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INTRODUCTION 

Digital and computer games have captured the attention and imagination of people around the 
world. Lobel et al. (2017) report that Dutch children (7 to 12 years old) play digital games for 
between 4.9 and 5.8 hours per week, while a slightly older age range of children in New York 
City (10 to 15 years old) has been reported as playing even more: between 30 and 42 hours a 
week (Homer et al., 2012). Digital gameplay has also been significantly on the rise: According 
to a 2019 survey by the NPD Group (NPD, 2019), 73 percent of Americans aged 2 and older 
play digital games, a 6% increase from the prior year. There are reports of more than 2.6 
billion people world-wide being video game players, with an expected rise to over 3 billion 
people by 2023 (Gilbert, 2021). 

This general interest in digital games has also transferred to schools and educational use of 
computer-based games. Digital learning games, also called educational games, began to be 
designed, developed, and sporadically appeared in classrooms in the late 1990s (Zeng et al., 
2020). A flourishing in digital learning games has occurred since 2000, boosted by concur­
rent advancements in supporting technology, such as computer graphics and faster processors. 
President Obama helped to push this interest forward by launching the National STEM Game 
Design Competition in 2010. Today, according to Juraschka (2019), 74% of teachers use digital 
game-based learning to enhance their lessons and the majority of teachers who use games in 
the classroom believe games have been helpful in improving their students' learning. 

In addition to the increasing interest in and playing of digital learning games, there is 
also increasing empirical evidence of the effectiveness of games in helping people learn. 
Academics became interested in the motivational potential of digital learning games some 
time ago (Castell & Jenson, 2003; Gros, 2007), and an increase in empirical research has fol­
lowed over the past 15-to-20 years. Meta-analyses over the past five-to-six years have uncov­
ered and discussed the educational benefits of digital learning games (Clark et al., 2016; 
Crocco et al., 2016; Hussein et al., 2022; Ke, 2016; Mayer, 2019; Tokac et al., 2019; Wouters & 
van Oostendorp, 2017). Even video games without a specific aim to provide educational ben­
efits have been shown to increase students' skills, for instance perceptual attention (Bediou 
et al., 2018). The Clark et al. (2016) meta-analysis identified that careful attention to game 
design - the way in which a game's interface and mechanics supports interaction with the stu­
dent player - can result in positive learning results. Furthermore, there is strong evidence that 
designing digital games based on cognitive theories of learning and empirical learning science 
results can lead to educational benefits. For instance, Parong and colleagues have shown that 
executive function skills can be trained through a digital learning game designed expressly 
for that purpose (Parong et al., 2017, 2020). McLaren and colleagues found that designing 
a game explicitly targeted at mathematics misconceptions and employing self-explanation 
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prompts - a technique that has been shown to lead to learning benefits in a variety of contexts 
(Chi et al., 1994, 1989; Mayer & Johnson, 2010; Wylie & Chi, 2014) - can lead to learning 
benefits (McLaren et al., 2017). 

While it is clear that game design and attention to what we know about how humans learn 
have been beneficial to the design and success of digital learning games, what about the use of 
artificial intelligence (Al) in the design and development of digital learning games? It seems 
natural to insert AI into digital learning games to make them more realistic, more challenging, 
and more adaptive to students' skill level and style of play. Yet, a recent meta-analysis of digi­
tal learning games notes that over the past 20 years AI has rarely been cited as a component 
of learning games (Schabel et al., 2021). Thus, a natural question that arises is has the field of 
Artificial Intelligence in Education (AIED) actually made an impact on learning with digital 
games? In this chapter we explore this question by discussing the way that AI has been used in 
digital learning games until now, as well as how it might provide even more benefit to learning 
with digital learning games in the future. 

FOUNDATIONS OF LEARNING FROM GAMES 

Between the mid-1970s and 1990, Czikszentmihalyi developed and described the theory 
of flow, a state of optimal experience, where a person is so engaged in the activity at hand 
that self-consciousness disappears, a sense of time is lost, and the person engages in com­
plex, goal-directed activity not for external rewards, but simply for the exhilaration of doing 
(Czikszentmihalyi, 1975, 1990). For over 20 years, Czikszentmihalyi had been studying "states 
of optimal experience" - times when people, while undertaking an engaging activity, report 
feelings of concentration and deep enjoyment. Flow induces focused concentration and total 
absorption in an activity. Everyone experiences flow from time to time and will recognize its 
characteristics: one feels strong, alert, in effortless control, loses all self-consciousness, and is 
at the peak of their abilities. Often, the sense of time seems to disappear, and a person in flow 
experiences a feeling of transcendence. 

Digital games often immerse children - and people more generally - in flow and have 
long been posited to help in the learning process (Gee, 2003). Some very early researchers 
in the area of cognitive science identified constructs that are often part of games and appear 
to promote flow. For instance, Malone (1981) identified fantasy, curiosity, and challenge as 
key to intrinsic motivation and learning with games. Fantasy can serve to connect the player 
with content that they might otherwise reject as conflicting with their identity (Kaufman & 
Flanagan, 2015). Curiosity can be promoted when learners have the sense that their knowl­
edge needs to be revised, for example, if it is incomplete or inconsistent. Challenge depends 
upon activities that involve uncertain outcomes, hidden information, or randomness. While 
this theoretical work pre-dated most present-day digital learning game research, all of the 
constructs explored by Malone are clearly relevant and important to learning with games. 

While flow and intrinsic motivation appear to be key to learning with digital games, states 
of human affect, such as determination, confusion, frustration, and boredom, also play an 
important role (Loderer et al., 2019). For example, even though frustration is a "negative" 
emotion, it could indicate that a student is highly engaged while playing a challenging learn­
ing game (Gee, 2003). Determination and curiosity have also been found to be strongly pre­
sent during gameplay with learning games (Spann et al., 2019). A line of AIED research that 
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has investigated affect in gameplay has thus emerged, most typically involving data mining 
of log files of student use of learning games (Baker et al., 2007, 2010; Shute et al., 2015) or 
using sensors, video, and/or eye trackers to detect affect (Bosch et al., 2016; Conati & Gutica, 
2016; Shute et al., 2013). 

Given this foundational theoretical (and some empirical) work, a number of researchers and 
proselytizers have strongly pushed digital learning games as a panacea to the many shortcom­
ings of education in today's world. In the early days, many claims were made about the ben­
efits of learning with digital learning games versus more traditional approaches (Gee, 2007; 
Prensky, 2006; Squire & Jenkins, 2003). Not long after the claims were made, however, others 
emphasized the lack of evidence for positive learning outcomes with digital learning games 
(Honey & Hilton, 2011; Mayer, 2014; Tobias & Fletcher, 2011). Yet, as pointed out above, in 
recent years evidence has started to accumulate that digital learning games can be beneficial 
to learning (Clark et al., 2016; Mayer, 2019), including substantial evidence from within the 
AIED community (Arroyo et al., 2013; Easterday et al., 2017; Lee et al., 2011; McLaren et al., 
2017; Sawyer et al., 2017; Shute et al., 2015). How the AIED community has explored the 
space of learning from digital games is discussed in the next section. 

DIGITAL LEARNING GAMES RESEARCH IN AIED 

For the purposes of this review chapter, it is important to define, first, what a digital learning 
game is and, second, when a digital learning game is an ''AIED" learning game. Given that 
many digital learning games are arguably not ''AIED," two separate definitions are necessary. 

Note that many before us have made attempts to define what a "game" is (Rollings & 
Morris, 2000; Salen & Zimmerman, 2003) and, in turn, what a "digital learning game" is 
(Mayer, 2014; Prensky, 2004). While it is impossible to precisely define these terms, and any 
definition is subject to dispute, the following components have typically been part of prior 
definitions of a digital learning game: (1) an interactive program running on a computer or 
other electronic device; (2) "gameplay" in the form of an artificial environment in which fun, 
challenge, and/or fantasy are involved; (3) instructional content or an instructional objective 
is an integral part of the gameplay; (4) entertainment goals are part of the gameplay (e.g., 
competition, having fun); and, finally, (5) a set of pre-defined rules guide gameplay. Given this 
background, our working definition of a digital learning game is: 

A digital learning game is an interactive, computer-based system in which (l) users (i.e., players) 
engage in artificial activities involving fun, challenge, and/or fantasy; (2) instructional and entertain­
ment goals are part of the system; and (3) pre-defined rules guide gameplay. 

In turn, our definition of an A/ED digital learning game is: 

An AIED digital learning game is a digital learning game that (l) employs AI within its operation 
and interaction with players and/or (2) has been developed and/or extended using AI techniques (e.g., 
educational data mining, learning analytics, or machine learning). 

Note that this definition implies that we include games that may not have been published within 
the annual AIED conference proceedings or the International Journal of AI in Education. 
That is, we focus more on how games operate, the extent to which AI is part of their game 
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mechanism or post-use analyses, rather than whether they have been published within the 
AIED community. That said, we also focus on games that have been subject of some study of 
their learning efficacy and for which articles have been published. Note further that we include 
in our review AI learning technology that is "gamified," that is, technology that was not (nec­
essarily) developed originally as a game, but that includes gaming elements such as badges, 
points, leaderboards, and interactive playful agents (Landers & Landers, 2014; Landers et al., 
2017). These elements may alter the game's mechanics, the player's interactions, or aspects of 
player immersion and emotion, to improve the learner's engagement and experience (Deterding 
et al., 2011). Such technology falls, we believe, within the above definition of an AIED digital 
learning game. Key examples of gamified AIED learning technology are MathSpring (Arroyo 
et al., 2013, 2014), iStart-2 (Jackson & McNamara, 2011; Jacovina et al., 2016), Gamified 
Lynnette (Long & Aleven, 2014, 2018), and Gamified SQL-Tutor (Tahir et al., 2020). 

In what follows, we explicitly call out the AI aspect of the games we cite and discuss. In the 
interest of inclusiveness, recency, and broad coverage, we are also somewhat liberal in includ­
ing games that are nascent, without much (or any) empirical evidence of their instructional 
effectiveness, especially more recently developed and tested games that may be of interest to 
the AIED audience (e.g., Navigo: Benton et al., 2021; TurtleTalk: Jung et al., 2019). On the 
other hand, we are clear about the games that have been the subject of extensive empirical 
study (e.g., MathSpring: Arroyo et al., 2013, 2014; Crystal Island: Lester et al., 2013; Decimal 
Point: McLaren et al., 2017; Physics Playground: Shute et al., 2015, 2021). 

There are many ways that AIED-based digital learning games can be categorized, for 
instance, by whether they are pure games or "gamified," by their instructional topic, by the 
AI techniques used, by the degree of learning impact they've had, and so on. To provide a 
structure to the review of this chapter, we present AIED games according to the four major 
ways in which AI has been used in the context of learning games: 

1. AI-Based Adaptation: Digital learning games that employ AI to perform adaptation in 
real-time during play. That is, games that provide customized support (e.g., hints and 
error messages, problems appropriate to a student's current level of understanding, dif­
ficulty adjustment) to help students solve problems and learn (Martin et al., 2021). 

2. AI-Based Decision Support: Digital learning games that feature AI-powered interactive 
dashboards or recommendations; that is, these are games that don't make decisions for 
students, such as presenting the next problem or step to take, but instead present options, 
based on students' on-going performance. 

3. AI Character Interaction: Games that employ an AI-driven non-player character (or char­
acters) (NPC) to support the learning process with the games. These types of games rely 
on a "companion" to support students as they learn. 

4. Use of Learning Analytics (LA) and/or Educational Data Mining (EDM) for Game 
Analysis and Improvement: These are AIED games that don't explicitly use AI for game­
play or game mechanics, but instead employ AI to do post-game analysis. This analysis is 
typically done for one of two reasons: to better understand how students interact with the 
game or to iteratively improve the game. 

We also present the games according to their general instructional domain (i.e., math, com­
puter science, natural science, humanities). Table 20.1 summarizes the prominent AIED digi­
tal learning games that are reviewed in this chapter. We identified these games by using three 
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Table 20.1 Summary of AJED digital learning games 

Math 

Computer 
Science 

Natural 
Science 

AI-based adaptation AI-based decision 
support 

Maths Garden Decimal Point* 
(Klinkenberg et al., 2011) (Harpstead et al., 2019; 

MathSpring* (Arroyo 
et al., 2014; 2013) 

Prime Climb* (Conati 
etal., 2013) 

Auto Thinking• 
(Hooshyar et al., 2021) 

Gamijied SQL-Tutor 
(Tahir et al., 2020) 

Minerva (Lindberg 
et al., 2017, 2018; 
Lindberg & 
Laine, 2016) 

ELEKTRA (Peirce 
etal., 2008) 

Physics Playground* 
(Shute et al., 2021) 

Hou et al., 2020, 2021; 
McLaren et al., 2017) 

Gamijied Lynnette 
(Long & Aleven, 2014, 
2018) 

TALENT* 
(Maragos, 2013) 

Physics Playground* 
(Shute et al., 2019; 
Shute, 2011) 

AI character interaction Use of learning analytics (LA) 
and/or educational data mining 
(EDM) for game analysis and 
improvement 

MathSpring* (Arroyo 
et al., 2013, 2014) 

Battleship Numberline (Lomas 
et al., 2013, 2012, 2011) 

Squares Family (Pareto, Decimal Point* (Nguyen et al., 
2009, 2014; Sjoden 2019, 2020) 
et al., 2017) 

Auto Thinking• 
(Hooshyar et al., 2021)* 

ARIN-561 (Wang 
et al., 2022) 

ELIA (Kaczmarek & 
Petrovica, 2018) 

TALENT* 
(Maragos, 2013) 

TurtleTalk (Jung 
et al., 2019) 

Betty's Brain* (Biswas 
et al., 2016) 

Crystal Island* (Lester 
et al., 2013) 

Heroes of Math Island (Conati & 
Gutica, 2016) 

Prime Climb* (Conati & 
Zhou, 2002) 

Refraction (O'Rourke et al., 
2016, 2015; O'Rourke, Ballweber 
et al., 2014; O'Rourke, 
Haimovitz, et al., 2014) 

Reasoning Mind (Ocumpaugh 
et al., 2013) 

ST Math (Peddycord-Liu 
et al., 2017) 

Zombie Division (Baker 
et al., 2007; Habgood & 
Ainsworth, 2011) 

Zoombinis (Rowe et al., 2020, 
2021) 

Beanstalk (Aleven et al., 2013; 
Harpstead & Aleven, 2015) 

Betty's Brain* (Kinnebrew 
et al., 2017; Munshi et al., 2018; 
Segedy et al., 2015) 

Crystal Island* (Sabourin et al., 
2013; Sawyer et al., 2017) 

Physics Playground* (Shute 
et al., 2015) 

( Continued) 
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Table 20.1 

Humanities 

(Continued) 

AI-based adaptation 

iStart-2 (Jackson & 
McNamara, 2011; 
Jacovina et al., 2016) 

AI-based decision 
support 

Keep Attention 
(Hocine, 2019; Hocine 
et al., 2019) 

Navigo (Benton Tactical Language 
et al., 2021) and Culture Training 

System* (Johnson, 2010) 
Policy World (Easterday 
et al., 2017) 

AI character interaction Use of learning analytics (LA) 
and/or educational data mining 
(EDM) for game analysis and 
improvement 

ECHOES (Bernardini 
et al. 2014) 

Tactical Language 
and Culture Training 
System* (Johnson, 2010) 

Downtown: A Subway Adventure 
(Cano et al., 2018, 2016) 

TC3Sim (Henderson et al., 
2020a, 2020b) 

Note: * A digital learning game that is in more than one of the AI categories 

prominent databases: Google Scholar, Springer, and Elsevier. In each database, we entered the 
search query as a combination of three terms: (1) the learning domain, corresponding to a row 
in Table 20.1 (e.g., "math," "computer science"), the type of AI, corresponding to a column in 
Table 20.1 (e.g., "adaptation," "interaction"), and (3) the keyword "game." While Table 20.1 
provides a substantial number of digital learning games (more than 30), it is likely missing 
some games that could have been included, that is, it is meant to be a close-to (but perhaps 
not quite) comprehensive literature review.' In addition, as we focus our search dimensions on 
the learning domain and type of AI, we note that the reviewed games vary broadly in other 
characteristics, such as maturity, sample sizes of empirical studies, and research findings. 

AI-Based Adaptation 

Perhaps the most common way that AI is and has been used in AIED digital learning games 
is by adapting games to individual students and their learning progress. Usually, this means 
adapting the difficulty of a game, problems within the game, or hints to optimize the game's 
learning potential (Martin et al., 2021). This approach is derivative of what has long been 
done with intelligent tutoring systems (VanLehn, 2006, 2011), using approaches such as 
Bayesian Knowledge Tracing (Corbett & Anderson, 1995) and item response theory (Elo, 
1978; Embretson & Reise, 2000). 

Perhaps it is unsurprising that adapting instruction for individual students is a key research 
area of AIED digital learning games, given how much attention this type of computer-based 
instruction has been given in AIED research since its earliest days (Self, 2016) and until 
recently (see Chapter 9 by Aleven et al.). As John Self, one of the founders of the AIED 
research community, reported in his summary of the history of the field: 

AIED systems were, almost by definition, the only ones that carried out a significant, real-time 
analysis of the interaction with learners, in order to adapt that interaction. Other systems claimed 
to be adaptive, but they were really only reacting in pre-specified ways to different inputs. AIED 
systems responded in ways that had not been prespecified or even envisaged. And that, of course, 
is the essential difference between AI programs and general computer programs. (Self, 2016, p. 9) 
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In fact, what Self says is essentially the difference between many of the games described in 
this chapter and, for instance, the games that have come from non-AIED research (Mayer, 
2019). On the other hand, it is important that the emphasis is not only on the AI in games, 
but, like the many games that Mayer (2019) discusses, that AIED digital learning games are 
proven in well-designed, randomized controlled experiments. 

In what follows, we first describe in detail two representative ''AI-based adaptation" games 
from Table 20.1 - one in mathematics (MathSpring) and one in humanities (Policy World). 
We also discuss how AI has specifically been used for adaptation in those games, as well as 
the empirical results that studies with these games have uncovered. Finally, we present and 
discuss in a more succinct fashion other ''AI-based adaptation" games and summarize what 
we have learned about AI-based adaption games. 

MathSpring (Arroyo et al., 2013, 2014) is a single-player online game for fourth- through 
seventh-grade students to practice math problem solving (Figure 20.l(a)). The game, which 
was developed as a gamified extension to the tutoring system Wayang Outpost, adapts prob­
lem difficulty to student performance and offers hints, feedback, worked-out examples, and 
tutorial videos. The game also provides socio-emotional support from "learning compan­
ion" characters (hence this game is also found in the ''AI Character Interaction" category). 
The game supports strategic and problem-solving abilities based on the theory of cognitive 
apprenticeship (Collins et al., 1989). The software models solutions via worked-out exam­
ples with the use of sound and animation and provides practice opportunities on math word 
problems. 

MathSpring uses an AI-based adaptation algorithm to maintain students within their zone 
of proximal development (Vygotsky, 1978); in particular, the algorithm adapts problem dif­
ficulty. The MathSpring approach, referred to by the authors as "effort-based tutoring" (EBT), 
adapts problem selection depending on the effort exerted by a student on a practice activity 
based on three dimensions of student behavior: attempts to solve a problem, help requested, 
and time to answer. In addition, student affect is automatically predicted while students play 
the game. Initially, this was achieved through information from physiological sensors and 
student behavior within the game. Later, machine-learned detectors were created to predict 
student emotions. The game also uses AI to drive the learning companion, an animated digital 
character that speaks to the student (Figure 20.l(b)), deemphasizing the importance of imme­
diate success and instead encouraging effort. 

MathSpring has been used in middle schools in the US as part of regular math classes 
since 2004, in some instances just before students take the Massachusetts statewide-stand­
ardized test exams. In a variety of studies involving hundreds of students, the game has led to 
improved performance in mathematics and on the state standardized tests. It has also led to 
improved engagement and affective outcomes for groups of students as a whole, as well as for 
certain subgroups, for example, female students and low-achieving students. 

Policy World (Easterday et al., 2017) is a digital learning game targeted at university stu­
dents in which the player assumes the role of a policy analyst (Figure 20.2(a)) who must defend 
the public against an unscrupulous corporate lobbyist (Figure 20.2(b)) by persuading a Senator 
(Figure 20.2(c)) to adopt evidence-based policies that protect the public interest. The game has 
two modes of operation: game only and game+tutor, the second of which includes a back-end 
intelligent tutoring system that provides step-level feedback and immediate error correction. 
The narrative of Policy World emphasizes empowerment: a young policy analyst (i.e., the 
student playing the game) is recognized as having potential by the head of a policy think-tank. 
The student is guided by two mentor characters: another young but more senior analyst, and 
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Source: Figures provided by Ivon Arroyo, reproduced by permission 

Figure 20.1 In MathSpring, students use math to grow plants representing progress and 
effort in the game ( a). Plants might bloom and give peppers, or wither if stu­
dents show disengagement. ( b) shows an example of an Al-driven learning 
companion in MathSpring, used to encourage students' effort 

a sharp-tongued virtual tutor that teaches the student to analyze policies (Figure 20.2(d)). At 
the end of the game, the player is tested through simulated senate hearings. The player must 
debate two policies with the corporate lobbyist to save the think-tank's reputation and defend 
the public against the corrupt agenda. 

Policy World provides error flagging, situational feedback, and penalties for errors. The 
game+tutor version, which is the one that uses AI techniques for adaptation, is the same in all 
regards except that, as mentioned above, it also includes step-level feedback and immediate 
error correction (as in most intelligent tutoring systems; see VanLehn, 2006, 2011). 
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(c) (d) 

Source: Figures from Easterday et al. (2017), reproduced by permission from the first author 

Figure 20.2 Policy World screenshots of the agents involved in the policy debate: (a) the 
player, (b) the lobbyist, (c) the senator, and (d) the tutor 

A total of 105 university students were recruited for a study with Policy World. Based on 
the results of a series of ANOVAs, the game+tutor version resulted in more learning of policy 
analysis skills and self-reported competence, compared with the game-only version. A path 
analysis supported the claim that the greater assistance provided by the game+tutor helped 
students learn analysis better, which increased their feelings of competence, which in turn 
increased their interest in the game. 

As shown in Table 20.1, other AI-based adaptive games include Maths Garden, Prime 
Climb, AutoThinking, Minerva, the Gamified SQL Tutor, ELEKTRA, iSTART-2, and Navigo. 
Mathematics is a key focus area of games in this category, with Maths Garden (Klinkenberg 
et al., 201 l) as a prime example. Maths Garden is a single-player game used to help K-8 students 
learn mathematics operations, such as whole number addition, subtraction, multiplication, and 
division. Students click on different flower beds to try out the different mathematical operations 
and gain points (coins) by answering prompted questions correctly and lose coins by answering 
incorrectly. The game reward comes in two forms: first, the flowers in the various flower beds 
grow as the student makes progress; second, the coins earned from the math tasks can be used 
to purchase virtual prizes. Maths Garden is distinguished as an AIED digital learning game 
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by adapting its problem content within each garden, using an item-response model based on the 
Elo (1978) rating system. The game has been empirically tested with over 3,500 participants 
and results indicate that the Elo scoring model is highly correlated with an independent math 
test and students become highly engaged with the game. Another AI adaptive digital learn­
ing game that is targeted at math learning is Prime Climb (Conati et al., 2013). Prime Climb 
is a collaborative, two-player learning game in which fifth- and sixth-grade students practice 
number factorization by climbing a series of "number mountains," composed of numbered 
hexagons. Players move to numbers in the hexagons that do not share common factors with 
their partner's number. The two players rely on and cooperate with one another to reach the top 
of the mountain. Each player can make one or more moves before turning the control to the 
other player. The game is adaptive through its hints, which are provided to assist the students in 
climbing the mountain. Using a probabilistic student model, the game predicts when a student 
doesn't have the factorization skill required for a particular move. The game gives hints at 
incremental levels of detail. Conati et al.'s most important finding was that students with a posi­
tive attitude toward help tend to pay attention to hint content after correct moves, while students 
with a negative attitude towards help tend to pay attention to hints after incorrect moves, and 
students with a neutral attitude towards help show limited attention to hints. 

A second key focus of AIED digital learning games in this category has been computational 
thinking and computer programming. For instance, AutoThinking (Hooshyar et al., 2021) is 
a recent adaptive, single-player digital learning game designed to promote elementary-age 
students' skills and conceptual knowledge in computational thinking (CT). In this game, the 
player takes the role of a mouse in a maze seeking cheese and evading two cats. Players write 
"programs" using icons representing program steps to create solutions to evade the cats. One 
of the two cats is "intelligent," and the other is random. After the player completes a solu­
tion, the "intelligent cat" adapts using student log data and a Bayesian Network algorithm 
that decides which algorithm it should use next to pursue the player and, if necessary, what 
kind of feedback or hints to provide to the player. In comparison with a more conventional, 
computer-based approach to learning CT, Auto Thinking was found to be especially helpful to 
students with lower prior knowledge. Hooshyar and colleagues also found thatAutoThinking 
improved students' attitudes toward CT more than the conventional approach. (Due to the 
AI-based cat, AutoThinking also falls into the ''AI Character Interaction" category, which 
we introduce later in the chapter.) A second CT example is Minerva (Lindberg et al., 2018, 
2017) a single-player game designed to teach programming to elementary school students, 
covering five concepts: input, output, math, loop, and condition. In the game, players con­
trol a robot to navigate puzzles and repair a damaged ship, while avoiding aliens and other 
obstacles. The puzzles require players to learn different programming concepts to achieve 
their task. The adaptation of Minerva is to students' "learning styles" (Lindberg & Laine, 
2016), a concept that is controversial, since students having different learning styles has been 
largely debunked in various learning science literature (Pashler et al., 2008). Despite the per­
haps misguided focus of this research, it is another example of ''AI-based Adaptation" and a 
programming focused game. As a final example of games focused on computational think­
ing and programming, the Gamified SQL Tutor (Tahir et al., 2020) includes game elements 
beyond the well-known, adaptive intelligent tutoring system, SQL Tutor, which teaches stu­
dents the Standard Query Language (SQL). The SQL Tutor has been shown in many studies 
to lead to learning benefits (Mitrovic, 2012). The Gami.fied SQL Tutor was an attempt to gain 
additional learning benefits by adding "badges" to the tutor related to goals, assessment, and 
challenges. For instance, if students complete three problems in one session or five problems 
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in one day, they receive goal badges. In a study with 77 undergraduate students, Tahir and 
colleagues found that while Gami.fied SQL Tutor didn't lead to better learning outcomes than 
SQL Tutor, time on task was found to be a significant mediator between badges and achieve­
ment in the gamified condition. This suggests that badges can motivate students to spend 
more time learning with the SQL Tutor. 

AI-based adaptive games have also been developed to support reading (iSTART-2; Jackson & 
McNamara, 2011; Jacovina et al., 2016; Navigo: Benton et al., 2021) and science learning 
(ELEKTRA: Peirce et al., 2008). The highlights of these games include that iSTART-2 (previ­
ously called iStart-ME: Jackson & McNamara, 2011) uses AI natural language techniques 
to assess student self-explanations and adapt gameplay and feedback accordingly; Navigo 
relies on AI-based rules to ensure the learner is at an appropriate reading level within the 
game, to be sure the language the student encounters is diverse; and that the student gener­
ally progresses towards reading fluency. In ELEKTRA, which is targeted at 13- to 15-year-old 
students, AI rules are also used to assess a student's holistic game experience and to execute 
adaptation that is both pedagogically helpful and non-invasive. 

So what have we learned thus far from the research with AI-based adaptation of digital 
learning games? First, as mentioned above, it is clear that research with intelligent tutoring 
systems (VanLehn, 2006, 2011) has created a blueprint and paved the way for how adapta­
tion has been implemented, at least thus far, in many digital learning games. The focus on 
adapting problems and feedback to the level of understanding or skill exhibited by a student 
is, unsurprisingly, core to most of the games in this category. Some of the most successful 
work in the ''AI-based Adaptation" category of learning games, such as with MathSpring and 
iStart-2, essentially started as research with intelligent tutoring systems that later shifted into 
research with gamified intelligent tutors. Second, it is encouraging to see AI game adaptation 
be successfully applied in a wide variety of domains, including mathematics (e.g., MathSpring, 
Maths Garden), science (e.g., ELEKTRA), language learning (e.g., iStart-2, Navigo), computer 
science (e.g., AutoThinking, Minerva) and policy analysis (e.g., Policy World). This suggests 
that adapting instructional content is not constrained to any particular domain or game type. 
Finally, while adaptive digital learning games appear to be largely focused on elementary to 
middle-school age students - for instance, with the games MathSpring, Minerva, Prime Climb, 
and Auto Thinking - the games within this category show that adaptive games can also be effec­
tive with older students, for instance, as shown with Policy World and Gami.fied SQL Tutor. 

AI-Based Decision Support 

AI-based decision support is another relatively common approach found in AIED digital 
learning games. As opposed to ''AI-based Adaptation," these games allow the student to make 
their own choices of problems to solve and game paths to follow, but with support from an 
AI recommender system. Often these types of games employ a dashboard or open learner 
model (OLM: Bull & Kay, 2008; Bull, 2020) to provide the choices to students, as well as 
data supporting their options. The games in this category are often intended to support and 
explore self-regulated learning (SRL: Zimmerman & Schunk, 2008), in particular, prompting 
students to carefully consider their learning trajectories and move thoughtfully forward in the 
game and in their learning. 

As in the previous section, we first describe in detail two representative ''AI-based Decision 
Support" games - one in the domain of mathematics (Decimal Point) and one in science 
(Physics Playground). We also discuss how AI has been used for decision support in these 
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games, as well as empirical results from studies with the games. We then summarize and 
discuss other ''AI-based Decision Support" games and, finally, discuss what we have learned 
thus far from research with ''AI-based Decision Support" games. 

Decimal Point (Harpstead et al., 2019; Hou et al., 2020, 2021; McLaren et al., 2017; Nguyen 
et al., 2018; 2022) is a web-based, single-player digital learning game that helps fifth- through 
seventh-grade students reinforce their knowledge about decimal numbers and decimal opera­
tions. The game features an amusement park metaphor with eight theme areas and 24 mini­
games (Figure 20.3(a)) that target common decimal misconceptions. The mini-games support 
playful problem-solving activities (e.g., entering a haunted house, shooting objects in the 
wild west), each of which connects with one of five decimal exercise types: number line, 
addition, sequence, bucket, and sorting. As an example, in the mini-game Whack-A-Gopher 
(Figure 20.3(b)), students need to correctly "whack" the gophers, who pop up and retreat at 
random times, in the order of their number labels. Students receive immediate feedback on 
their answers and play until they get the correct answer. After each mini-game, students are 
prompted to answer a self-explanation question to reinforce their understanding (Chi et al., 
1994, 1989; Wylie & Chi, 2014). There have been a variety of studies of Decimal Point over 
the years, exploring issues such as student agency (Nguyen et al., 2018), indirect control 
(Harpstead et al., 2019), instructional context (McLaren et al., 2022a), and adaptive recom­
mendations (Hou et al., 2020, 2021). 

One study with Decimal Point included an AI-based recommender system that recom­
mends the next mini-game to select from the game map to maximize either learning or 
enjoyment (Hou et al., 2020, 2021). In the learning-oriented version of Decimal Point, the 
student's mastery of each decimal skill is assessed in real time with Bayesian Knowledge 
Tracing (BKT: Corbett & Anderson, 1995). Students see their mastery visualized through 
an open learner model (Bull, 2020) and are recommended to play more mini-games in the 
two least-mastered skills (Figure 20.3(c)). In the enjoyment-oriented version of the game, 
the student's rating of each mini-game round is collected after they finish it, and students 
are recommended to play more mini-games of the type they like the most (Figure 20.3(d)). 
Decimal Point data has also been used in EDM research that uncovers students' learning 
difficulties (Nguyen et al., 2020), as well as the relationship between in-game learning and 
post-test I delayed post-test performance (Nguyen et al., 2020). Thus, the Decimal Point 
game is also found in the "Use of Learning Analytics ... " category of AIED digital learning 
games. 

A media comparison study (Mayer, 2019) with the original version of the Decimal Point 
game showed a strong learning benefit over an intelligent tutoring system with the same con­
tent (McLaren et al., 2017). For the version that included AI-based recommender discussed 
above, 196 fifth- and sixth-grade students participated in a study (Hou et al., 2020, 2021). 
Three game conditions were examined: a learning-focused condition featuring the BKT-based 
dashboard (Figure 20.3(c)), an enjoyment-focused condition featuring the playful dashboard 
(Figure 20.3(d)), and a control condition with a neutral dashboard (i.e., a dashboard that does 
not present either skill mastery or enjoyment scores to the student) (Figure 20.3(e)). Results 
from the study indicated that the students in the enjoyment-focused group learned more effi­
ciently than the control group, and that females had higher learning gains than males across all 
conditions. (Subsequent studies have replicated this gender effect - see Nguyen et al., 2022.) 
Post hoc analyses also revealed that the learning-focused group re-practiced the same mini­
games, while the enjoyment-focused group explored a wider variety of mini-games. These 
findings suggest that adaptively emphasizing learning or enjoyment can result in distinctive 
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Source: Figure from Hou et al. (2021), reproduced by permission from the authors 

Figure 20.3 The main game map on the top left allows students to see the 24 mini-games 
of Decimal Point ( a), an example mini-game on the top right in which the 
student "whacks" moles in the order of smallest to largest decimal number 
(b), while the recommender dashboard for the control version of the game 
(c), the enjoyment-oriented version of the game (d) and the learning-ori­
ented version of the game (e) are shown left to right at the bottom 
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gameplay behaviors from students, and that Decimal Point can help bridge the gender gap in 
math education. 

Physics Playground (PP: Shute et al., 2019, 2021; Shute, 2011) is a digital learning game 
designed to enhance the physics understanding of middle to high school students. PP was 
originally designed to be a single-player game but has more recently been converted and also 
used in a collaborative learning mode (Sun et al., 2020, 2022). The goal of students using PP 
is simple - hit a red balloon using a green ball and various provided tools. In its first version, 
PP included only one type of game level: sketching. Using a mouse or stylus, players could 
draw objects on the screen, create simple "machines" (i.e., ramp, lever, pendulum, or spring­
board), and target the red balloon with the green ball. The second and most recent version of 
the game incorporates a new task type, manipulation levels, where drawing is disabled with 
players instead moving the ball to the balloon using new tools, including (1) sliders related to 
mass, gravity, and air resistance, (2) the ability to make the ball bounce by clicking the boun­
ciness checkbox, and (3) new sources of external force (e.g., a puffer, and static and dynamic 
blowers). PP includes stealth assessment, in which real-time assessment is embedded in the 
learning environment, invisible to the learner (Shute, 2011). The idea behind stealth assess­
ment is to assess student skills, and how students are dynamically advancing in those skills, 
without incurring the usual anxiety and time commitment that comes from standard testing. 

To engage and enhance student performance, Shute et al. (2019) recently added AI-based 
learning supports and, in particular, an incentive and recommendation system called My 
Backpack. When clicked, My Backpack provides information about the player's progress and 
physics understanding, as well as a space to customize gameplay (e.g., the type of ball they use). 
More specifically, the "Physics" tab shows the estimated competency level for each targeted 
physics concept - essentially an open learner model, based on real-time stealth assessment. 
Because stealth assessment is used to personalize content and adapt feedback (Shute et al., 
2021), the Physics Playground is also in the ''AI-Based Adaptation" category discussed previ­
ously. In addition, Shute et al. (2015) have performed post-gameplay analyses of student log 
data to investigate student affect and predictors of learning outcomes while game playing; thus, 
PP is also in the "Use of Learning-Analytics ... " category of AIED digital learning games. 

Shute and colleagues have conducted many studies with PP since its initial creation as 
"Newton's Playground" (Shute & Ventura, 2013). For example, Shute et al. (2015) reports a 
study with 137 eighth- and ninth-grade students who played PP for 2.5 hours. The students 
had a significant increase in scores from pre-test to post-test, thus indicating that PP does 
indeed lead to physics learning. In post-gameplay analyses, they also found evidence that (1) 
both the pre-test and the in-game measure of student performance significantly predicted 
learning outcomes and (2) a detector of frustration, a detector of engaged concentration, and 
the pre-test predicted the in-game measure of performance. Finally, they found evidence 
for pathways from engaged concentration and frustration to learning, via the in-game pro­
gress measure. More recently, Shute et al. (2021) conducted a study to explore the benefits 
of the PP learning supports, such as My Backpack, a glossary, and animations of physics 
concepts. The study included 263 ninth-to-eleventh graders who played PP for 4 hours. In 
this study, students were randomly assigned to one of four conditions: an adaptive version 
of PP, in which a Bayesian algorithm was used to present game levels to students according 
to their physics competencies; a linear version, in which students followed a predetermined 
sequence of game levels; a free-choice version, in which the students were presented the lin­
ear sequence of levels, but could skip levels, and a no-treatment control. Surprisingly, there 
were no significant differences in learning between the four conditions. However, Shute 
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and colleagues found that stealth assessment was an accurate estimate of students' physics 
understanding (i.e., stealth assessment was highly correlated with external physics scores), 
and physics animations were the most effective of eight supports in predicting both learning 
and in-game performance. Like the Decimal Point study discussed previously, this study is 
an excellent example of how digital learning games are becoming tremendous platforms for 
pursuing various research questions, such as whether self-regulated learning can be produc­
tive in a game context and what the effects of various types of support are in game-based 
learning. 

There are fewer learning games in the ''AI-based Decision Support" category than in any of 
the other learning games categories, but the few games that include decision support, typically 
in the form of an open learner model, include Gamified Lynnette, TALENT, Keep Attention, 
and the Tactical Language and Cultural Training System (TLCTS). Gamified Lynnette 
(Long & Aleven, 2014) is an example of a gamified intelligent tutoring system, based on the 
linear equation tutor Lynnette (Waalkens et al., 2013). To extend Lynette with game features -
creating what we (but not the authors) call Gamified Lynnette - Long and Aleven added two 
key features: (1) the possibility to re-practice problems, under student control, and (2) rewards 
given to students based on their performance on individual problems. The two features are 
connected (at least loosely) as students are encouraged to re-practice by earning rewards. 
The core AI technique of Gamified Lynnette is its use of BKT (Corbett & Anderson, 1995) to 
assess students' skills and to support problem selection, either by the system (implementing 
mastery learning) or student (through an OLM dashboard, thus, its inclusion in the ''AI-based 
Decision Support" category). Gamified Lynnette's dashboard shows the student their rewards 
(i.e., badges) and allows students to select the BKT-assessed problem to tackle next. In their 
first experiment with Gamified Lynnette, Long and Aleven compared four versions of Gamified 
Lynnette, with and without re-practice enabled and with and without rewards, as well as to 
standard Lynnette (i.e., with problems all system selected and no dashboard) and DragonBox 
(www.dragonboxapp.com), a highly acclaimed and popular commercial digital learning game 
that covers the same mathematics content as Gamified Lynnette. A total of 267 seventh- and 
eighth-grade students were randomly assigned to the six conditions, with 190 of those stu­
dents finishing all activities and thus being subject to analyses. Long and Aleven did not find 
a significant difference between the different versions of Gamified Lynnette and the Lynnette 
control with respect to enjoyment or learning. However, Gamified Lynnette students who had 
the freedom to re-practice problems, but were not given rewards, performed significantly bet­
ter on the post-tests than their counterparts who received rewards. This suggests that adding 
game features - in this case rewards - does not always enhance learning. Of particular note is 
that each of the Gamified Lynnette conditions led to more learning than the DragonBox condi­
tion, indicating that just a small dose of game features added to more traditional learning tech­
nology may be enough to lead to more learning versus a game. Long and Aleven (2018) later 
re-analyzed the 190 students of the Long and Aleven (2014) study, comparing the combined 
results of the five versions of Lynnette (i.e., the four gamified and the original, non-gamified 
versions of Lynnette) with DragonBox. They found that while students solved more prob­
lems and enjoyed playing DragonBox more, they learned more using Lynnette and Gamified 
Lynnette. This is an important additional finding to that of Long and Aleven (2014), as it shows 
that full-scale digital learning games, such as DragonBox, while often more engaging, may 
not always lead to better learning outcomes than more traditional and/or gamified technology. 
This finding further emphasizes the importance of conducting empirical studies of learning 
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Figure 20.4 The figure at the top ( a) is an example of a student solving a Physics 
Playground problem by drawing a lever with a weight on one side of 
the lever to hit the balloon. At the bottom (b) is the My Backpack view, 
which provides estimates of student progress, physics skill, and concept 
understanding 
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games (something that had not been done previously with DragonBox) before setting them 
loose with students in classrooms. 

Another representative game in this category is TALENT (Maragos, 2013), a multiplayer 
adventure game that helps high school students learn introductory programming. To play and 
learn with TALENT students explore a game world, solving programming tasks as they pro­
ceed. They can chat with one another to discuss their game progress or exchange programming 
advice. TALENThas an open learner model based on information about the student's in-game 
activities, such as navigation, tool usage, and learning progress. Furthermore, it proposes the 
next mission to undertake, based on the student's current level of game-assessed knowledge. 
The game also features a pedagogical agent whose role is to provide real-time hints (and 
thus TALENT is also in the ''AI Character Interaction" category). A study of TALENT was 
conducted with 65 high school students, over a period of eight weeks. An experimental con­
dition in which students played TALENT was compared to a group of students that attended 
traditional lectures. While both groups improved from pre-test to post-test, the experimental 
group had significantly higher post-test scores. However, given the stark comparison of tradi­
tional classroom instruction with the TALENT game, including collaboration and an OLM, it 
is not clear which feature, or combination of features, led to the better learning outcomes of 
the game-playing group. 

'Iwo other games in the ''AI-based Decision Support" category are Keep Attention and 
TLCTS. Keep Attention (Hocine, 2019; Hocine et al., 2019) is a learning game for children 
with attention deficit disorders and trains attention skills (Hocine et al., 2019), as well as 
self-regulation skills (Hocine, 2019). The base game operates by first using basic tasks to 
assess students' attention skills, followed by personalizing their gameplay training - using 
the assessed skills as a guide - in a variety of game contexts (e.g., a zoo, card playing, outer 
space). For instance, in the zoo context players are prompted to rescue animals, while avoid­
ing insects and monsters. The basic assessment is composed of selective attention tasks that 
prompt players, under time pressure, to select given targets in different contexts, while avoid­
ing obstacles (distractors). In one version of the game, an open learner model (OLM) was 
developed to explore self-regulated learning by allowing users to reflect upon their actions 
during assessment and make decisions about their subsequent gameplay. The OLM uses a 
visual presentation of the player's performance, analyzed using AI techniques. To gamify the 
player's interaction with the OLM, Keep Attention prompts the player to predict their perfor­
mance in the assessment exercises and levels based on an interactive questionnaire that pro­
vides feedback. Through the OLM, players can decide whether to accept or not the system's 
decisions on personalized gameplay. Unlike most of the other learning games reviewed in this 
chapter, no large-scale empirical studies have been conducted with Keep Attention. However, 
in a pilot study of the open learner model with 16 middle school students (Hocine, 2019) it 
was found that without the OLM, subjects found it difficult to assess their attention level, and 
consequently to choose the appropriate level of difficulty in the game context. Conversely, it 
appeared that what students learned about their attention from the OLM helped them during 
subsequent gameplay. While the TLCTS game is more representative of the ''AI Character 
Interaction" category, given its extensive use of interactive NPCs to support language and 
culture learning, it also uses an AI recommender system to give learners advice on which les­
sons and game episodes to tackle next. TLCTS is described in more detail in the next section, 

As with other forms of educational technology, open learner models and recommender 
systems in digital learning games are designed to support and enhance students' self-regu­
lated learning skills, ultimately leading, it is hoped, to better learning outcomes. OLMs seem 
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especially appropriate for digital game contexts, given that computer-based games often allow 
players to make their own decisions about the next game level, challenge, or pathway to pur­
sue during play. The difference in digital learning games is that player choices are not only 
about engagement and enjoyment but also about optimizing learning outcomes. So far, the 
results have been inconclusive regarding the benefits of OLMs in digital learning games. For 
instance, the learning-focused OLM in Decimal Point did not lead to clear learning benefits 
over the enjoyment-focused OLM; in fact, the enjoyment-focused OLM led to more efficient 
learning than for the students in the control group. Also, the Physics Playground OLM (i.e., 
My Backpack) may have helped students but did not lead conclusively to better learning. There 
is at least a hint that the dashboard of Gamified Lynnette may have been responsible for bet­
ter learning outcomes, given the better learning outcomes of the Gamified Lynnette with a 
dashboard but without rewards over Gamified Lynnette with rewards. Even so, further study, 
focused on testing the dashboard, would be necessary to confirm the benefits of a dashboard. 
In short, the jury is still out on the impact and benefits of AI-supported OLMs and recom­
mender systems in the context of digital learning games. Testing OLMs and recommender 
systems with digital learning games is perhaps more challenging and complicated than with 
other learning technologies, given the trade-offs and tension between engagement and learn­
ing inherent in digital learning games. 

AI Character Interaction 

AI-based character interaction involves the use of Non-Player Characters, commonly called 
NPCs, engaging and interacting with students as they play a digital learning game. In the 
context of digital learning systems and games, these characters are also sometimes called 
"pedagogical agents" (Johnson & Lester, 2018): virtual characters that are part of learning 
scenarios and engage in rich interactions with students. Some games that have already been 
discussed in this chapter also fall into this category, including MathSpring (Arroyo et al., 
2013, 2014), which uses NPCs to provide socio-emotional support to students, and the Tactical 
Language and Culture Training System (Johnson, 2010), which was briefly discussed in the 
previous section, and which uses NPCs to help adult trainees understand foreign language and 
culture. ''AI Character Interaction" games often employ AI in the form of Natural Language 
Processing (NLP), as well as machine learning to develop the language capabilities and affect 
of such characters. 

In this section we describe in detail three highly representative ''AI Character Interaction" 
games, across the disparate domains of microbiology (Crystal Island), language and cultural 
instruction (the Tactical Language and Culture Training System, TLCTS), and programming 
(TurtleTalk). We describe the NPCs that have been implemented in those games and how AI 
has been used to bring the NPCs to life as interactive pedagogical agents with human learn­
ers. In some cases, in particular with Crystal Island, we also discuss other ways that AI has 
been employed in the game. We also summarize the results attained from experimenting with 
these three games, ranging from extensive and substantial in the case of Crystal Island to 
very preliminary in the case of TurtleTalk. We also briefly discuss other games that fall within 
the category of ''AI Character Interaction" games and conclude by discussing what has been 
learned thus far from ''AI Character Interaction" game research. 

Crystal Island (Lester et al., 2013) is a single-player narrative learning game designed for 
the domain of microbiology, typically targeted at late-middle-school students (but even uni­
versity students have been a target population). The game features a science mystery situated 
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on a remote tropical island (Figure 20.5(a)). Within the narrative of Crystal Island, the student 
plays the role of a medical field agent attempting to discover the identity of an infectious 
disease plaguing the island inhabitants. To solve the mystery, the student collects data and 
symptoms, forms hypotheses, and tests those hypotheses by interviewing a number of NPCs 
on the island, including a camp nurse, the camp cook, and virus and bacterial scientists. The 
student's learning is scaffolded by interaction with the NPCs (Figure 20.5(b)) and a diagnosis 
worksheet (Figure 20.5(c)). When the student makes an incorrect diagnosis, the camp nurse 
identifies the error and provides feedback. The student successfully completes the game when 
they correctly identify the illness and specify an appropriate treatment. 

A variety of AI techniques have been employed and tested with Crystal Island, includ­
ing narrative-centered tutorial planning (Lee et al., 2011, 2012), student knowledge modeling 
(Rowe & Lester, 2010), and student goal recognition and affect recognition models (Sabourin 
et al., 2011). Most of these AI directions have been aimed at making the camp nurse smarter 
and more adaptable to and supportive of students playing the game. For instance, the narra­
tive-centered tutorial planning uses a dynamic decision network (Dean & Kanazawa, 1989) 
to update the beliefs of the NPCs and to select actions that maximize expected tutorial util­
ity. For student modeling and affect recognition, Lester and colleagues developed a dynamic 
Bayesian network that connects student goals (e.g., mastery or performance) with emotions 
(e.g., boredom, confusion) and actions (e.g., notes taken, tests run) (Rowe & Lester, 2010). The 
game's data have also recently been analyzed with deep learning techniques to build student 
models from log data and reflection texts (Geden et al., 2021), to recognize student goals from 
game events and eye tracking (Min et al., 2017), and to enable data-driven and interactive nar­
rative personalization (Wang et al., 2017). These data mining studies also place Crystal Island 
in the "Use of Learning Analytics ... " game category, still to be discussed. 

Crystal Island is one of the earliest developed and most prolific AIED learning games; it 
has been the subject of many empirical studies, exploring a variety of issues - like Decimal 
Point and Physics Playground, it has proven to be an excellent research platform. Here, we 
cite and summarize just four studies. An early observational study conducted by Rowe et al. 
(2011), in which the goal was to investigate the synergistic impact of engagement and learning, 
150 students played Crystal Island. Students achieved significant learning gains from pre- to 
post-test, providing evidence that the game is effective in engaging learners and support­
ing learning. In an experiment comparing three narrative-centered tutorial planning models, 
150 eighth-grade students used Crystal Island, completing a pre- and post-test (Lee et al., 
2012). While it was found that all students learned, only students in the "full guidance" con­
dition (compared with intermediate and minimal guidance conditions) achieved significant 
learning gains. A study that did not yield positive learning outcomes for Crystal Island was 
conducted by Adams et al. (2012) in which students using Crystal Island were compared with 
students viewing a slideshow with the same microbiology materials. The Crystal Island group 
performed much worse than the slideshow group on a subsequent test of infectious disease 
with an effect size of -0.31. Finally, in Sawyer et al. (2017), Lester's lab explored the concept 
of agency, that is, student (versus system) control within a game. In this study, 105 college­
age students were randomly assigned to one of three agency conditions: high agency, which 
allowed students to navigate to island locations in any order; low agency, which restricted 
students to a prescribed order of navigation; and no agency, in which students simply watched 
a video of an expert playing Crystal Island. They found that students in the low agency con­
dition attempted more incorrect submissions but also attained significantly higher learning 



Digital learning games in artificial intelligence in education 459 

Source: Figures from Taub et al. (2020) and Lester et al. (2013), reproduced by permission from the authors 

Figure 20.5 The locations on Crystal Island where the student can visit to solve the 
infectious disease mystery ( a). The student interacts with AI-infused NPCs, 
such as the camp nurse and patients (b). A diagnosis worksheet scaffolds 
students learning; they can record their findings in the worksheet ( c) 
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gains. Their results suggest that limiting agency in their game (and possibly in other games, 
as well) can improve learning performance but at the potential cost of undesirable student 
behaviors, such as a propensity for guessing. 

The Tactical Language and Culture Training System (TLCTS: Johnson, 2010) is a virtual 
learning environment that helps learners acquire basic communication skills and cultural 
understanding of foreign countries. This is done through interactive and practical lessons. 
TLCTS modules have been deployed to teach Arabic, Chinese and French, among other lan­
guages and cultures. Each module includes three major components: Skill Builder, Arcade 
Game, and Mission Game. In the Skill Builder, learners practice vocabulary and phrases, and 
complete assessment quizzes that require mastery of spoken language. In the Arcade Game, 
learners give voice commands in the target language to control the behaviors of game charac­
ters. In the Mission Game, learners speak on behalf of their characters to interact with in-game 
NPCs. All TLCTS content is highly task-based and promotes hands-on practice, while leverag­
ing game elements to help learners overcome the motivational barrier of language learning. 

TLCTS incorporates AI dialog models to support robust, spoken dialog with NPCs; these 
models can interpret the learner's verbal and non-verbal gestures and control the NPCs' 
responses accordingly. More specifically, the game uses automated speech recognition to pro­
vide immediate feedback, both on simple repeat-and-recall tasks and on more complex dialog 
exercises. The speech recognition is enabled through an underlying acoustic model, trained 
on a combination of native speech and learner speech to ensure an acceptable recognition 
rate. TLCTS also uses AI to maintain student models to track students' mastery of targeted 
language skills throughout gameplay; these models provide learners with recommendations 
on the lessons and game episodes to undertake next (thus, this game is also in the ''AI-based 
Decision Support" category). 

Three evaluations have been conducted on TLCTS, all of Iraqi Arabic language and culture. 
The first study involved 89 marines, each of whom underwent four hours of self-paced com­
puter-based training each week over three months. The second study recruited eight military 
personnel who spent eight hours of TLCTS training per day, over five days. The third study 
had 268 participants, who had 28 hours of training with TLCTS. All three studies yielded 
significant increases in knowledge of Iraqi Arabic language, as measured by an independently 
constructed post-test; in two of the studies, participants also reported significant increases in 
speaking and listening self-efficacy. 

The final game we'll discuss in detail in the ''AI Character Interaction" category is TurtleTalk 
(Jung et al., 2019), a single-player web-based programming game that interacts with learners 
through voice recognition and speakers (see Figure 20.7). The children's utterances are con­
verted directly into code. The game focuses on the programming topics of sequencing and 
iteration, both of which are fundamental programming constructs. In the case of sequencing, 
child users learn that a program runs in a sequence of steps, where an action, or step, leads 
to the next ordered action. In the case of iteration, children learn that programs often contain 
loops of steps that are executed repeatedly. The child and TurtleTalk communicate with one 
another in a turn taking manner to control the conversation and help the child focus on their 
given tasks. TurtleTalk provides hints to help the child decide what to do, but it does not appear 
that, as of this writing, the authors have grounded the pedagogical model underlying the game 
in established learning science. 

Although there have been other computer gamified environments for learning program­
ming, such as Scratch (Resnick et al., 2009) and Blockly (Fraser et al., 2013), TurtleTalk brings 
a new twist: an AI-infused NPC - the turtle - that guides and helps children through its voice 
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Source: © Alelo Inc. Reprinted with permission 

Figure 20.6 An active dialog in TLCTS. Trainees learn how to use language and act 
culturally appropriate when interviewing Iraqi civilians 

and voice understanding. The Turtle appears on the screen and moves onto blocks according 
to voice commands, which are converted into programming code by a neural network. 

Thus far, however, only a small pilot study of TurtleTalk has been conducted. Eight partici­
pants, 6 to 9 years of age, were recruited for the study. Players were surveyed after playing the 
game to learn about their playing experience (there was no pre-test or post-test). The general 
results (which are, of course, very preliminary and based on minimal data) are: (1) Children 
appear to learn programming easily, enjoyably, and confidently with TurtleTalk; (2) Children 
understand the key constructs of programming through TurtleTalk; and (3) Voice interaction 
allows children to become more immersed in the game. 

Other digital learning games in the "AI Character Interaction" category include ARIN-56/, 
ELIA, ECHOES, Squares Family, TALENT (already discussed), and Betty's Brain. ARIN-
56/ is a single-player role-playing game that helps K-12 students learn about concepts in 
Artificial Intelligence. The player is a scientist who is lost on an alien planet, ARIN-56/, 
and must solve AI problems to uncover the planet's mystery and survive. The problems in 
the game are related to three classical AI search algorithms - breadth-first, depth-first, and 
greedy search - embedded in the in-game tasks that involve searching for lost parts or crack­
ing passwords. The game also features a pedagogical agent, in the form of a friendly robot 
that follows the player and conducts dialogues that either advance the game's narrative or 
prompt students to reflect on their mental process. A study with 125 students found that their 
AI knowledge increased significantly and correlated with time spent in the game, but not with 
gender identity, grade level, or math confidence measures. ELIA (Emotions for Learning and 
Intelligent Assessment: Kaczmarek & Petrovica, 2018) is a single-player game targeted at 
university students for learning about artificial intelligence. The game is patterned after the 
famous "Who wants to be a Millionaire" television game show in which students try to win 
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Source: Figure from Jung et al. (2019), reproduced by permission from the authors 

Figure 20.7 A child listening to TurtleTalk's questions and then commanding the turtle 
NPC to act through voice command 

a "million-dollar prize" by correctly answering a series of questions. ELIA integrates game 
mechanics, most importantly an on-screen NPC that supports the student, with an underly­
ing intelligent tutor. The game uses facial expression recognition software, supported by a 
neural network, to help in identifying student emotions and deciding on a tutoring approach. 
ELIA analyzes and classifies students through a pre-game questionnaire, subsequently select­
ing an appropriate supporting NPC (friend, expert, coach, or evaluator) and teaching strategy 
(mastery or performance). During gameplay questions to the student are adapted with the aid 
of the Emotion AP/, a commercially available API from Affectiva, 2 which is based on more 
than 6 million face videos collected from 87 countries. Each of the supporting NPCs has their 
own (different) rules for tutoring based on different perceived emotions and student progress. 
In a study with 240 university students, a game-based condition in which 87 students used 
ELIA, compared to a paper-based, business-as-usual condition with the same content, showed 
that the game led to lower post-test scores. However, the game also led to increased motiva­
tion and engagement for lower-performing students, prompting the authors to suggest that the 
game still could be beneficial for that class of students. ECHOES (Bernardini et al., 2014) is 
a digital learning game designed to train young children with Autism Spectrum Conditions 
(ASCs) to acquire social communication skills. An intelligent virtual character, Andy, guides 
and teaches children, by playing the role of both a peer and a tutor, through a multi-touch LCD 
display with eye tracking. All activities take place in a sensory garden populated by Andy 
with interactive magic objects that react in unusual ways when touched by either the children 
or the agent. Children practice two forms of activities: goal-oriented, where they follow steps 
with an identifiable end-goal, and cooperative turn-taking, where they take turns exploring 
the garden with Andy to promote social reciprocity. Andy is also responsible for fostering the 
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children's initiative and exposing them to positive peer interactions. Andy employs a domain­
independent architecture FAtiMA (Dias & Paiva, 2005) to display one of 22 emotions, based 
on its assessment of the current events. The agent's back-end has a pedagogical component 
that monitors its interaction with the child, and a "child model," which assesses in real time 
the child's cognitive and emotional state. ECHOES was tested in a small study of twenty-nine 
(29) children 4 to 14 years old from the UK with ASC and/or other disabilities. While no 
significant transfer of increased social responsiveness or initiations to real-world contexts was 
observed across all children, the experimental results showed that the number of initiations 
made by the children when first using ECHOES was significantly less than the number of 
initiations made during the final session. 

The last two games in the ''AI Character Interaction" category, Squares Family and Betty's 
Brain, employ an instructional paradigm known as "teachable agents" (TA: Brophy et al., 
1999; Chase et al., 2009; Leelawong & Biswas, 2008). Teachable agent technology draws on 
the social metaphor of a student teaching a computer agent, which in turn can help the stu­
dent themselves learn. TA is based on the theories of learning-by-teaching (Bargh & Schul, 
1980; Palthepu et al., 1991) and the protege effect (Chase et al., 2009), in which students are 
coaxed to work harder to learn for their TAs than on their own. Squares Family (Pareto, 2009, 
2014; Sjoden et al., 2017) is a two-player math card game (either two humans or a human 
and computer player) designed to teach elementary school students a conceptual understand­
ing of mathematics and mathematical reasoning, in particular of positive and negative integer 
operations. The game prompts discussion between pairs, using a graphical metaphor of colored 
squares that denote 100s, 10s, and ls and collected squares that go into virtual boxes. A key 
feature of the game is that students train an on-screen teachable agent (TA) as they play the 
game (e.g., Pareto, 2014; Sjoden et al., 2017). The AI component of Squares Family lies in how 
the TA "learns" as the game is played. Just as a human learner, the teachable agent asks ques­
tions of the student during gameplay to complement and build its knowledge. The TA will only 
ask questions that are, according to its understanding, within the student's wne of proximal 
development (Vygotsky, 1978). Pareto (2014) reports a three-month study in which 314 students 
played Squares Family and taught their teachable agents, while 129 took a standard math class 
without the game (i.e., the control). Results showed that there was a significant learning advan­
tage in playing Squares Family compared with the control, also suggesting that young students 
can act as successful tutors. In another study, Sjoden et al. (2017) analyzed the anonymous log 
data of 163 fourth-graders playing Squares Family competitively against the computer from 
nine classes in a school in Sweden (age 10-11, total of 3,983 games). Results showed that stu­
dents who tutored a TA had higher performance than students who played without a TA. 

We note that the final game in the ''AI Character Interaction" category, Betty's Brain 
(Biswas et al., 2016), unlike Squares Family, is more purely a TA learning technology than 
a game. However, because of the rich interaction between students and agents, as well as the 
goals of Betty's Brain, which arguably fit our earlier definition of digital learning games, for 
the purposes of this chapter, we include it as a learning game.3 Betty's Brain trains students in 
modeling chains of cause-and-effect relationships, using a concept map that students develop. 
Students actively engage with an agent named Betty in three activities: teaching Betty to 
answer hypothetical questions about their concept maps, Betty reasons in real time visually 
in the concept map (which helps to remediate student knowledge), and Betty is quizzed by 
a mentor NPC at the end of a session. By interacting with and guiding Betty, the idea is for 
students to update their concept maps and, along the way, learn more about cause and effect. 
Betty's use of AI includes a breadth-first search of the concept map to deduce relationships 
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in the student's concept map (Leelawong & Biswas, 2008). Betty also displays AI-controlled 
affect - for example, happiness, disappointment - as she solves problems. Other uses of AI 
with Betty's Brain include the application of learning analytics to improve the game (Segedy 
et al., 2014; Kinnebrew et al., 2014) - hence, Betty's Brain's inclusion in the fourth and 
final category of AI in digital learning games, "Use of Learning-Analytics (LA) ... " Betty's 
Brain has been subject to a variety of studies including one by Segedy et al. (2015) in which 
98 sixth-grade students used Betty's Brain to learn about two topics: climate change and 
human thermoregulation. Results demonstrated learning gains by students in multiple-choice 
and short-answer item questions, but not on causal reasoning, causal link extraction, or quiz 
evaluation items. 

It can be concluded that AI Character Interaction research has had some clear successes 
(Johnson, 2010; Pareto, 2014; Sawyer et al., 2017) in making games more realistic, engag­
ing, and motivating, as well as leading to better learning outcomes. However, AI-supported 
characters in a game context have not always led to better learning outcomes. For instance, 
as earlier mentioned, in one Crystal Island study students playing the game did not learn 
more than from a slideshow of the same material (Adams et al., 2012). As another exam­
ple, ELIA motivated students more than a business-as-usual condition with the same con­
tent but led to worse learning outcomes (Kaczmarek & Petrovica, 2018). The challenge 
in creating interactive, engaging, and helpful NPCs that lead to learning is clearly very 
high - perhaps higher than any other challenge in AIED digital learning games - thus 
leading to mixed results so far. We'll return to this issue, and how it might be addressed, 
in the "Future Directions" section of this chapter. Another interesting and unique aspect 
of research in this area is how it can support the investigation of affect during instruction, 
both the affect of NPCs and that of students interacting with the game. For instance, some 
of the work with Crystal Island has been aimed, at least in part, at assessing student affect 
while game playing (Sabourin et al., 2011). Arroyo et al. (2013, 2014) have shown that an 
NPC can promote positive affect in students. In short, AI Character Interaction research is 
likely to continue to be a very interesting and fruitful direction for AIED digital learning 
game research. 

Use of Leaming Analytics (LA) and/or Educational Data Mining (EDM) for Game 
Analysis and Improvement 

Learning analytics and educational data mining have led to important insights into learner 
behavior and affect while playing games (Alonso-Fernandez et al., 2019; Baker et al., 2007; 
Nguyen et al., 2020, 2019; O'Rourke, Haimovitz et al., 2014; Wang et al., 2019). For instance, 
in the learning game Decimal Point, EDM has helped in identifying students' learning dif­
ficulties (Nguyen et al., 2020), as well as the relationship between in-game learning and post­
test/delayed post-test performance (Nguyen et al., 2019). An example finding is that while 
problems involving a number line tend to be the most difficult to master, performance on these 
problems is predictive of performance on the delayed post-test. Engagement and affect have 
also been a focus of AIED analyses in the use of digital learning games, given the hypothesis 
that these constructs are mediators to learning with games. As students interact with games, 
they typically display a variety of affective responses, including delight, engaged concentra­
tion, happiness, boredom, confusion, and frustration (Graesser et al., 2014; D'Mello, 2013), 
and learners' affective state has often been shown to be correlated with their learning pro­
cesses (e.g., D'Mello, 2013; Shute et al., 2015). 
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Learning analytics and educational data mining have also helped in designing, redesigning, 
and extending digital learning games. Often, this involves using machine learning as a means 
of analyzing and improving games (Shute et al., 2015; Harpstead & Aleven, 2015). Many 
of the techniques used for player modeling, analysis, and game improvement in AIED digi­
tal learning games are derived from research on intelligent tutoring systems (Mousavinasab 
et al., 2021). For example, learning curve analysis, which is based on the power law of prac­
tice (Card et al., 1983) and is often used in intelligent tutoring system research (Martin et al, 
2005), has been used to model the acquisition of fluent skills in the game Zombie Division. 
This analysis provided insights into student skills that suggests (re)design of the game and its 
content (Baker et al., 2007). Likewise, Harpstead and Aleven (2015) used learning curves to 
help in analyzing student strategies and guiding redesign of the Beanstalk game. 

In what follows, we describe in detail two games - Refraction and Zombie Division - for 
which post-gameplay learning analytics and/or data mining help us both better understand 
student behavior and learning in gameplay and suggest ideas on how to revise, improve, and/ 
or extend the games. We also discuss the specific way learning analytics and data mining was 
applied to data collected from those games. We then summarize and briefly discuss other 
games in the "Use of Learning Analytics (LA) ... "category.Finally, we discuss what learn­
ing analytics and data mining have revealed to us more generally about learning from digital 
games. Note that some digital learning games for which learning analytics and/or EDM have 
been applied- namely, Betty's Brain, Crystal Island, and Decimal Point- are not further dis­
cussed here; information about how learning analytics or data mining was used in analyzing 
these games is provided in earlier sections. 

The first game we describe in detail is Refraction (O'Rourke et al., 2015, 2016; O'Rourke, 
Ballweber, et al., 2014; O'Rourke, Haimovitz, et al., 2014), a single-player puzzle game 
designed to teach fraction concepts to elementary school students. To play, a child interacts 
with a grid that contains laser sources, target spaceships, and asteroids (see Figure 20.8). 
The goal of the game is to split a laser shooter into correct fractional amounts to shoot target 
spaceships. The student must, at the same time, avoid moving asteroids. To win, a player must 
accurately shoot all the target spaceships at the same time (i.e., correctly satisfy the fractions). 
Since its release in 2012, Refraction has been played hundreds of thousands of times on the 
educational website Brainpop.com. O'Rourke and colleagues modified the game to experi­
ment with the concept of a growth mindset, the theory that intelligence is malleable and can 
be improved with effort (Dweck, 2006; Heyman & Dweck, 1998). A "fixed mindset," on the 
other hand, is a theory stating that intelligence is set and unchangeable. 

O'Rourke and colleagues extended Refraction to reward players with "brain points" when 
they exhibited growth mindset behavior, such as effort, use of strategy, and incremental pro­
gress (O'Rourke, Haimovitz, et al., 2014). Heuristics were used in real-time play to detect and 
reward positive, behavioral patterns. The heuristics were developed by first observing various 
patterns in student play. O'Rourke and colleagues then developed heuristic rules to identify 
those patterns during actual gameplay. For example, one rule identifies when a player solves a 
math sub-problem (incremental progress). Developing hand-authored rules - versus machine­
learned or statistical rules - was key, because the rules needed to be semantically meaningful, 
providing feedback to students. The work of O'Rourke, Bellweber et al. (2014) also developed 
different "hints" versions of Refraction, in the intelligent tutoring tradition (VanLehn, 2006, 
2011). (Surprisingly, in an experiment involving over 50,000 students, they found that students 
who used a no-hint version of the game learned more than students in four hint conditions -
hint content (concrete versus abstract) and hint presentation (by level versus reward).) 
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Source: Figure from O'Rourke et al. (2014), reproduced by permission from the first author 

Figure 20.8 A level of Refraction. The goal of the game is to use the elements on the 
right to split lasers into fractional pieces and redirect them to satisfy the 
target spaceships. All spaceships must be satisfied at the same time to win 

The critical way that Refraction uses AI, however, is in its post-game quantitative analyses 
of student behavior. Use of Refraction was evaluated through an iterative series of studies. 
First, the "brain points" version of Refraction was compared to a control version that awarded 
"level points" for each completed level (performance). Using educational data mining tech­
niques, this study showed that players in the "brain points" version persisted longer and exhib­
ited more productive learning behaviors than those in the control (O'Rourke, Haimovitz, et al. 
2014). A second study, again comparing the "brain points" and "level points" versions of 
Refraction, showed, again applying data mining, that students who were younger, male, and 
of higher income were more engaged in the game (O'Rourke et al., 2015). In a third study, 
five different versions of "brain points" Refraction were compared, each of which removed 
features to isolate the impact of a particular aspect of the intervention (e.g., the brain points, 
growth mindset animation, a summary screen). The results of this study showed that brain 
points are not effective when awarded randomly, demonstrating that brain points are success­
ful precisely because they are given to students in response to productive learning behaviors 
(O'Rourke et al., 2016). In short, this series of studies shows how quantitative and data mining 
analyses can be used to better understand how game features impact an educational game's 
effectiveness - and, in turn, point to how to improve the game. 

Zombie Division (Habgood & Ainsworth, 2011) is a single-player 3D adventure game 
developed to help children from seven to eleven years old learn division and number patterns. 



Digital learning games in artificial intelligence in education 467 

Source: Figure provided by M. P. Jacob Habgood, reproduced by permission 

Figure 20.9 This is a screenshot of the intrinsic version of the 'Zombie Division game. 
The player's avatar is in the foreground and chooses weapons from the top 
of the screen to attack Zombies as they appear. The goal is to choose weap­
ons that are equal divisors of the Zombies, which have numbers on their 
chests. The "magical book of times tables" is shown in the upper right. The 
hearts indicate the health of the player; the skull on the bottom right shows 
how many Zombies are yet to appear in this level 

The player in the game uses different weapons to kill attacking zombies by mathematically 
dividing into whole parts the numbers displayed on the zombies (see Figure 20.9). The game 
has different levels, as in many games, with approximately 20 attacking zombies per level. 
The game also includes game mechanics in which players explore a dungeon and collect keys; 
however, these are not integrated with the mathematical content of the game. Players can get 
two types of in-game help: a magical book of times tables (the multiplication grid) and an 
NPC that provides helpful feedback. 

Habgood and Ainsworth (2011) report two studies that explore whether intrinsic or 
extrinsic integration of academic content into a digital learning game leads to better learn­
ing and which version of the game students prefer. In the intrinsic version of the game 
(Figure 20.9), the player attacks zombies through the game mechanic of whole number divi­
sion, as described above. In an extrinsic version of the game, the game is played without 
the numbered weapons and zombies. Instead, the same division problems are presented to 
students to solve between levels (i.e., completely outside of the game). A control condition 
was also included in which students played Zombie Division without the numbered weapons 
and numbered zombies or division problems presented between levels. In study 1, a total of 
58 kids, seven to 11 years old, participated, 20 in the extrinsic, 20 in the intrinsic, and 18 in 
the control condition. The intrinsic condition led to significantly better learning outcomes on 
both a post-test and delayed post-test than both the extrinsic and control conditions. In study 
2, 16 children had the free choice to play either the intrinsic or extrinsic version of Zombie 
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Division and for as long as they desired. This study demonstrated an overwhelming prefer­
ence for the intrinsic version of the game; the kids in the intrinsic version spent on average 
more than seven times longer playing than the extrinsic version. Essentially, the Habgood 
and Ainsworth results demonstrate that integrating math content directly into a game leads 
to both better enjoyment and learning outcomes than playing the same game, yet doing math 
separately. 

While the Zombie Division game itself has no AI functionality, a learning curve analysis 
by Baker et al. (2007) was used to model skill fluency in the game and to suggest useful 
modifications. In particular, this analysis found, among other things, that students quickly and 
successfully gained fluency in divisibility by 2, 4, and 5, but not by 3, implying that future 
versions of the game should include extra support for the division-by-3 skill. In short, this is 
a stereotypical example of using EDM as a means for both assessing student behavior and 
subsequently suggesting changes to the game. 

In general, a wide variety of AI, data mining, and statistical techniques have been used to 
investigate and model students' engagement and affective states. For example, Shute et al. 
(2015) used structural equation modeling to discover that in-game performance playing the 
Physics Playground (discussed earlier) can be predicted by pre-test data, frustration, and 
engaged concentration. In the game Prime Climb (also discussed earlier), Conati and Zhou 
(2002) experimented with using a Dynamic Decision Network to model students' emotional 
reactions during their interaction with the game, based on a cognitive theory of emotion. 
Data from the BROMP protocol - in which observational data are used to build machine­
learned models of affect (Ocumpaugh et al., 2015) - has been used to develop affect detec­
tors for several digital learning games or game-like instructional systems, including TC3Sim 
(Henderson et al., 2020a, 2020b), Physics Playground (Shute et al., 2015), and Reasoning 
Mind (Ocumpaugh et al., 2013). Eye-tracking and other sensor technologies have been used 
to capture students' physiological data (e.g., in Prime Climb: Conati et al., 2013), which are 
increasingly used to create deep-learning models that can infer students' affective states 
(Henderson et al., 2020a, 2020b; Loderer et al., 2019; Wiggins et al., 2018a, 2018b). 

Other learning games for which learning analytics and data mining have been used for 
analyzing game behavior and/or game improvement include Battleship Numberline, Heroes of 
Math Island, ST Math, Zoombinis, Beanstalk, and Downtown: A Subway Adventure. Battleship 
Numberline (Lomas et al., 2011, 2012, 2013), a single-player game that gives players practice 
in estimating where whole numbers, fractions, and decimals fall on a number line, has been, 
for instance, used to examine student engagement. A large-scale study with the game, involv­
ing approximately 70,000 players, found that players were more engaged and played longer 
when the game was easier, contradicting the common assumption that maximum engagement 
occurs at a moderate difficulty level (Lomas et al., 2013). Conati and Gutica (2016) developed 
a variety of machine learned detectors of affect for players of the game Heroes of Math Island, 
a narrative math game for middle-school students targeted at learning about divisibility, prime 
numbers, and number decomposition. Their ultimate aim was to detect student affect while 
playing the game, using a camera, and then to adjust the affect of a supporting NPC (a mon­
key) to help students while learning. Based on a small study of 15 students, Conati and Gutica 
were able to identify the frequencies of a wide range of emotions, but also noted the steep 
challenges of labeling game data to identify emotions. In the area of using EDM and statisti­
cal analysis for helping to improve a game and its content, Peddycord-Liu et al. (2017, 2019) 
experimented with ST Math, a single-player learning game that uses spatial puzzles to teach 
mathematical concepts. They uncovered predictive relationships between different objectives 
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and math concepts. For instance, they used linear regression to identify the most predictive 
prior objectives. In a study of 1,565 third-grade students, Peddycord-Liu et al were able to 
use their techniques to identify the skills that students needed more practice on, a redesign 
of lessons within the game, and clusters of difficult problems that should be separated to bal­
ance students' pacing through the game. Rowe et al. (2020, 2021) conducted EDM analyses of 
Zoombinis (Hancock & Osterweil, 1996), a single-player game designed to help students learn 
computational thinking (CT), to better understand student behaviors in playing the game. 
For instance, Rowe et al. (2021) investigated the frequency of systematic testing and trial and 
error, common CT constructs, by hand labeling the data of 194 students, building machine­
learned detectors, and then validating the detectors with 54 additional students. Harpstead 
and Aleven (2015) applied learning analytics to learn more about and to modify Beanstalk, a 
single-person learning game for five- to eight-year-olds based on the folktale of Jack and the 
Beanstalk and designed to teach the physical properties of a balance beam. They used learning 
curves to analyze the in-game behavior of 177 students playing Beanstalk. Their analysis sug­
gested a game redesign related to a previously unidentified shallow game strategy that "wins" 
but does not reflect an understanding of the underlying balance beam principle. Finally, Cano 
et al. (2016, 2018) used learning analytics to investigate Downtown: A Subway Adventure, a 
spy game where a single player must discover the location and time of their enemy's gathering 
by navigating the Madrid subway and collecting clues along the way. The goal of the game is 
to train students with intellectual disabilities to use the public subway system. In a study of 
51 adults with varying intellectual disabilities, they found, for instance, that students' prior 
experience with transportation training did not have an impact on their game performance, 
but those who played video games regularly performed better than their counterparts. In sum­
mary, a wide variety of techniques have been used to analyze student gameplay and affect in 
the use of AIED digital learning games, including machine-learned detectors, learning curve 
analysis, BKT analysis, deep learning, eye-tracking, video, and linear regression. All of these 
tools in the AIED "toolbox" have uncovered important findings about how students interact 
with learning games, as well as how we could make the games better, both in game mechanics 
and content. Note also that this category of AIED digital learning games is the most active, 
with the largest number of games having been analyzed (15). 

SUMMARY OF WHAT HAVE WE LEARNED FROM RESEARCH WITH 
AIED DIGITAL LEARNING GAMES 

This chapter has presented a variety of AIED digital learning games that employ AI in vari­
ous ways and that have been applied to many different topic areas, from math to science, 
computer science, cultural understanding, language learning, and social communication. 
Many of the games that have been presented in this chapter use AI to adapt gameplay, con­
tent, and help in a manner similar to what is often seen in intelligent tutoring systems (e.g., 
iStart-2, MathSpring, Policy World, Prime Climb). Other learning games use AI to pro­
vide useful real-time information, in the form of learning analytics, to help students make 
their own instructional decisions (e.g., Decimal Point, Physics Playground, TALENn and 
to explore self-regulated learning. Still others include AI-supported non-player characters 
(NPCs) to guide and motivate students in their learning and social well-being (e.g., Crystal 
Island, MathSpring, TLCTS, Turtle Talk). Finally, perhaps the most important and prolific 
area of AI applied to digital learning games has been that of using learning analytics, data 
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mining, and statistics to analyze student behavior and affect to help in better understanding 
student use of games and in redesigning the games (e.g., Battleship Numberline, Beanstalk, 
Crystal Island, Physics Playground, Prime Climb, Refraction, Zombie Division, Zoombinis). 

AIED digital learning games have also demonstrated a considerable amount of success in 
a variety of studies, uncovering various aspects of learning from games that were not previ­
ously known. For instance, Decimal Point has been shown to be more effective and engaging 
in helping kids reinforce their understanding of decimals than a comparable decimal tutoring 
system (McLaren et al., 2017). Decimal Point has also been shown to be more effective in 
helping females learn (Hou et al., 2020; McLaren, Farzan, et al., 2017; McLaren et al., 2022b; 
Nguyen et al., 2022). AutoThinking (Hooshyar et al., 2021) and Zoombinis (Rowe et al., 2021), 
through well-designed and reasonably sized studies, have shown that computational thinking 
can be learned through gameplay. Crystal Island, a narrative game that is perhaps the longest 
standing and most studied of any AIED learning game, has shown in a variety of studies that 
students can learn microbiology from an NPC and a narrative-driven game (Lee et al., 2012; 
Sawyer et al., 2017). A variety of studies have shown that students can "learn by teaching" 
an NPC, through interaction with Betty's Brain (Biswas et al., 2016) and Squares Family 
(Pareto, 2014; Sjoden et al., 2017). A classroom study of Zombie Division demonstrated an 
important and previously unknown aspect of digital learning games: that tightly integrat­
ing academic content and gameplay is more effective for learning than separating the two 
(Habgood & Ainsworth, 2011). 

A critical realization of the AIED digital learning game community has been the need for 
AIED researchers, who are predominantly learning scientists and educational technologists, 
to collaborate with game designers to be successful. The development of games with AI is 
inherently a multi-disciplinary undertaking; it requires not only the usual experts in learning 
science, educational technology, and human-computer interaction, but also those versed in 
the intricacies of game mechanics and game design. An indication of this movement was the 
convening of a CHI 2018 workshop, "CHI 2018 Workshop: Data-Driven Educational Game 
Design" (McLaren et al., 2018), in which game designers, learning scientists and educational 
data miners met to discuss the various disciplines and issues that need to be addressed in 
order to create AIED digital learning games. More such workshops and events, with partici­
pation across a variety of disciplines, will benefit the further development of AIED learning 
games. 

FUTURE DIRECTIONS 

While there has been much work done in the area of AIED digital learning games, with much 
success as outlined in the prior section, there are also several areas of potential work with 
digital learning games that have been under-explored. 

For instance, AI could play a more prominent role in providing more realistic and compel­
ling non-player characters and/or pedagogical agents within digital learning games. While 
games such as Crystal Island (Lester et al., 2013; Sawyer et al., 2017), MathSpring (Arroyo 
et al., 2014, 2013), and TLCTS (Johnson, 2010) have shown that even relatively primitive 
AI-infused non-player characters can make a significant difference to learning, there have 
been more recent developments in man-machine communication that could lead to an even 
greater impact. For instance, the emergence of relatively sophisticated virtual assistants, such 
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as Alexa (Lopatovska et al., 2019), has demonstrated the possibilities of more natural and 
effective communication between humans and technology. AI, and in particular natural lan­
guage processing (NLP), could have a much bigger and direct impact on students' learning 
experience when incorporated into pedagogical agents that accompany the student, either as 
learning companions or competitors (see, for instance, Chapter 11 by Rus et al. in this hand­
book). There is ample opportunity to apply state-of-the-art methods in NLP (Crossley et al., 
2017; Howard & Ruder, 2018; Ruseti et al., 2018; Young et al., 2018) to this area. Of course, 
a challenge with many of the natural language machine-learning techniques is their need for 
a large amount of in-domain training data, often thousands or more examples. This require­
ment is difficult for many AIED digital learning games, which have typically been tested 
in traditional randomized controlled experiments in labs or classrooms with, at most, a few 
hundred students (with a couple of notable exceptions: Battleship Numberline (Lomas et al., 
2013) and Refraction (O'Rourke, Bellweber, et al., 2014), both of which managed to reach 
more than 50,000 players through internet presence). Yet, with the pandemic of 2020-2022 
and the sudden and significant move to online learning, more AIED games may be positioned 
to reach much larger, out-of-school audiences. Working with organizations like Brainpop.com 
is perhaps a wise move for more AIED game researchers. 

Equity and inclusiveness have rarely been considered in digital learning games (Buffum 
et al., 2016). Most prior work with AIED learning games - and in fact in AI instructional 
systems more generally - has treated student populations as though all individual learners are 
the same, or very similar. However, it is likely that different sub-populations learn and play in 
different ways. For instance, Ogan et al. (2015) found that the help-seeking behavior of stu­
dents using intelligent tutors can vary considerably across different cultures; they specifically 
found differences between Costa Rican students and students from the United States and the 
Philippines. In digital learning game research more specifically, McLaren and colleagues have 
consistently found that female students learn better than males with Decimal Point (Hou et al., 
2020; McLaren, Farzan, et al., 2017; McLaren et al., 2022b; Nguyen et al., 2022). Likewise, 
Arroyo and colleagues found that MathSpring improved mathematics learning, engagement, 
and other affective outcomes for both female and low-achieving students (Arroyo et al., 2013, 
2014). As another example, the collaborative game Engage was explicitly designed to support 
females and students with less prior game experience in learning computing science (Buffum 
et al., 2016). A couple of the games reviewed in this chapter have reached under-served pop­
ulations, such as people with disabilities (ECHOES: Bernardini et al., 2014; Downtown: A 
Subway Adventure: Cano et al., 2016, 2018). Identifying and reacting to these learner differ­
ences is an important step towards more equity, better personalization, and, presumably, the 
increased effectiveness of games. AI could certainly play a role in better adapting games for 
these different and diverse populations. On the other hand, just as with AI research more gen­
erally, designers of AIED digital learning games must be extremely careful to avoid AI bias 
(Manyika et al., 2019; Prates et al., 2019). On this issue, the AIED community should engage 
with the larger AI community, following breakthroughs that might occur in machine-learning 
algorithms and approaches, to help in eradicating AI bias in AIED digital learning games (and 
other AIED systems). 

Another way that digital learning games could better employ AI is in the use of more sophis­
ticated student models and adaptation approaches, for instance, to track enjoyment in addition 
to domain understanding and skills. While various adaptive algorithms have been used to mod­
ify gameplay to support increasing difficulty and help students reach mastery (Arroyo et al., 
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2013, 2014; Conati et al., 2013; Hooshyar et al., 2021), these algorithms have only been used in 
a relatively small number of learning games and have almost exclusively focused on learning 
objectives and domain skills. However, such models could also be used to modify gameplay 
to maximize fun and/or engagement for students, as has been implemented using dynamic 
difficulty adjustment in digital game research (i.e., video game research that is not focused on 
instruction: Ang & Mitchell, 2019; Baldwin et al., 2016; Frommel et al., 2018; Zohaib, 2018). 
There have been some steps in this direction, most notably, the research with Decimal Point in 
which students self-reported their enjoyment in playing specific mini-games within Decimal 
Point, a student model of that enjoyment was displayed to them on a dashboard and was used 
by students to select further mini-games to play (Hou et al., 2020; 2021). While this research 
is a step in the direction of an "enjoyment" or "engagement" student model, there are still a lot 
of interesting and related research questions that may involve the support of AI. For instance, 
how do students react to different representations of their enjoyment? Is enjoyment more about 
encouraging what has already been enjoyed or seeking new and unknown opportunities? 

An exciting new direction that a few AIED researchers have started to pursue, but is still at 
an embryonic stage, is supporting tangible game-based learning. These types of games involve 
a synergy of real-world physical play with computer-based instruction. For instance, Arroyo 
et al. (2017) have developed a game environment for learning mathematics that involves the 
use of "wearable tutors" in the form of smartphones and smartwatches. The wearable devices 
act as mobile tutors, while students are given real-world tasks - e.g., a scavenger hunt where 
students search for physical objects - and provide input to the devices on what they have done, 
while the tutors provide hints to help them in the physical environment. Students manipu­
late, measure, estimate, and find mathematical objects that satisfy certain constraints to help 
in playing the games. Another example is Yannier et al. (2016, 2020, 2021) who added the 
manipulation of physical objects, such as blocks and towers, to an AI-based mixed-reality 
game to help 4- to 8-year-old children learn basic physics (see Figure 20.10). 

A specialized AI computer vision algorithm is used to track what children do in the physi­
cal environment and then to provide personalized feedback in the form of an on-screen char­
acter (Yannier et al., 2020, 2022). They were able to show that adding physical objects to the 
game - in essence, bridging the physical and virtual worlds in a mixed-reality setting - can 
lead to more learning compared with an equivalent solely screen-based game. There are a 
number of exciting questions that AIED could tackle in this space, such as: How can actions 
taken in the physical world be input to adaptive AI algorithms that provide pedagogical advice 
on what to do in the physical world? Can the physical objects themselves - for instance, an 
item being searched for in a scavenger hunt - be imbued with AI to add to the "smarts" and 
engagement of the games? 

It should be noted that most of the games reviewed in this chapter are single-player games, 
with just a few exceptions (TALENT: Maragos, 2013; Prime Climb: Conati et al., 2013; Squares 
Family: Pareto, 2009; 2014; Physics Playground: Sun et al., 2020, 2022). Thus, there may 
be learning opportunities that are being missed by not developing more collaborative AIED 
learning games. Working collaboratively could help students help one another by bringing 
their strengths, weaknesses, knowledge, and misconceptions to the game, thus complement­
ing one another so that together group members can solve the problem at hand and learn 
(Housh et al., 2021; see also Chapter 19 by Martinez-Maldonado et al. in this handbook). As 
previously mentioned, Buffum et al. (2016) explicitly designed for and found that their collab­
orative game, Engage, better supported female and less-experienced students in collaborative 
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Source: Figure provided by Nesra Yannier and Trinity Area School District, reproduced by permission 

Figure 20.10 Students playing with the Intelligent Science Station (norilla.org) 

play versus single-player use of the game. Feedback from students in their study revealed 
potential benefits to collaboration, such as how a partner in gameplay can be a "sounding 
board" for what to try next or when one player is stuck in gameplay they can rely on their part­
ner to take over. Perhaps AI could be supportive in such circumstances by having an AI agent 
that explicitly prompts the collaborating students to help one another in these, and other ways. 
As with Squares Family (Pareto, 2009) and AI programs in general, such as AI chess-playing 
programs (Warwick, 2017), having students alternately play with or against an AI or a human 
might provide instructional opportunities not otherwise possible. For instance, the concept 
of learning by teaching (Biswas et al., 2005; Brophy et al., 1999; Palthepu et al., 1991) could 
be exercised in such collaborative gameplay circumstances, prompting students to teach both 
human and AI confederates in a game context. 

Finally, the ultimate goal of research on AIED digital learning games should be to trans­
fer more of the evidence-based learning games to the real world. In this way, we not only 
study AI in learning games at schools and with students, but also provide those schools and 
students with substantial, ongoing use of games that have been proven in rigorous empirical 
tests. Leading the way - and potentially providing a blueprint for others to follow - are games 
such as Zoombinis and TLCTS. TERC has sold almost 40,000 copies of the non-web version 
of Zoombinis and last year sold approximately 13,000 new licenses to the internet version 
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of the game.4 Lewis Johnson has spun off a company, Alelo, that sells an updated version of 
TLTS to the US military. 5 Hundreds of thousands of trainees have used Alelo's cultural games 
and tools to get cultural training. The military has required this training for people deployed 
in over 80 countries. While there are these glimmers of success in the real world, there need 
to be more efforts made to transfer thoroughly tested learning games to real and widespread 
use in education and training contexts. To learn more about real-world transfer and commer­
cialization of AI-based learning technology, see Chapter 23 by Ritter and Koedinger in this 
handbook. 

In conclusion, while there has already been a lot of impressive research done with AIED 
digital learning games, the future is bright with exciting new directions before us. By creat­
ing multi-disciplinary teams of learning scientists, educational technologists, game designers, 
and AI experts, we foresee a future in which AIED digital learning games will become an 
ever-increasing and important component of education. 
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review. 

2. www.affectiva.com/ 
3. We contacted Gautam Biswas, the leader of the group that developed Betty's Brain, and he also 

noted anecdotally that during talks he has given, audiences have suggested that Betty's Brain could 
be viewed as a game. 

4. From personal correspondence with Elizabeth Rowe of TERC. 
5. From personal correspondence with Lewis Johnson of Alelo. 
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