the incomplete groups showed poor task coherence by chatting at length about many
different links and then creating a single link. Task selection refers to a student's ability to set subgoals for
solving the problem by drawing edges between classes in a sensible order. A breakdown in task selection leads
to disorganized and incoherent solutions, as seen in the poor group. These three skills should be assessed by
looking at the problem-solving process.

IMPLICATIONS FOR IMPROVING THE BND METHODOLOGY AND
CONCLUSIONS

One of the key goals of this study was to determine how to enhance the BND methodology to provide more
helpful data and analysis. In theory, the BR should be able to facilitate analysis of all the skills from Table 1.
However, these five elements are not supported in the current BR, making it difficult to classify behavior and
provide tutoring support. In an attempt to produce convergent paths in the behavior graphs, we restricted input
to the BR to creation and deletion actions. Unfortunately, analyzing creation and deletion appears too limited to
be useful. Although the BR records sequences of actions at a single level of generality, the nature of this
problem indicates that student skills at different levels of abstraction need to be addressed, and the BR needs to
be able to create hierarchies of behavior graphs.

We intend to address this problem by modifying the BR to support recording at different levels of
abstraction. Single chat, move, or creation/deletion actions, made by a particular user and referring to a particular
object, are at the lowest level of abstraction. Separate behavior paths can be generated for the creation/deletion
and move actions, and used for analyzing the conceptual understanding and visual organization. The middle
level of abstraction involves the analysis of phases of action, or chains of the same type of action, and can deal



with task coherence and task coordination. The highest abstraction level addresses sequences of phases, or the
characteristics of the current phase in relation to previous and subsequent phases. Skills related to task selection
will be evaluated and supported at this level. An approach to classifying actions and action sequences in Cool
Modes has been described in Harrer and Bollen (2004), and can be used to process actions at different levels of
abstraction.

Given these changes, we believe the modified BR will be a much more effective tool for analyzing
collaboration and providing tutoring support in future experiments. Besides the preliminary study we have
already performed, we plan to perform two more experiments in the near term. In these studies, we will test how
students collaborate to solve a Petri Net problem. We wish to determine how well the five elements of analysis
we have uncovered generalize to other graphical collaboration tasks and to less structured problems. We then
intend to enhance the BND methodology to allow us to compare and classify student problem solving strategies.
The resulting annotated behavior graphs will provide the basis for cognitive tutor development within Cool
Modes.
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