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Abstract. An emerging trend in classrooms is the use of networked visual argumentation tools that allow 

students to discuss, debate, and argue with one another in a synchronous fashion about topics presented by a 

teacher. These tools are aimed at teaching students how to discuss and argue, important skills not often taught in 

traditional classrooms. But how do teachers support students during these e-discussions, which happen at a rapid 

pace, with possibly many groups of students working simultaneously? Our approach is to pinpoint and 

summarize important aspects of the discussions (e.g., Are students staying on topic? Are students making 

reasoned claims and arguments that respond to the claims and arguments of their peers?) and alert the teachers 
who are moderating the discussions. The key research question raised in this work: Is it possible to automate the 

identification of salient contributions and patterns in student e-discussions? We present the systematic approach 

we have taken, based on artificial intelligence (AI) techniques and empirical evaluation, to grapple with this 

question. Our approach started with the generation of machine-learned classifiers of individual e-discussion 

contributions, moved to the creation of machine-learned classifiers of pairs of contributions, and, finally, led to 

the development of a novel AI-based graph-matching algorithm that classifies arbitrarily sized clusters of 

contributions. At each of these levels, we have run systematic empirical evaluations of the resultant classifiers 

using actual classroom data. Our evaluations have uncovered satisfactory or better results for many of the 

classifiers and have eliminated others. This work contributes to the fields of computer-supported collaborative 

learning and artificial intelligence in education by introducing sophisticated and empirically evaluated automated 

analysis techniques that combine structural, textual, and temporal data.  
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INTRODUCTION 

In recent years, many software tools and techniques have been developed to support and help students 
in learning to argue (Scheuer, Loll, Pinkwart, & McLaren, 2010). In fact, it is becoming increasingly 

common for students to use computer-based tools to discuss, debate, and argue with one another in a 

synchronous fashion about topics presented in a classroom (Lingnau, Harrer, Kuhn, & Hoppe, 2007; 

Schwarz & De Groot, 2007). The purpose of such tools is to help students learn to discuss and argue in 
a rational, well-reasoned, and considerate fashion (Andriessen & Schwarz, 2009). Such collaborative 
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software tools are designed to allow students to work on separate computers but communicate in 

synchronous fashion, contributing to an evolving discussion through a shared “workspace” (cf. 
Pinkwart, 2003). 

In Israel, the Netherlands, and the U.K., for instance, we are working with and have collected data 

from more than 15 classrooms that are using the tools Digalo (Schwarz & Glassner, 2007) and 
FreeStyler (Hoppe & Gaßner, 2002; http://www.collide.info/index.php/FreeStyler/) to engage students 

in e-discussions.  

These tools have a common model: a shared graphical environment with drag-and-drop widgets 

that allows students on different computers to express their ideas, claims, questions, and arguments in 
a visual fashion. Students make contributions by dragging and dropping shapes with different 

semantics (e.g., a “claim” or an “argument”), filling them with text containing their contributions to 

the discussion (e.g., “I don’t agree with John’s claim, because …”), and linking the shapes to the 
contribution of other students with labeled links, such as “opposes” or “supports.” An example of such 

an e-discussion, one that was created using the Digalo collaboration software, is shown in Figure 1.  

 

Fig. 1. An e-discussion in Digalo, a tool for supporting online collaboration. 

However, simply providing students with collaborative computer-based tools will not necessarily 

lead to fruitful discussion and collaboration. Evidence from the computer-supported collaborative 
learning (CSCL) literature (Dillenbourg, Baker, Blaye, & O’Malley, 1995), as well as from 
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educational psychology (Cohen, 1994; Salomon & Globerson, 1989), suggests that fruitful 

collaboration does not occur spontaneously. One approach to address this that has been explored by 
CSCL researchers is the notion of “collaboration scripts,” instructions for groups of learners on what 

activities to execute, when they need to be executed, and by whom they need to be executed in order 

to foster knowledge acquisition and learning (O’Donnell, 1999; Kollar, Fischer, & Hesse, 2003; 
Weinberger, Ertl, Fischer, & Mandl, 2005; Diziol, Rummel, Spada, & McLaren, 2007). Another 

approach is to provide a software agent that can coach and/or tutor the collaborating students 

(Constantino-Gonzalez & Suthers, 2002; Walker, McLaren, Rummel, & Koedinger, 2007). A third 

approach is to include an artificial student in the collaboration whose responsibility it is to provide 
student-like contributions and, at the same time, peer coaching (Vizcaíno, 2005). 

Yet another approach, the one we have taken on the ARGUNAUT project, is to provide feedback 

to a teacher so that he or she can help students stay on topic, elicit contributions from all members of 
the groups, suggest the use of supported claims and arguments, and generally guide the students 

toward fruitful discussion and collaboration. Such an approach has more generally been referred to as 

e-moderation (Coghlan, 2001), with a variety of principles proposed on how best to achieve its aims 

(Salmon, 2004). The burden of moderating multiple, synchronous e-discussions – that is, 
simultaneously supporting multiple groups of students collaborating in real time – is especially 

onerous and has been the focus of our project (Hever et al., 2007; De Groot et al., 2007). Preliminary 

research indicated that teachers, overwhelmed with e-moderating multiple synchronous discussions 
(Gil, Schwarz, & Asterhan, 2007), need technology to ameliorate this situation. In particular, our aim 

has been to use technology to summarize what is occurring in student e-discussions and alert teachers 

to critical aspects and events of those discussions.  
To support teachers in the difficult task of e-moderation, the ARGUNAUT system provides 

online, automated feedback regarding important aspects and characteristics of each discussion, 

explicitly focusing attention on events or situations that may require the teacher’s intervention or 

support. The key idea is to analyze student contributions and e-discussions using machine learning 
(Witten & Frank, 2005; Han & Kamber, 2006), shallow text processing (Rosé et al., 2008), and case-

based graph matching (McLaren, 2003). The automated analysis is used to alert teachers to important 

patterns in the e-discussions as they grapple with simultaneous, synchronous e-discussions. The 
underlying approach of ARGUNAUT leverages the structure of the argument graphs, the textual 

contributions of the students, and the temporal sequence of those contributions.  

The primary research question we raise and explore in this paper involves whether automated 
analysis techniques can be created to identify critical aspects of e-discussions. 

Research Question 1: Is it possible to automate the identification of salient contributions 

and patterns in student e-discussions? 

This question is still open within the educational technology research community; to our 
knowledge there have been no successful approaches to analyzing graphical e-discussions in an 

automated fashion. Furthermore, the use of such automated analysis to support teacher e-moderation is 

also novel. This paper thoroughly explores the first research question, presenting our research 
methodology and results in attempting to answer this question. 

A second research question, one that is the ultimate goal of this work but that necessarily depends 

on an affirmative answer to Research Question 1, revolves around whether automated detectors can 

effectively support teachers in e-moderating classroom discussions, that is, 
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Research Question 2: Do automatically identified contributions and patterns in student e-

discussions help teachers in e-moderating simultaneous, synchronous e-discussions? 

Our work in addressing the second question is in its beginning stages, due to the necessity of (a) 

first needing to answer Research Question 1 and (b) requiring a fully-functioning and empirically-

validated analysis system to conduct studies. Nevertheless, as reported later, in the “Discussion” 
section, there have been two published studies (Wichmann, Giemza, Krauß, & Hoppe, 2009; Schwarz 

& Asterhan, in press) that have at least preliminarily shown the benefits of ARGUNAUT’s e-

moderation approach (i.e., use of its most basic tools, not including the automated analysis), as well as 

a small study, discussed in this paper, that explores a teacher’s use of ARGUNAUT’s automated 
analysis tools. Thus, the paper provides at least a glimpse of an answer to the second research 

question, with initial evidence indicating that teachers can gainfully use ARGUNAUT, including its 

automated analysis tools, to e-moderate synchronous classroom discussions. 
The paper is organized as follows. First, we provide an overview of the ARGUNAUT system and 

its pedagogical approach. Second, we present and discuss the empirical results we have obtained in 

attempting to address the first research question above. Third, we discuss how our approach has 

succeeded, as well as come up short, in answering the first research question and also present some 
preliminary results in answering the second research question. Fourth, we compare and contrast our 

approach and research to other attempts at doing automated analysis of e-discussions and discussion 

threads. Finally, we conclude with a summary of our research and discuss future directions.  

OVERVIEW OF THE ARGUNAUT SYSTEM 

As discussed above, students using the ARGUNAUT system discuss and debate questions within a 

shared workspace on different networked computers in a synchronous fashion. Such a general 
approach to learning argumentation was pioneered in the Belvedere system (Suthers et al., 2001), a 

multi-user, graph-based diagramming tool for scientific argumentation, and has since been further 

developed and evaluated by a variety of other researchers (for a review of Belvedere, and other 
approaches to the support of argumentation with software tools, see Scheuer et al., 2010).  

While students using ARGUNAUT are typically situated in a single classroom, the members of 

each group are distributed spatially, so that the primary communication medium between collaborators 
is the computer (and they are instructed to communicate that way by the teacher). Each discussion 

starts with a shape containing the question to be discussed, created by the teacher. The questions 

raised by the teacher vary, but they usually involve controversial topics such as experiments on 

animals (“What is your opinion about experiments on animals?”) or abortion (“Should Riki and Yosi 
abort the fetus?”). Topics such as these allow students to take different positions and promote a lively 

discussion. The students are primed for their debate by, for example, reading some relevant texts or 

listening to a lecture on a relevant topic and are asked to provide, for instance, at least 3 reasons to 
support the positions they take. As explained above, students contribute by adding shapes, entering 

text into the shapes and connecting them by links. Shapes and links are not just simple text boxes and 

connectors; they have types and comprise a visual language. The on-going e-discussion can take 
multiple paths, and the entire discussion is captured in the shared workspace for students to review and 

reflect upon. 
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Fig. 2. ARGUNAUT’s Moderator’s Interface and some of its shallow alerts. 

A teacher can monitor multiple ongoing discussions in parallel using a tool called the 

“Moderator’s Interface,” shown in Figure 2. The teacher can toggle between the different e-

discussions by selecting the different groups shown in the list on the left of Figure 2 (i.e., Bio group a, 
Bio group b, etc.). Within each discussion, important aspects are visualized as awareness displays. 

These displays are presumed to be helpful to a teacher as he or she tries to find pedagogically 

meaningful aspects of the discussion (e.g., critical thinking, dialogism). In Figure 2, on the right, three 

awareness displays are shown. The graph in the upper right shows the frequency with which students 
in the currently selected discussion have responded to one another’s contributions, as well as which 

students are most in the center of the discussion through frequent responses to others’ contributions. 

The middle right graph shows a comparison of the number of contributions made by each student, a 
rough indication of student engagement, while the graph in the lower right shows a comparison of the 

types of contributions made by students, a rough indication of how students are engaging with one 

another (e.g., Are the students asking one another questions? Making arguments?). 

“Alerts”
1 are a special, more focused type of Awareness Display that are visualized as colored 

circles next to the object to which they refer (e.g., students, contributions). “Shallow alerts” are those 

that can be computed in a straightforward fashion (e.g., alerts that indicate inactive students or the use 

                                                        
1 Note that an earlier conference paper (McLaren et al., 2007) refers to “alerts” as “awareness indicators.” We 

use “alerts” in this paper, since this term more aptly describes the end-user purpose of the technology and is 
favored by pedagogical experts. The term “awareness indicators,” on the other hand, is a more technical term 

indicating the core analysis technology. 

Fig 2 ARGUNAUT’s Moderator’s Interface and some of its shallow alerts
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of profanity in contributions). “Deep alerts,” the primary focus of the current paper, are those that are 

generated using more sophisticated artificial intelligence-based techniques. There are three types of 
deep alerts in the ARGUNAUT system:  

• Shape-level alerts reflect characteristics of individual contributions (e.g. whether a particular 

contribution contains a “reasoned claim”);  
• Paired-shape alerts reflect characteristics of pairs of linked contributions (e.g., whether two 

shapes constitute a “contribution followed by counterargument”); and  

• Cluster alerts reflect characteristics of arbitrary sets of two or more (although typically not 

more than five) linked contributions (e.g., a sequence of shapes that constitute a “chain of 
opposition” in which two students argue back and forth).  

A total of eleven deep alerts have been created, evaluated, and incorporated into the current 

ARGUNAUT system. These alerts will be described in further detail in the following sections; 
however, an example of one such alert is shown in Figure 3. In this figure, a snippet taken from the 

Moderator’s Interface indicates the top five Chain of Opposition cluster alerts in a particular e-

discussion. The Chain of Opposition cluster is three or more shapes in length and involves, typically, 

two students arguing back and forth, each opposing the other’s argument. Since the deep alerts are 
based on AI heuristic techniques, their results are, by definition, approximate. Thus, the Chain of 

Opposition clusters found by ARGUNAUT are ordered from highest to lowest probability. This is 

indicated visually through the varying sizes of the small circles shown in the geometric center of each 
of the identified clusters;

2 the larger the circle the higher the probability. In Figure 3, the teacher has 

selected one of the Chain of Opposition clusters for closer inspection; additional information regarding 

that cluster is displayed in the “cloud” pop-up.  

 

Fig. 3. A zoomed-in view of ARGUNAUT’s Moderator’s Interface displaying a selected e-discussion and the deep 

alert Chain of Opposition within the discussion. 

                                                        
2 The circles indicating deep alerts are colored red, so they are highly visible to the teacher, but they are of 

course not as visible in a black-and-white figure. 
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The general architecture of ARGUNAUT and its most important processes are shown in Figure 4. 

The online part of the process is shown on the left side of the figure, while the offline classifier 
development process is shown in the right side of the figure. The online, end user environment is the 

Digalo or FreeStyler tool used by students as they collaborate with their fellow students in small 

groups. The Moderator’s Interface is depicted just to the right of the end user environment and 
encompasses the Shallow Loop, Alerts, an Annotation Tool, the Classifier Proxy and other 

functionality. The Protocol Processor, shown below the Moderator’s Interface, logs all actions taken 

by the students, such as creating a new shape, link, or textual contribution. The right side of Figure 4 

depicts the Deep Loop, the component of ARGUNAUT that provides the deep alerts to the 
Moderator’s Interface and, ultimately, to the teacher. 

While a teacher uses the Moderator’s Interface to monitor the simultaneous, synchronous3 e-

discussions (the logged representation of these e-discussions are called “discussion maps”), two 
dedicated components are employed to analyze the discussion maps online and provide the teacher 

with alerts. The Shallow Loop is an integrated component of the Moderator’s Interface, providing 

shallow alerts in a local fashion. The Deep Loop is a Web Service-based independent component that 

provides deep alerts. The Classifier Proxy provides deep alerts as a local proxy for the remote 
Classification Service (in the middle of Figure 4, between the online and offline processes), which 

offers a set of classifiers each of which is capable of computing one deep alert. Classifiers are 

developed by an AI engineer using the Classifier Development Environment (shown on the right side 
of Figure 4) in an offline process and are then deployed to the Classification Service for online, run-

time use. The AI-based Classifier Development Environment unfolds as two sub-components: The 

Machine Learning Training System is used to “train” classifiers targeted at shapes and paired-shapes 
using many annotated examples, in a supervised learning fashion (Witten & Frank, 2005; Han & 

Kamber, 2006). The Case-Based Graph Matching System is used to develop classifiers targeted at 

clusters using a small set of cluster examples. It is possible for teachers (and researchers) to add to the 

body of examples of both components through the Annotation Service shown on the border between 
the online and offline systems (since it can be used in both online and offline fashion), which sends 

new annotations to an Annotation Database. The Annotation Service is aimed at providing new 

examples for already existing classifiers to improve their performance. The Classification Service and 
Annotation Service constitute the interface between the online and offline process and are collectively 

called the “Classifier Web Service.” 

The offline process of developing new classifiers, shown on the right side of Figure 4, takes 
annotated discussions, translates them to a form suitable for either machine learning or the case-based 

graph matching algorithm (different translators are used for the different approaches), and, with the 

intervention of an AI Engineer, generates new classifiers that are subsequently accessed at run time to 

first classify actions of the students in real time and then alert teachers (i.e., the “deep alerts”).
4 

                                                        
3 There is nothing inherent in the tools to preclude their use in an asynchronous fashion. However, the 

pedagogical approach discussed in this paper is focused on synchronous, in-classroom discussion. See 

(McAlister, Ravenscroft, & Scanlon, 2004; Schwarz & Asterhan, in press) for a discussion of and relative 

advantages of synchronous versus asynchronous communication. 
4 There are numerous other functions of the Moderator’s Interface that are not discussed in this paper. For more 

details see Harrer, Ziebarth, Giemza, and Hoppe (2008) and Wichmann et al. (2009). 
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Fig. 4. ARGUNAUT’s architecture for automated analysis. Solid arrows denote online processes; the dashed 

arrows indicate offline processes. 

Pedagogical experts5 on the ARGUNAUT project have annotated (offline) components of many 

past discussions as to whether, for instance, students made reasoned claims, were on topic, or were 
engaged in raising and answering questions. This corresponds to the process shown at the bottom right 

of Figure 4. These annotations were used to train (or provide examples for) the current live set of 

ARGUNAUT classifiers to identify meaningful types of contributions (or groups of contributions) in 
new e-discussions. The annotations and subsequent classifications are based on structural, textual, and 

temporal elements of the student contributions. The specific way that these elements are used to 

generate the classifiers is explained in detail in the following section. 

                                                        
5 The term “pedagogical experts” is used throughout the paper to describe the members of the ARGUNAUT 

project team who come from education or educational psychology backgrounds and who did the corpus coding. 
These individuals include (but are not limited to) Rakheli Hever and Julia Gil of the Hebrew University of 

Jerusalem (Israel) and Maarten De Laat of Exeter University (U.K.). 
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CAN E-DISCUSSIONS BE AUTOMATICALLY ANALYZED? 

In this section we describe the work we have done to try to answer our primary research question: Is it 

possible to automate the identification of salient contributions and patterns in student e-discussions? 

First, we describe our methodology and then we turn to a discussion of how we conducted empirical 

studies at three levels of e-discussions: the shape level, the paired-shape level, and the cluster level. 
A key to our research approach was to methodically evaluate the different levels of the discussion 

maps, starting with single contributions, moving to pairs of linked contributions, and, finally, focusing 

on clusters (i.e., two or more connected contributions). We took this approach for several reasons. 
First, starting with (and solving) the simplest constructs within discussion maps, before moving on to 

more complex structures, seemed to increase our chances of creating at least some usable classifiers. 

That is, at the outset of our work we had a high degree of belief that we could create classifiers that 
would work at the single contribution level (due to the prior success of, for instance, Rosé et al., 

2008), but were less sure at the paired level, and even less so at the cluster level. Second, we believed 

that the classification results of the lower levels could possibly be used as attributes in the solutions at 

the more complex levels. That is, we believed the classification of single contributions might be usable 
as inputs to or attributes of the classification process of the paired contributions entailing those single 

contributions (and subsequently to clusters, as well). Finally, we realized that the simpler structures 

would be easier for our pedagogical experts to annotate, meaning we would much sooner have data to 
evaluate and experiment with by starting with the simpler structures.  

Another key to our approach was deciding on the techniques that would most likely lead to 

success at each of the levels of investigation. Across all levels, we knew that we needed language-

processing techniques, given that a central feature of each student’s contribution is the text that he or 
she types. Some of the issues inherent in language analysis, well known to the natural language 

community, include references that participants make to other’s contributions, use of prior knowledge 

brought to bear by participants, and implications that span across different contributions. Due to the 
success that Carolyn Rosé and her students had with a comparable corpus of argumentation data (Rosé 

et al., 2008; Dönmez, Rosé, Stegmann, Weinberger, & Fischer, 2005), but with a different purpose 

(i.e., they were, at least initially, more interested in helping human coders (semi)-automatically 
annotate data, rather than in doing online automated analysis and also were focused primarily on 

classifying single contributions), we chose TagHelper as a means to extract meaningful, yet shallow, 

attributes of text. Given text strings, TagHelper performs stemming (i.e., finding the roots of words), 

extracts textual attributes such as unigrams and bigrams (single words and pairs of words occurring in 
the text), part-of-speech bigrams (paired grammatical structures such as noun-verb, adjective-noun) 

and punctuation, and filters out words that are not likely to contribute to a classifier’s performance 

such as stop and rare words. The various attributes extracted by TagHelper were then used, in 
conjunction with structural and temporal attributes of the discussion maps, as descriptive attributes of 

the student contributions in our machine learning and case-based graph matching approaches.  

At the shape and paired-shape level, we pursued a classic machine learning approach (McLaren et 
al., 2007; Scheuer & McLaren, 2008), using an off-the-shelf data mining tool called RapidMiner 

(formerly called YALE, Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 2006), since (a) such an 

approach is often successful in finding patterns in data when annotated data with well-defined 

categories is available (our pedagogical experts had defined some categories, were in the process of 
defining others, and we knew they could annotate the data) and (b) the unit of analysis is consistent 

between the annotated data and the subsequently classified data. By (b) we mean that we knew we 
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could annotate both individual and paired contributions that could then be used to train classifiers for, 

respectively, individual and paired contributions (at run-time). Put another way, we knew that at run-
time we could precisely identify the structures (i.e., shapes and paired shapes) for which we had 

developed pre-trained classifiers and could apply the classifiers to the invariant structures. However, at 

the cluster level, in which an arbitrary and varying number of contributions (but typically five or less) 
might represent a particular category, we knew we could not (directly) apply a supervised learning 

approach. Thus, at that level, we investigated the idea of using example clusters, that is, sub-graphs of 

discussion maps, as a means for searching for similar clusters in new maps (Mik�átko & McLaren, 

2008; McLaren et al., 2009). We call this a case-based graph-matching approach. It is inspired both 
by case-based reasoning (Kolodner, 1993; McLaren, 2003) and the query-by-example approach used 

in database languages (Zloof, 1977). In the following sections, we describe, in more detail, how we 

developed and applied the various AI techniques to the different levels of the discussion maps to 
create the classifiers that support the deep alerts of ARGUNAUT, as shown in Figure 4.  

First, however, we will briefly describe the annotation process. As discussed previously, the data 

was collected during actual classroom sessions in Israel,6 the Netherlands, and the U.K., the final 

corpus comprising 84 in-class discussions.7 The coding process was influenced by theoretical notions 
of dialogism in the context of critical reasoning and argumentation (Schwarz & Glassner, 2007; 

Schwarz & De Groot, 2007; Wegerif, 2006). The ARGUNAUT pedagogical experts looked for 

dialogic and argumentation aspects, even at the individual contribution level. All but two of the coding 
categories were identified through a bottom-up analysis of a relatively small subset of the 84 

discussion maps, with single and groups of recurring contributions identified as potentially 

representing interesting, important, or problematic phenomena. Two of the cluster categories, 
Deepening and Widening, were selected in top-down fashion; they are interactional categories that 

indicate creative reasoning and the emergence of new ideas (De Laat, Chamrada, & Wegerif, 2008; 

Wegerif, 2007; McLaren et al., 2009). A Deepening occurs when students provide further 

argumentation for an on-going perspective (Baker, Andriessen, Lund, van Amelsvoort, & Quignard, 
2007). A Widening occurs, on the other hand, when a student (or students) attempts to diverge from 

the current perspective by either questioning it or presenting a new perspective (Wegerif, 2007). New 

perspectives enable participants in a dialogue to see things in a new way and expand their 
understanding, thus a widening move in a debate is also a creative move. 

The pedagogical experts agreed on the shape and paired-shape categories and developed coding 

instructions by jointly working in groups of 2 or 3 coders on a relatively small subset of the corpus. 
The instructions that were created consist of detailed explanations of when each category code applies, 

as well as examples of each. Each code is binary; that is, either it applies to an instance (‘positive 

instance’) or it does not apply (‘negative instance’). After the coders collaboratively reached 

agreement on and mutual understanding of the instructions by focusing on the smaller set of 
discussion maps, they worked individually to code all of the instances in a much larger set of 

                                                        
6 Because the discussion language in Israel was Hebrew, we translated these discussions into English before 

coding. While we recognize this compromises the authenticity of the data, we believed this was a necessary first 

step in our experimental work, since focusing on a single language as an initial test of our approach was 

important to making the work tractable. More is said about this in the “Discussion” section. 
7 Note that while 84 e-discussions were included in our overall corpus and analysis, we did not annotate all 

discussions with all annotation categories. For example, some of the discussion maps were annotated with only 
shape and paired-shape categories, others were annotated with only cluster categories, while a few were 

annotated with both. 
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discussion maps in the corpus. This step of the process was evaluated for inter-rater reliability, 

computed by the Kappa (�) statistic,8 with Cohen’s � (1960) applied when two coders did the coding 

and Fleiss’s � (1971) applied when more than two coders did the coding. This yielded acceptable 

values, very near or above 0.7, for all but two of the individual categories (Critical Evaluation of 

Opinion and Summary) and all but one of the paired-shape categories (Qualifier/Compromise). The 

categories with unacceptable inter-rater reliability were eliminated from further analysis. Finally, the 

coders assigned a final code to each disputed instance (i.e., those that disagreed in the Kappa analysis) 
by jointly reviewing and agreeing on each instance.  

At the cluster level, the coding process was similar but much more difficult; thus, we diverged 

from the procedure a bit. In particular, we were unable to achieve acceptable inter-rater reliability for 

any of the categories, even after multiple iterations of instruction writing, due to the greater 
complexity of the cluster categories, as well as the variability of the selected structures (i.e., At the 

shape and paired-shape level, we could programmatically generate all instances; at the cluster level the 

coders not only had to assign categories to instances but also had to find instances of the categories). 
Thus, unlike the process at the shape and paired-shape level, we did not end up with a single, agreed-

upon set of coded instances; rather, the result was different sets of coded instances per coder. 

Nevertheless, we decided to continue our experiments with the cluster categories by focusing on how 
well our automated analysis approach would find the clusters identified by the individual coders. We 

argue for the reasonableness of such an approach in the “Discussion” section of the paper.  

Shape-Level Classifiers 

Shape-Level Categories 

Our pedagogical experts annotated a total of 1,188 individual shapes,9 using the process described 

above. The full set of original shape-level categories, along with the number of annotations done 
within each category, the number of positive instances (i.e., the number of shapes that matched the 

criteria for that category, as determined by agreement between the coders), and the proportion of 

positive instances, is shown in Table 1.  
Originally, we were interested in all of the categories shown in Table 1, but after initial machine 

learning experiments, we focused both our annotation efforts and machine learning experiments on 

only two categories, Topic Focus and Reasoned Claim. Two categories, Critical Evaluation of 

Opinions and Summary, were dropped due to low inter-rater reliability. The other three categories (i.e., 
Task Management, Request for Clarification, Intertextuality) led to weaker machine learning results 

(i.e., Kappas well under .60) most likely because of imbalanced class distributions and too few 

                                                        
8 A � value of 1.0 signifies perfect agreement, a � value of 0 means agreement at chance level, and � below 0 

means agreement worse than chance. 
9 The number of annotations reported here and in Table 3 corresponds to the data that was actually used for 

machine learning. The numbers vary between categories (e.g., 1188 for Topic Focus, 671 for Summary) based 

on a number of factors, such as how much data was available at the time each category was annotated, 

annotations missed by the coders, and technical issues that resulted in the loss of some instances. Also, the 

reported number of annotations in Tables 1 and 3 is less than the total number of annotations actually done by 

the coders. Our earlier work (Scheuer & McLaren, 2008) included and reported the coders’ annotations of the 
initial question shapes, which are provided by the teacher not the students, and thus clearly do not belong in the 

corpus of annotated student contributions.  
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examples for one class, two problems well known for their detrimental effects on machine learning 

(Japkowicz & Stephen, 2002; Weiss, 2004).  

Table 1 

The Categories and Annotations of the Individual Shapes 

Category Explanation / Coding Examples Positive 

Instances 

Topic Focus A contribution that focuses on the 
topic or task.  

“Its not nice of human beings to 

exploit animals for their own needs. 
I think animals also have rights.” 

(Counter-example) “I’m bored.” 

 

994 / 1188 
 

84% 

Reasoned 

Claim 

 

An individual contribution that 
contains critical reasoning or 

argumentation (i.e., claim + 
backing). Student provides an 
explanation or some backing (e.g. 
evidence) to illustrate a 
position/opinion. If you can add 
“because” between two parts of the 
contribution, it is probably critical 
reasoning. 

“I am against experiments on 
animals, because to my opinion it is 

not fair to use them against their 
will while they cannot reject.” 

“Here it's not like with humans, as 

the father disengages from them, 
and he doesn't see them even in the 
afternoon, and he doesn't belong to 
the pack any more” 

 

500 / 1188 
 

42% 

Critical 

Evaluation of 

Opinions 

Evaluation and/or judgment of 

another's opinion and/or one's own 
opinion, and/or the relationship 
between them. Only applies when a 
contribution is “on topic.” 

“I haven't got a definitive opinion 
for or against”  

“well... if that is your claim so I 
completely agree with you.” 

 

62 / 671 
 

9% 

Summary Summarizing previous discussion 

or calling for such a summary. Only 
applies when a contribution is “on 
topic.” 

“It seems to me you all think the 

ducks evolved because their 
environment changed.” 

 

5 / 671 
 

0.8% 

 

Task 

Management 
Comments about how to proceed 

with and manage the given task, 
such as “add titles,” “write more,” 
“answer him,” etc. 

“would you stop sending empty 
messages?!?!?!” 

“don't surf the net” 

“don't forget to add arrows” 

 

98 / 968 
 

10% 

Request for 

Clarification 
A request for clarification, reason, 
explanation, information, etc. from 

another person. Only applies when 
a contribution is “on topic.” 

“What are you basing this on?” 

“What do you mean by that?” 

 

81 / 671 
 

12% 

Intertextuality Explicit evidence of quoting or 
referring to external material. Only 
applies when a contribution is “on 
topic.” 

“It says in Wikipedia that …” 

“…in our discussions last week in 
class…” 

 

23 / 671 
 

3% 

As can be seen in Table 1, all but one category, Reasoned Claim with a proportion of positive 
instances of 42%, showed an overwhelming majority of one class, with proportions ranging between 
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84% (the positive Topic Focus annotations) and more than 99% (the negative Summary annotations). 

Our lack of success in automated learning of some of the discarded categories may also be attributed 
to the ill-definedness of those categories; more specifically, while humans were able to consistently 

identify members of the categories, the key attributes of the categories may be too difficult for a 

computational approach to identify and/or use. 

Creation of the Shape-Level Classifiers 

The shape and paired-shape classifiers were developed in two steps: First, the annotated data was 

translated into a format amenable to standard machine-learning algorithms. This is indicated in Figure 
4 by the “Deep Loop Data Translator(s)” box. Second, experiments with a multitude of machine-

learning techniques (and parameters) were carried out in order to derive the most effective classifiers 

for each category. The “Machine Learning Training System” box of Figure 4 represents this process. 
In our experimentation, we encoded as much information as possible in attribute-value form, 

without considering the specific categories of interest (e.g., Topic Focus, Reasoned Claim), in hopes 

that the inference mechanism would focus on and use the most predictive attributes. Shapes were 

analyzed in terms of structural attributes (shape and link types, incoming and outgoing links) and 
textual attributes (textual content of shapes extracted by TagHelper). As part of its pre-processing, 

TagHelper also did stemming (e.g., reducing “trusting” to “trust”) and removal of rare words (i.e., 

removal of terms that rarely occur in the corpus and thus are unlikely to support learning). Some 
attributes were dropped (e.g., # in-links of type “opposition”) when initial machine learning 

experiments indicated they did not improve the results. The full set of attributes finally used for shape-

level machine learning is shown in Table 2. 

Table 2 
Attributes used for machine learning at the shape level 

Type of Attribute Specific Attributes 

Structural • Shape type 

• # undirected links  

• # in-links  

• # out-links 

Textual (derived 

using 

TagHelper) 

• Unigrams: Simple term (equivalent to keyword search) 
• Bigrams: consecutive terms (paired word phrases, such as ‘common 

denominator’) 

• POS bigrams: Part-of-speech bigrams (shallow syntactical structures, 

e.g., Noun-Verb, Adjective-Noun) 

• Punctuation: Obviously, a question mark is a strong indicator of a 

question 

• Text Length: The overall text length of the contribution 

 
A flow chart of the machine learning experimentation process we employed, as well as how the 

process fed into the Classifier Web Service, is depicted in Figure 5. The left side of the figure shows 

the experimentation process. Given the annotated map data, the annotations were first processed by a 
simple program that extracted and/or calculated the structural attributes of each annotation, such as the 

shape type and the number of links going in and out of each shape (i.e., the attributes in the first row 
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of Table 2). Next, the data was processed by TagHelper (Rosé et al., 2008) to derive the textual 

attributes (i.e., the attributes in the second row of Table 2). The derived textual attributes were saved 
in a file (the “Text Attributes file” shown in the center of Figure 5) so they could also be accessed by 

the Classifier Web Service, the run-time “user” of the classifiers. Note that temporal attributes (e.g., 

shape1 was created before shape2, the text of shape1 was written before the text of shape2) were also 
extracted at the first (structural) and second (TagHelper) extraction step. While the shape level does 

not use such attributes, the paired-shape level does; this is discussed below. The RapidMiner toolkit, 

freely available software that supports interactive experimentation with a wide range of machine 

learning algorithms (Mierswa et al., 2006), then accepted the training data, which now consisted of the 
derived structural, textual, and temporal attributes and was used to experiment with different machine 

learning algorithms, different parameters, and so on. Once a suitable algorithm was found, a classifier 

was generated, one that could also be accessed by the Classifier Web Service. (The right side of Figure 
5 is explained later in the paper.) 

  

 

Fig. 5. The process flow of offline machine learning experimentation (shown on the left), which feeds into the 

“live” Classifier Web Service (shown on the right). 

Shape-Level Experiments 

The shape and paired-shape experiments described in this paper extend those reported in McLaren et 

al. (2007) and Scheuer and McLaren (2008). In McLaren et al. (2007) we compared different attribute 
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sets and machine learning algorithms using a subset of data that was available at that time. In Scheuer 

and McLaren (2008) we used the complete data set, that is, the same data reported here. We tested 
different machine learning algorithms and attribute sets until satisfactory results were achieved. In the 

experiments reported here, we used the attribute sets of the best classifiers from the earlier 

experiments and systematically experimented with algorithms that have been shown to be effective for 
text categorization tasks: Support Vector Machines (SVM) (Joachims, 1998), Naïve Bayes (McCallum 

& Nigam, 1998) and Boosted Decision Trees (Boosted DT) (Schapire & Singer, 2000). We also tried 

the Decision List algorithm, since this led to the best results for some of our classifiers (Scheuer & 

McLaren, 2008). Unlike the earlier experiments, we also used attribute selection, specifically, chi-
squared attribute selection of the top 100 attributes. Since SVMs typically cope well with high 

dimensional input spaces, we also tested SVMs without attribute selection. Finally, we used SVM with 

cost balancing activated, meaning that the relative weights (or misclassification costs) of the two 
classes were adapted to the class distribution during SVM training. In our earlier experiments we 

achieved increased performance using this option, presumably because of the skewed class 

distributions in our data set, as described above. 

We measured classifier reliability using the Kappa statistic (Cohen, 1960). In this case, � 

measured the chance-corrected agreement between a machine-learned classifier and a gold standard. 

Kappa is not vulnerable to unbalanced class distributions and thus is a more appropriate criterion than 
the widely used error and hit rate (Ben-David, 2006). The decision as to whether a classifier’s 

performance is acceptable for real-world use depends on domain and application. An acceptability 

threshold of 0.8, or at least 0.7 (Rosé et al., 2008; Krippendorff, 1980), is recommended in content 

analysis. Given that in our approach we have teachers will be aware of the possibility of possible 
misclassifications by the classifiers and the need to use their own judgment, we considered a slightly 

more generous interpretation sufficient. Thus, we used an acceptability threshold of 0.61, which 

means, according to Landis and Koch (1977)
10, a “substantial” agreement between a machine-learned 

classifier and a gold standard. 

We estimated the reliability of our classifiers by cross-validating data from one discussion (i.e., 

the test set) against the data from the remaining discussions (training set). Because data from one 
discussion was never in both the training and test sets simultaneously, we avoided intra-discussion 

dependencies and bias. 

Figure 6 shows the results at the shape level. We achieved performances well above chance with 

all algorithms. Four of five Reasoned Claim classifiers surpassed our acceptance threshold of 0.61. 
The best result was achieved using Boosted Decision Trees combined with attribute selection (� = 

0.66). Results for Topic Focus were somewhat lower: only the SVM classifier without attribute 
selection yielded acceptable results (� = 0.62). 

                                                        
10 Scale: <0 Poor; 0-0.2 Slight, 0.21-0.4 Fair, 0.41-0.6 Moderate, 0.61-0.8 Substantial, 0.81-1.0 Almost Perfect 

Agreement 
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Fig. 6. Comparison of classifier accuracies (in Cohen’s Kappa) for five machine-learning algorithms for the 
shape-level categories Reasoned Claim and Topic Focus. 

Integrating the Shape-Level Classifiers with the Classifier Web Service 

Since these two classifiers performed well enough, we integrated them into the Classifier Web 
Service, meaning we made the resulting classifiers available to the Web Service, as shown in the 

process at the bottom of Figure 5. The Moderator’s Interface can, in turn, access these two classifiers 

as “deep alerts.” An example of how the teacher ultimately sees the end product of the classifiers is 

shown in Figure 7. In this figure, which depicts the moderation of five simultaneous e-discussions, 
seven of the ten contributions of the displayed e-discussion involve Reasoned Claims, as indicated by 

the dots shown on the right of seven of the shapes. In the figure, the teacher has selected one of those 

shapes for closer inspection. 
The process that is used to compute the alerts displayed in Figure 7 is sketched out in Figure 5. 

The right side of Figure 5 depicts the automated online process used to analyze discussions by means 

of machine-learned classifiers that have been derived in the offline process on the left side of Figure 5. 
Starting from the top right, a discussion is provided (by the Moderator's Interface) in an XML format 

called “GraphML,” which represents the current discussion state. The discussion is processed in two 

steps in order to map shapes (and paired-shapes) into the attribute space on which the classifier was 

previously trained. In a first step the “Structural Extraction Program” segments the input into the 
respective analysis units (shapes or paired-shapes) and structural attributes are extracted (e.g., on the 
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shape level: shape type, the # of undirected links, the # of in-links, # of out-links, as shown in Table 

2). In a second step the TagHelper software extracts text attributes. This process uses the Text 
Attributes file to ensure that the extracted text attributes are the same as those used during training. 

(As on the left side of Figure 5, temporal attributes can also be derived at either the first or second 

extraction step, at least for paired shapes). Shapes (and paired-shapes) are now represented as attribute 
vectors that comply with the format expected by the machine-learned classifiers (the “Classifier 

Applier” in Figure 5). The classifier analyzes these attribute vectors, determines the classes of the 

shapes (and paired-shapes) and returns the results (alerts) to the Moderator’s Interface. 

 

Fig. 7. A zoomed-in view of ARGUNAUT’s Moderator’s Interface displaying a selected e-discussion and the 

deep alert Reasoned Claim. The Reasoned Claims are indicated by dots on the right side of seven of the shapes. 

The moderator has selected one of the Reasoned Claims in the discussion, indicated by the ‘cloud,’ which shows 

the node number (21) and the Reasoned Claim classification.  

Paired-Shape Classifiers 

Paired-Shape Categories 

Our pedagogical experts annotated just over 770 paired-shape instances across all of the paired-shape 

categories.11 As can be seen in Table 3, all of the paired-shape categories showed a substantial 

majority of one class, with proportions ranging between 71% (negative Contribution-

CounterArgument annotations) and 94% (negative Qualifier / Compromise annotations). Unlike the 
shape level, four of the five paired-shape categories (i.e., Question-Answer, Contribution-

CounterArgument, Contribution-SupportingArgument, Contribution-FollowedByQuestion) led to very 

promising early machine learning results and thus we extensively experimented with these categories. 

                                                        
11 The numbers vary between categories (e.g., 775 for Question Answer, 768 for Contribution-
CounterArgument) based on a number of factors, such as how much data was available at the time each category 

was annotated, annotations missed by the coders, and technical issues that resulted in the loss of some instances. 
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(As previously mentioned, the Qualifier / Compromise category was dropped when we did not achieve 

sufficient inter-rater reliability.)  

Table 3  

The Categories and Annotations of the Paired Shapes 

Category Explanation / Coding Example Positive 

Instances 

Question-

Answer 
A contribution in which the 1st 

shape is a question and the 2nd 
shape is an answer to that 
question by a different student. 
Typically (but not necessarily) 
the type of link between the 
shapes would be “other.”  

1st shape text: “In the wild does the father 

separate from the cubs or does he continue 
to live with them?” 

2nd shape, from a different person than the 
1st shape: “They all live in a pack” 

(The link type between shapes is “other.”) 

 

117 / 775 
 

15% 

Contribution-

Counter 

Argument 

A contribution in which the 2nd 

shape opposes the 
claim/argument proposed in the 
1st shape and provides reasons 

or other type of backing for the 
opposing claim. Typically (but 
not necessarily) the type of link 
between the shapes would be 
“opposition.” 

1st shape text: “Do not separate, the male 

should be a partner in what happens even 
after the birth. The offspring is also his and 
he should take responsibility.” 

2nd shape text, from a different person than 
the 1st shape: “But in a situation like this the 
mother can get pregnant again and so might 
neglect a group of cubs.” 

(The link type between shapes is 
“opposition”) 

 

224 / 768 
 

29% 

Contribution-

Supporting 

Argument 

The 2nd shape supports the 

claim/argument raised in the 
previous one, and provides 
reasons or other type of backing 
for that claim. 

Typically the type of link 
between the shapes would be 
“support.” 

1st shape text: “We are against. Is it better 

for the male to get the female pregnant 

again so she'd abandon the babies?"
12

 

2nd shape text, from a different person than 
the 1st shape: “Separate. We think you 
should separate because you shouldn't hurt 
the mom, who will be come a ‘pregnancy 
machine’ and move from one pregnancy to 
the next.” 

(The link type between the shapes is 
“support.”) 

 

217 / 769 
 

28% 

Contribution-

FollowedBy 

Question 

The 2nd shape is a question 
related to the 1st shape. 

The links vary, based on the 
role of the question. If it's a 
rhetorical question, it may be an 
“opposition” link. If it's a 
genuine request for information 
etc., it will likely be “other.” 

1st shape text: “She’s also tormented 

because she’s already exhausted as a result 
of all the pregnancies and also later on 
there’s the risk that she'll neglect the cubs.” 

2nd shape text, from a different person than 
the 1st shape: “Are you for us or against us? 
Please answer our question.” 

(The link type between the shapes is 
“other.”) 

 

100 / 776 
 

13% 

Qualifier / A relationship between two 1st shape text: “Do not separate, the male 
 

                                                        
12 The 1st shape is against a shape in which the student says the father should stay with the mother. 
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Compromise shapes in which the 2nd shape 
partially supports and partially 
opposes the 1st shape, and/or 
offers some kind of 
compromise between the claim 

in the 1st shape and the 
counterclaim for it, and/or 
offers some sort of qualifier 
determining the circumstances 
in which each of the claims is 
more valid. 

Presumably the two shapes will 
be linked with an arrow of the 
“other” type, but it’s 
conceivable that either 
“opposition” or “support” 
arrows will be used instead. 

should be a partner in what happens even 
after the birth. The offspring is also his and 
he should take responsibility.” 

2nd shape text, from a different person than 
the 1st shape: “You should separate, until 
the offspring are bigger the female should 
stay with them alone until they are stronger 

and then the male can join.”
13

 

(The link type between the shapes is 
“other.”) 

39 / 621 
 

6% 

Creation of the Paired-Shape Classifiers 

As with the shape-level classifiers, the process shown on the left side of Figure 5 was used to create 

and test the paired-shape classifiers. More specifically, all pairs of linked shapes in the target maps 
were first mined and their structural attributes extracted from the discussion maps. Then, the textual 

attributes were extracted using TagHelper. Temporal attributes were extracted on each step. Next, as 

with the shape level, the Rapid Miner tool was used to run experiments with the paired shapes, using 

the extracted structural and textual attributes as the representation for each paired shape (as shown in 
the bottom left of Figure 5). 

The specific attributes used for the paired-shape experimentation are shown in Table 4. Notice 

two key differences between this set of attributes and those of the shape level from Table 2. First, 
there are simply more attributes at the paired-shape level. This is due to the greater structure involved 

at this level (i.e., the additional shape, at least one link between the shapes, and the links associated 

with the additional shape), as well as the additional text (i.e., two textual contributions instead of just 
one). Second, the paired-shape level introduces the notion of temporal sequence. One shape must have 

been created before the other, which is represented in our attribute data by the earlier shape being 

designated “Shape 1,” the later shape as “Shape 2.” The temporal sequence often also implies 

interaction between students; whether different students created the two shapes is also captured as an 
attribute. Note, however, that any participant in a discussion can create the link between two shapes, 

meaning therefore that connected shapes don’t necessarily imply interaction between students. In 

practice, however, the second student almost always creates the link to the first student’s shape. The 
notion of temporal sequence introduced at this level carries over to the cluster level, as well, since 

multiple shapes, and the links between those shapes, is also a proxy for the temporal interaction 

between students. 

                                                                                                                                                                             
13 Here there is a compromise offered between those supporting and those opposing separation, which can also 

be viewed as a qualifier, namely, when is it good/beneficial for the male to be separated, and when it isn't. 
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Table 4 

Attributes used for machine learning at the paired-shape level 

Type of Attribute Specific Attribute 

Structural • Link type 

• Both shapes created by the same user? 

Structural + 

Temporal 

Sequence 

• link and Shape 1 [Shape 2] from same user? 

• shape type of Shape 1 [Shape 2] 

• link direction (undirected, from Shape 1 to Shape 2, from Shape 2 to 

Shape 1) 

Textual • Combined text length of Shape 1 and Shape 2 

• Difference in text length between Shape 1 and Shape 2 

Textual (derived 

using TagHelper) + 

Temporal 

Sequence 

Same as for the shape level, as shown in Table 2 (i.e., unigrams, bigrams, 

POS bigrams, punctuation, text length), except applied both to Shape1 and 

Shape 2 individually. Note that temporal sequence is implicitly introduced, 

since Shape1, as well as all of its attributes, was created before Shape2, and 

this ordering is then instantiated via the attribute names (e.g., 

Shape1_Textlength, Shape2_Textlength.. 

Paired-Shape Experiments 

For the paired-shape experiments, we used the same experimental setup as for shape-level classifiers, 

again experimenting with algorithms that have performed well in past text classification tasks (plus 

Decision List, as explained above). As can be seen in Figure 8, most of the results surpassed our 
acceptance threshold of 0.61. Boosted Decision Trees proved to be the most effective machine-

learning algorithm for two of the four paired-shape categories (Contribution-CounterArgument and 

Contribution-SupportingArgument) with � values of 0.71 and 0.66, respectively. In the third category 

(Contribution-FollowedByQuestion), SVM with attribute selection performed best, reaching � = 0.75. 

In the fourth and final category (Question-Answer), Boosted Decision Trees and Decision Lists 
achieved a (virtually) identical best performance of � = 0.78. Because these four categories each had 

at least one classifier exceed the acceptance level, we integrated the best classifier from each category 

into the Classifier Web Service, as was done with the two best performing shape-level classifiers (as 
shown on the right side of Figure 5 and discussed above). 

What, if any, general conclusions can we come to by looking across the shape and paired-shape 

results? First of all, the boosted decision tree algorithm clearly worked best with our data, resulting in 
the best classifier for three of the four paired-shape categories and one of the two shape-level 

categories. Even in the two cases in which it did not yield the best performance – for the shape-level 

category Topic Focus and for the paired-shape category Contribution-FollowedByQuestion – it 
produced the second best approach. Thus, of the prior work in text categorization earlier cited, our 

results were most in line with those of Schapire and Singer (2000). Also, notice how consistently 

poorly the SVM algorithm without attribute selection did across the paired-shape categories when it 

was the best performing algorithm for one of the shape-level categories (Topic-Focus) and close to the 
best (and above the acceptance level) for the other shape-level category (Reasoned-Claim). This can 
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be explained by the fact that we used far more attributes for paired shapes compared to single shapes. 

For single shapes we extracted text attributes only from one shape while for pairs we extracted text 
attributes from two shapes. Even if SVMs are more robust than other machine learning algorithms 

with respect to high-dimensional input spaces, SVM induction might nevertheless be impaired when 

the number of attributes exceeds certain limits. 
 

 

Fig. 8: Comparison of classifier accuracies (in Cohen’s Kappa) for five machine learning algorithms for the 

paired-shape categories Contribution-CounterArgument, Contribution-SupportingArgument, Contribution-

FollowedByQuestion, and Question-Answer 

Cluster Classifiers 

Cluster Categories 

Unlike shapes and paired shapes, clusters, arbitrarily-sized collections of connected contributions, had 

to be found in the discussion maps before being classified. In other words, cluster coding involved 
searching discussion maps for the clusters, rather than having the instances automatically extracted 

and then coded by humans, as with shapes and paired shapes. Moreover, cluster instances vary in 

structure and pattern, including, in some (rare) cases, shapes that are disconnected from one another 
(i.e., no links between). Thus, cluster coding was significantly more difficult than shape or paired-

shape coding. As mentioned above, this led to insufficient inter-rater reliability between our coders 
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across all of the cluster categories. This type of group interaction coding, in which links between 

messages are part of the coding process, is recognized as a very challenging problem, one in which 
interrater reliability is difficult to achieve (Jeong, 2005, p. 373). 

Consequently, a much smaller number of clusters were annotated, ranging between 18 and 36 

annotations per category. Table 5 summarizes the cluster categories that were defined, annotated, and 
evaluated in the experiments described later in this section. Other cluster categories were originally 

defined, but annotations and analysis of those categories were abandoned when it became apparent 

that the annotations were far too variable, extremely difficult to find in new discussion maps, or led to 

very poor results in the initial tests with our cluster classifier algorithm, discussed in the next section. 
The number of maps showing in the column labeled “# of Ann.” indicates the number of maps the 

coders reviewed and annotated. For the first three categories, a total of 24 maps were reviewed and 

annotated; for the final two categories, a total of 14 maps were reviewed and annotated. 

Table 5 

The Categories and Annotations of the Clusters 

Category Explanation / Coding Example # of 

Ann. 

Argument + 

Evaluation 
Relatively strong and explicit 

evidence of a discussant evaluating 
the argument of another discussant. 
These are relatively difficult 
clusters to identify; many 
“borderline” cases were found. 

Typically these are smaller clusters, 
usually just a pair, which may be 
part of larger clusters of different 
types (e.g., a Chain of Opposition 
cluster can contain a sub-chain in 
which one of the discussant 
evaluates the argument of another). 

1st shape text (Argument): “It should be 

prohibited to experiment on animals because 
it has no special benefit. For example: one 
puts an unpleasant material in its eyes just to 
see whether it cause him damage. 
experiments should be prohibited also 

because the effect [on us] is not the same. for 
example: monkeys calm down if you ampute 
part of their brain, but humans will get 
handicapped as a result of this. Animals also 
have families and they are teared apart from 
their families, or that they born in the lab 
instead in nature.” 

2nd shape text (Claim), from a different 
person than the 1st shape: “your opinion is 
partly correct. indeed, there are some 
experiments that hurt animals and are very 

cruel, and are not necessary, but other 
experiments are usefull and important, like 
what I wrote in my argument. your opinions 
are too extreme.” 

(Link between shapes is “opposition”) 

36 

(24 

maps) 

Chain of 

Opposition 
These are linear sequences of 
contributions with (typically) two 
people arguing back and forth, each 

time raising counter-arguments to 
one another’s claim or argument. 
The minimal pattern is of three 
shapes from two different users. 
Chains of opposition are often quite 
long (4-6 shapes) and some 
expression of disagreement, either 

1st shape text (Argument), Student 1: “I agree 
with Riki in saying that the fetus - sick or 
healthy - is a human being and you can't kill 

a human being because he is different or 
disabled....” 

2nd shape text (Argument), Student 2: “I 

think they shouldn't bring him to the world 
and he is not a human being with a soul in 
my opinion until 4 months” 

20 

(24 

maps) 
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with opposition links or textual 
content, is present. To be annotated 
as this type of cluster, each reply in 
the chain will contain some backing 
(e.g., a reason, an example, some 

evidence, etc., but possibly of poor 
quality) and not merely a statement 
of opposition to the previous 
contribution. 

3rd shape text (Argument), Student 1: “They 
can have fun with the child despite all the 
hard work. the pain they will go through 
when the child dies is the same as the pain 
from an abortion. so if they are going to 
suffer anyway - why not at least try?” 

4th shape text (Claim), Student 2: “Its not the 
same thing if he is out or if he is a fetus 

because when he is out living he is real and 
as a fetus he is not visable yet - eccept maybe 
in the x-ray” 

(Links between all shapes are “opposition”) 

Clarification 

of Opinion 

Following 

Feedback 

These are typically small clusters, 

usually simple tri-shape chains 
where two of the shapes are by the 

same user. The repeated pattern for 
this type of cluster is a discussion 
contribution (shape) by person A; 
followed by a contribution by 
person B (linked to the first 
contribution from person A) and 
then a third shape with a reply from 
person A (either linked to the first 
contribution or to person B's 

contribution). This reply by A 
provides clarification of person A's 
opinion, what he or she tried to 
express in the previous 
contribution. The examples found 
for this type of cluster may differ in 
the type of links between shapes, 
but overall are quite similar in 

terms of structure. Since this is a 
repeating pattern with fairly fixed 
structural aspects, the definition and 
search for this cluster type relied 
heavily on structural cues. 

1st shape text (Claim), Student 1: “I am also 

extremely against especially when it comes 
to products like cosmetics... but sometimes 

there isn't really any other choice... and if it 
helps humans then I have no choice and I 
have to agree to experiments, but the 
conditions under which animals are kept are 
terrible and it could be done in a more 
humanistic way” 

2nd shape text (Question), Student 2: “But do 
you think animals should “pay” because we 
need to make experiments?! Think about it... 
they are innocent after all... and I feel pity for 
them so much....” 

(Link between 1
st
 and 2

nd
 shape is “other”) 

3rd shape text (Claim), Student 1: “OK. I'm 
not saying I don't feel pity for them but you 
can't always find [other] solutions... And be 
honest for a moment, what do you prefer, to 
have animals or humans saved... And don't 

misunderstand me, I really disagree [with 
experiments on animals] but to be honest I 
prefer for humans to be saved... and I am 
definitely against the conditions [under 
which animals are kept]!!!” 

(Link between 2
nd

 and 3
rd

 shapes is 
“support”) 

18 

(24 

maps) 

Widening Attempts by a student (or students) 

to diverge from the current 
perspective by either questioning it 
or presenting a new perspective. 
(Note: The new perspective in the 
example is expressed in the 1st 
shape, as the students discuss the 
issue “Will the Internet bring the 
world together or deepen its 

divisions”) Typically, at least one 
new branch of contributions is 
introduced with a “widening.” In 

1st shape text (Claim), Student 1: “But by 

becoming more aware of the different 
cultures, ethics, and religions, surely we are 
helping to create a divide as we are now 
being made more aware of the different 
styles of living and options and opportunities 
throughout the world that may differ from 
your experience.” 

2nd shape text (Question), Student 2: “Could 
this influence our own way of life?” 

(Link between 1
st
 and 2

nd
 shape is “other”) 

30 

(14 

maps) 
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the example there are two branches, 
1st to 2nd contribution and 1st to 3rd 
contribution. 

3rd shape text (Claim), Student 1: “Also, if 
people are able to learn about other cultures, 
etc., then they may not feel that they need to 
actually experience the culture for 
themselves, e.g., by visiting other countries, 

possibly creating a greater divide, because 
the global community would interact less in 
person, only through technology.” 

(Link between 1
st
 and 3

rd
 shape is “other”) 

Deepening Providing further argumentation for 

a perspective that is part of the 
current discussion. 

1st shape text (Claim), Student 1: “Yes, but 

how are we to overcome that problem? As 
technology is advancing all the time, and 
computers are becoming more and more 

common place in learning resources,..... how 
are we to deal with the problem of certain 
individual not having a computer to use at 
home...?” 

2nd shape text (Idea), Student 2: “Its hard to 
say... An idea would be to only use ICT 
learning when done in a school setting where 
everyone has acess to the same materials” 

(Link between 1
st
 and 2

nd
 shape is “other”) 

3rd shape text (Idea). Student 3: “places such 
as schools and colleges, etc ... would probly 
argue that that as a solution to this problem 
they do provide students with ict facilitys, 
however i still do not think this works as 
often they do not have enought facilities to 
accomadate the number of students.” 

(Link between 1
st
 and 3

rd
 shape is “other”) 

30  

(14 

maps) 

Creation of the Cluster Classifiers 

The task of creating cluster classifiers was more difficult than developing classifiers at the shape and 
paired-shape level, due to cluster variability. We did not use a supervised learning approach, as with 

the shape and paired-shape level, since clusters are of arbitrary size, thus making it quite difficult to a 

priori identify the instances to be classified. Clusters presented an additional challenge because:  
• The data is more complex (i.e., a larger combination of structure and text),  

• The data is noisier (i.e., more student mistyping and mistakes),  

• Annotated data is much scarcer, due to the difficulty of coding clusters. 

We explored several approaches, including, unsupervised learning (Jain, Murty, & Flynn, 1999), 
pattern mining (Srikant & Agrawal, 1996), pre-defined pattern rules (Harrer, Hever, & Ziebarth, 2007) 

and supervised clustering (Finley & Joachims, 2005), but ultimately designed and developed an 

approach that best fit the problem characteristics: DOCE (Detection of Clusters by Example) 
(Mik�átko & McLaren, 2008). DOCE, a case-based graph-matching algorithm, is based on the idea of 

using cluster examples to find similar clusters in other discussions and is inspired by case-based 

reasoning (Kolodner, 1993; McLaren, 2003), analogical mapping (Forbus, Gentner, & Law, 1994), 

and database query-by-example (Zloof, 1977). An example cluster, also called a “model graph,” is 
selected and used as a search query for similar clusters across other discussion maps, called “input 
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graphs.” The output of the algorithm is a list of matching clusters in the input graph(s), sorted 

according to a similarity rating.  
The DOCE algorithm is summarized in Figure 9. First, the example cluster (model graph) and the 

discussion map (input graph) are parsed from the XML file format used by the Moderator’s Interface 

for representing a snapshot of the discussion. Both graphs are preprocessed as follows: (1) an 
adjacency matrix representing the structure of the graph is constructed and (2) each contribution and 

link in the discussion graph is characterized by an attribute vector, extracted from attributes such as 

shape/link type, text length, link direction and whether the same user created two linked shapes. As 

with the shape and paired-shape classifiers, TagHelper (Rosé et al., 2008) further enriches the attribute 
vectors with additional information from the text analysis of contributions (e.g., unigrams, bigrams, 

part-of-speech bigrams). As per Figure 5, a Text Attributes file is generated by TagHelper and used by 

the DOCE algorithm. (Note that this file is the same one used by the shape-level and paired-shape 
classifiers). Additionally, DOCE extends the attribute vectors of shapes (links) with shape and paired-

shape classifications.
14 In the next step, DOCE compares the attribute vectors of vertices/edges in the 

model and input graphs by calculating their distance in a manner similar to unsupervised learning 

algorithms. The proximity is pre-computed for each pair of model/input objects and stored in the 
similarity matrices. Finally, an inexact graph matching method based on a customized version of the 

edit distance algorithm (Wong, You, & Chan, 1990; Tsai & Fu, 1979) is employed to find clusters 

with the highest structural and content similarity to the model graph. Similar algorithms have been 
successfully used for various purposes, such as computer vision (Gregory & Kittler, 2002) and 

retrieving relevant principles from ethics cases (McLaren, 2003).  

The matching works as follows. An A* search algorithm explores all possible vertex-to-vertex 
mappings between the model and input graph. In each step, a partial mapping of vertices is extended 

by adding a new vertex-to-vertex assignment that has the maximum content similarity (pre-computed 

in the similarity matrices) and the minimum structural difference, as measured by edit distance. The 

edit distance between partially matched graphs is calculated as a minimal sequence of primitive graph 
operations (such as “add an edge,” “delete an edge,” and “delete a vertex”) that are required in order to 

make the graphs isomorphic. The final matching cost is the sum of all vertex/edge similarities and 

penalties for the edit operations. The first n complete mappings (i.e., mappings that cover all model 
vertices) are returned as resulting clusters and sorted in ascending matching-cost order. 

Thus, the algorithm matches similar clusters on generic graph structures in an inexact manner 

(e.g., some of our cluster examples and shapes matched unconnected subgraphs in the input graphs). 
The matching is driven by both the graph structure (e.g., the users involved in the cluster and shape 

types) and content of contributions (i.e., a characterization of the text of the contribution). Note that 

the detection of all matching subgraphs is an NP-Complete problem but only in theoretical, not 

practical, terms. Applying heuristics similar to Tsai and Fu (1979) and Gregory and Kittler (2002) 
significantly reduces practical complexity. For instance, one can apply a heuristic that estimates future 

node and edge mapping costs including possible edit distance penalty; this approach is employed in 

our algorithm. Using heuristics such as these, the method performs reasonably well on graphs of 
moderate size (dozens of vertices). The graphs in our particular domain are typically within this range. 

(But see below the practical analysis we did of the algorithm with some of the annotated data 

described in Table 5.) The DOCE algorithm is described in further detail in (Mik�átko, 2007). 

                                                        
14 Although we experimented with the machine-learned classifications of shapes and paired shapes, we used the 
human-annotated classifications in our cluster experiments. See the “Discussions” section for more discussion of 

this topic. 
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Fig. 9. The DOCE algorithm. 

Note that the DOCE algorithm does not follow the approach depicted in Figure 5, which is used 

to apply machine-learned classifiers to discussion maps to analyze shapes and paired-shapes. The 
cluster classifier, which the DOCE algorithm implements, processes discussion maps in a different 

manner. The input / output interfaces of DOCE and the machine-learned classifiers are identical, but in 

contrast to the ML classifiers, which work on a “flat” representation, DOCE’s A* search operates 
directly on a graph representation enhanced with pre-processed attributes for comparing subgraphs 

(e.g., contributions are enhanced with TagHelper attributes extracted from their texts). Additionally, 

DOCE does not require training because it uses pre-stored models as the basis for searching for new 

clusters. 
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Cluster Experiments 

We evaluated DOCE and its ability to find clusters, at least those annotated by specific coders, in two 

separate experiments using the data summarized in Table 5. First, in Cluster Experiment #1, we 

conducted an experiment with the 24 discussion maps from an Israeli high school and an Israeli 

college, annotated with the cluster types Argument + Evaluation, Chain of Opposition, and 
Clarification of Opinion Following Feedback (Mik�átko & McLaren, 2008). Next, in Cluster 

Experiment #2, we conducted an experiment with the 17 discussion maps that were created in a U.K. 

university and annotated with the cluster types Widening and Deepening (McLaren et al., 2009).15 We 
focused on different cluster types in each experiment because of the different interests of the 

pedagogical experts in Israel and the U.K. 

Each of our experiments was conducted as follows. Given the separate, annotated corpus from the 
actual classrooms in Israel and the U.K., we took the 24 (and 17) discussion maps, and did the 

following: 

• For each annotated example in each corpus (call them Corpus-Israel and Corpus-UK), we 

ran DOCE with that annotation as the model graph (as per Figure 9) against all of the other 
discussion maps from the same corpus containing at least two annotations of that type. 

(Note: We excluded maps that did not contain at least two annotations of the particular type 

being searched, since such discussion maps would be too easy to achieve recall of 1.0, by 
simply getting a relevant match to the single occurrence.) 

• We considered a relevant match to be 70% overlap, e.g., the following annotated example 

and found cluster would constitute a relevant match, since there is a 75% node overlap (bold-

faced nodes overlap): 
o Model graph (i.e., annotated example): (Node1, Node3, Node4, Node5)  

o Cluster Match (i.e., from Input Graph): (Node3, Node4, Node5, Node6) 

• We varied parameters, such as the number (N) of clusters that were returned by DOCE and 
the relative impact of structural and textual properties on the similarity score of cluster pairs 

(e.g., Is it more important that texts or shape types are similar?).  

• We evaluated information retrieval metrics recall, precision, and recall+precision on each 
run of DOCE. These metrics were calculated as follows: 

o Recall represents the number of annotations of type x covered by DOCE within its 

Top N, divided by the count of annotations of type x in the searched map (value 

between 0 and 1.0). 
o Precision is the number of relevant matches of type x found by DOCE in the Top N 

divided by N (value between 0 and 1.0). 

We considered recall to be the most critical metric in our experiments, as it was most important to 
find all of the interesting clusters in a given discussion. The number of relevant matches (i.e., 

precision) has somewhat lower importance, in our estimation, since we as researchers, and humans in 

general, are typically clever enough to filter out irrelevant matches. 
Unfortunately, there is no “gold standard” for performing the type of retrieval task done by 

DOCE. Thus, there was no other computational model to compare to DOCE in the experiments. 

However, as a baseline test (and as reported in Mik�átko & McLaren, 2008), in Cluster Experiment #1 

                                                        
15 Eleven discussion maps were coded for both Widening and Deepening. Three discussion maps were 

exclusively annotated for Widening, three other maps were exclusively coded for Deepening. 
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we compared DOCE to a simple program that returns random clusters.16 While a random algorithm is, 

admittedly, a low bar to exceed, doing significantly better than random demonstrates that DOCE is 
clearly finding (at least some) clusters of interest.  

Additionally, we also tested whether combining results of multiple runs of DOCE with different 

model clusters of the same type might further improve the results. That is, we wanted to answer the 
question: Can multiple example clusters of the same type, provided as input to DOCE, lead to even 

better results in retrieving relevant clusters than a single example cluster? Such a data fusion 

technique, combining the preferences and results of several “experts,” has been successfully used in 

information retrieval (IR) (Aslam & Montague, 2001) and machine learning (boosting, bagging) (Han 
& Kamber, 2006). For example, in IR, the same query is often submitted to several search engines and 

the results combined. Prior work has shown improvements in recall and precision using such a 

technique (Aslam & Montague, 2001).  
Generally, the combination algorithms can be split into two categories, depending on whether 

they use ranking (i.e., positions in the Top N list) or relevance scores, and further split into another 

two categories: whether training is used (or not) for obtaining weights for each model. After 

preliminary experimentation with one algorithm from each of the four categories, we determined that 
an algorithm that calculates the average of relevance scores, and then orders the results according to 

those scores, was (usually) best for our data. The “best” models for each cluster type were chosen 

according to the highest recall and precision results achieved when using that model graph 
individually as input to DOCE, with preference given to recall, since we considered it the most 

important metric. Although the specific number of “best” models to combine is difficult to determine 

in general, and likely varies by cluster type, our preliminary results indicated that three “best” models 
usually led to the best overall results and, hence, we used this number of model graphs in the 

experiments. 

Cluster Experiment #1 Results 

Our Cluster Experiment #1 results were first reported in Mik�átko and McLaren (2008). The results, 

averaged across all cluster types, input models, and discussion maps of Corpus-Israel, are shown in 
Figure 10. In this figure, we compare the results of the random matcher to (a) the average of all 

human-annotated models provided as input to DOCE, (b) the average using only the best input model 

per cluster type (i.e., the human-annotated cluster of each type that led to the best recall and precision 
values), and (c) the average per cluster type using the best 3 input models, using the combination 

algorithm discussed above. As can be seen, the DOCE algorithm led to much better results than the 

random algorithm in all cases. Significance was confirmed by t-tests (p < 0.0001 in all cases). 
The best performing cluster type was Clarification of Opinion Following Feedback (over 0.80 

average recall across all cluster examples), followed by Chain of Opposition (approximately 0.80 

average recall) and Argument + Evaluation (over 0.70 average recall). Additional conclusions drawn 

from the data of Figure 10 include: 

                                                        
16 The dataset used in the experiment described here and in the paper (Mik�átko & McLaren, 2008) is the same, 

although the number of maps differs. In the earlier paper, we reported 27 maps, a number that also included 3 

maps that were deleted from the dataset and the experiment due to the very low quality of the discussions, as 
determined by the pedagogical experts on our team. Here we more accurately report 24 maps, that is, a count of 

the maps in the dataset that were fully annotated and used in the experiment. 
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• Using the best model of each cluster type, DOCE was able, on average, to detect 90% of the 

cluster examples annotated by the pedagogical experts (third bar from left).  
• The precision result can be interpreted as meaning that between 1/3 and 1/2 of the retrieved 

clusters were relevant. While this value is generally low for precision in information retrieval 

terms, it is worth noting that the input discussion maps contain approximately 3.3 
annotations on average. Since we set DOCE to always return the top 5 to 10 clusters, it will 

always produce relatively low precision values.  

Besides the results shown in Figure 10, we were able to determine that the stability of the DOCE 

algorithm with respect to different models is relatively high. More specifically, an average of 
approximately six out of ten clusters (for the best configuration) were in common when comparing 

two results sets produced by pairs of models against the same map, despite the fact that the models are 

often from discussions with different topics. In addition, a more fine-grained analysis of the results 
uncovered that, on average, more than 60% of relevant clusters are exact matches, in comparison to 

only 11% for the random matcher. 

 

Fig. 10. Results of Cluster Experiment #1. The results are averaged across all three Corpus-Israel cluster types 

(i.e., Argument + Evaluation, Chain of Opposition, and Clarification of Opinion Following Feedback). 

Cluster Experiment #2 Results 

The results of Cluster Experiment #2 were first reported in McLaren et al. (2009) and are summarized 

in figures 9 and 10. In this later experiment, the DOCE algorithm was not compared to the random 
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algorithm, since the results of Cluster Experiment #1 clearly showed the superiority of DOCE over a 

random clustering algorithm. In these figures, we compare (a) the average of all of the human-
annotated models provided as input models to DOCE, (b) the single best input model of this cluster 

type, and (c) the best 3 input models of this cluster type, combined via the algorithm discussed above. 

Note, that the best results for Deepening and Widening are quite reasonable (the middle bar for recall, 
precision, and recall+precision in each of the figures), especially for recall, the most important metric. 

For instance, notice that the best Deepening model graph led to a recall of 0.80 and precision of 0.52 

(the middle bar in each of the first two sets of three metrics in Figure 11). The average results, 

calculated across all of the annotated clusters, are not very good, considerably less than what was 
achieved in Cluster Experiment #1 (the leftmost bar for recall (0.42), precision (0.27), and 

recall+precision (0.69) in each of the figures). However, focusing on the best results is more important 

because, by design of the DOCE algorithm, only the best examples of Deepening and Widening will 
be subsequently used as model graph inputs to DOCE. That is, once one finds the best model for a 

particular cluster type – or the best set of models – that model (or models) will then be used as a 

“search probe” for all subsequent searches.  

 

Fig. 11. Results of Cluster Experiment #2 – Part 1. Results of finding Deepening clusters. 

As in Cluster Experiment #1, we also tested whether combining the results of multiple input 

models given to DOCE could further improve the results. The third bar in each set of three bars in 
Figures 9 and 10 depicts those results. Notice that for the Deepening clusters (Figure 11) the 
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combination approach did marginally worse (i.e., recall+precision = 1.30 for the combination 

approach compared to 1.33 for the single best model), but for Widening clusters shown (Figure 12), 
the combination approach led to slightly better results (i.e., recall+precision = 1.49 for the 

combination approach compared to 1.42 for the single best model). Note also that DOCE did better in 

identifying Widening clusters, which, as discussed earlier, are a hallmark of creative reasoning, than in 
identifying Deepening clusters. In particular, note that the best Widening recall (0.93), precision 

(0.59), and recall+precision (1.49) in Figure 12 improves upon the best Deepening recall (0.83), 

precision (0.52), and recall+precision (1.33) from Figure 11. 

 

 

Fig. 12. Results of Cluster Experiment #2 – Part 2. Results of finding Widening clusters. 

Interestingly, the results we achieved with Corpus-UK in the second experiment were better than 

most of the results with Corpus-Israel in the first experiment. Most significantly, the DOCE algorithm 

performed better in finding snippets of the creative reasoning represented by Widening clusters than it 

did in finding more standard argumentation structures, such as Chain of Opposition (i.e., a chain of 
contributions by students in which they go back in forth in argue for and against a given issue) and 

Argument + Evaluation (i.e., a student makes an argument which is then evaluated by another 

student). 
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Computation and Usability Analysis of DOCE 

The run-time of optimal graph-matching algorithms such as DOCE (i.e., an algorithm that always 

finds the best solution independent of the size of search space) is known to be NP-Complete (Garey & 

Johnson, 1979). Thus, there is a potential that the algorithm could be unusable. In computational 
theoretic terms, this means that in the worst case, the run-time of the algorithm grows exponentially 

with the input size, resulting in non-acceptable run-time behavior even for moderately sized input. 

However, such algorithms, when applied in practical contexts in limited ways, are often usable 

without ever bumping into the theoretical limits. To explore this, we analyzed the run-time 
characteristics of DOCE as it was run against the data from our 14 discussion maps in Cluster 

Experiment #2. 

Not surprisingly, the empirical run-time analysis showed a linear relationship between the text 
length of the input graph and the pre-processing time (the time needed to extract attributes from the 

input and model graph). On average, the pre-processing took about 10 seconds per map and peaked at 

roughly 21 seconds for very large maps (> 60 contributions) with plenty of text. The search time 
(finding the most similar matches) was highly influenced by the size of the model graphs: Models of 

size three were in all cases unproblematic with all search times below five seconds. For models of size 

four the maximum search times rose to 34 seconds. For models of size five we saw a couple of cases 

with run-times above one hour, confirming the theoretical assumption of an exponential run-time 
growth; on the other hand, in the vast majority of cases the run-time was still at an acceptable level. 

In summary, it is clear that very large discussion maps can be a problem for DOCE, especially 

when a teacher uses the algorithm in real-time fashion. On the other hand, the Corpus-UK discussion 
maps were quite large, created over several days of classroom use and are almost certainly at (or 

above) the upper limit of practical map size. Model graphs did not lead to any excessive search times, 

as long as the models did not exceed four nodes in size. Model graphs that reached five nodes in size 
led to some extreme cases, but it should be noted that these cases only occurred when a five-node 

model graph was used to search very large discussion maps. Generally speaking, as long as model 

graphs do not exceed five nodes they are practically usable, especially when discussion maps are 

reasonably sized. Furthermore, to improve run-time performance, it is possible to use application-
specific heuristics that restrict the set of target nodes mapped to a source node according to application 

heuristics. For instance, instead of DOCE evaluating the match of a model graph node to every node of 

an input graph, it could consider only nodes that are linked to an already-matched node, since our 
emphasis is on highly linked sets of nodes. However, such heuristics can miss the optimal solution, if 

one exists.  

Integrating the Cluster Classifiers with the Classifier Web Service 

Because the six cluster types experimented with in Cluster Experiments #1 and #2 led to classifiers 

that performed well enough, and the practical run-time characteristics were also acceptable, they were 
integrated into the Classifier Web Service. Figure 13 shows a screen shot of the results of one of the 

classifiers, Argument + Evaluation, applied to a live discussion map. Similar to Figure 3, this figure 

shows the state of the Moderator’s Interface after a teacher has selected a single Argument + 

Evaluation cluster, as well as showing other clusters that were found by the DOCE algorithm. The 

other clusters are indicated by small circles shown on the geometric centers of the cluster. (For a two-

shape cluster, such as Argument + Evaluation, the geometric center is the middle of the link between 
the shapes.) 
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Fig. 13. Graph display of Argument + Evaluation clusters, with one match highlighted.�

DISCUSSION 

So how have we fared regarding our primary research question? More specifically, is it possible to 

automate the identification of salient contributions and patterns in student e-discussions? To tackle this 

question, we have taken a systematic approach to developing and empirically evaluating AI-based 
classifiers, as described in detail above. Our approach started with the generation of machine-learned 

classifiers of individual e-discussion contributions, moved to the creation of machine-learned 

classifiers of pairs of contributions, and, finally, led to the development of a novel AI-based graph-

matching algorithm that classifies arbitrarily sized clusters of contributions. The classifiers, in all 
cases, are designed to account for the structural, textual, and sequential aspects of the graphical e-

discussions. At each of these levels of analysis, we have run systematic evaluations of the resultant 

classifiers using actual classroom data, comparing the classifiers to human coding of the same data. 
Our evaluations have led to satisfactory (or better) results for many of the classifiers and have 

eliminated others. In summary, we have at least preliminarily answered our primary research question: 

it does appear that, through a combination of AI techniques, it is possible to automate the 

identification of key contributions and patterns in e-discussions. 
An important contribution of our work has been the emphasis on accounting for structural, 

textual, and temporal aspects of the contributions made by students to e-discussions within graphical 

tools such as Digalo and FreeStyler. To our knowledge, no prior research on automated analysis has 
attempted to cover all of these aspects of online discussions – and particularly not with an emphasis on 

real-world use to support a teacher in the classroom, as we have on ARGUNAUT – and thus our 

research makes a novel contribution to both the fields of artificial intelligence in education and 
computer-supported collaborative learning. 

Of course, there are still issues to address. First, while we achieved very promising results, all 

levels of automated analysis were done on relatively small datasets, especially the cluster level, so the 

results must be interpreted with caution. The total number of examples used for computing machine-
learned classifiers is not really small in absolute numbers (> 1000 shapes, > 700 paired shapes), but 

for text categorization tasks, much larger document sets are often used to capture variety and rule out 
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the ambiguities in natural language use (Sebastiani, 2002). On the other hand, the prior work of 

Dönmez et al. (2005), in which machine-learned classifiers were successfully derived from a corpus 
size comparable to ours (approximately 1250 instances) for a similar classification task (i.e., analysis 

of relatively short texts, data from pedagogical discussions, categories of argumentative structures), 

provides at least some indication that our corpus may have been large enough. Our approach also uses 
structural and temporal attributes that are potentially more predictive than text attributes alone. In 

addition, Joachims (1998) argues that support vector machines (SVMs), the machine learning 

algorithm that emerged as the best at the shape level in our experiments, are a good choice for text 

categorization tasks due to the high dimensional input space, few irrelevant attributes, sparse attribute 
vectors, and the fact that most text categorization problems are linearly separable. In addition, boosted 

algorithms, which were the best algorithms for most of the categories at the paired-shape level, have 

also been successfully applied to text categorization and/or with large attribute sets (e.g., Schapire & 
Singer, 2000). Thus, the results of our machine learning experiments are in line with prior research. 

With respect to DOCE, we acknowledge that our data sets are, for practical reasons, quite small. 

As previously discussed, the difficulty of annotating discussion maps, due to having to find and code 

arbitrarily-sized clusters, hampered our ability to evaluate the algorithm. This raises a second issue 
related to the first: the DOCE algorithm has so far only been able to emulate the classifications of 

individual coders, since, at the cluster level, coding has been quite difficult and good interrater 

reliability elusive. Despite this shortcoming, we argue that the evaluation reported in this paper is 
meaningful because DOCE detects clusters that are similar to provided model graphs; in other words, 

the algorithm adapts to the “style” of the annotator. Note also that many annotations were marked by 

the coders as “borderline” examples that could have negatively influenced the results, yet we kept and 
used these annotations and still obtained arguably good results. In practical terms, it seems unlikely 

that we will obtain a high level of interrater reliability for the arduous and inexact task of identifying 

meaningful clusters, at least not without much more detailed specifications and extensive training of 

coders. Thus, while one of the next steps of our research will be to collect a larger set of cluster 
examples to more fully test DOCE, it may simply be that DOCE’s real contribution, and, we argue, a 

valuable one, is as an emulator of particular coders. 

A third issue to address, also related to the DOCE algorithm, is to extend the algorithm to “know” 
when its results are weak and inform the teacher of this. Currently, the algorithm always returns the 

best N matches when given a model graph to run against a set of input graphs. But what if there are 

simply no (or very few) instances of the example cluster type in the input graphs? In such a case, one 
would like the algorithm to have the capability to tell the teacher that there are no (or very few) 

matches, and not just blindly return its top N matches. One approach that is worth investigating in this 

vein is the use of meta-rules to determine whether to venture advice in specific graph-matching cases 

(McLaren & Ashley, 2001). For instance, a software layer on top of DOCE might apply rules (or 
simple thresholds) to evaluate specific attributes of the match, such as how well the language 

attributes match between the source and target, and use the results to decide whether the match results 

are good enough to report, as well as how many of the top N matches are acceptable. 
A fourth issue for further investigation is this: to what extent are our classifiers special purpose 

versus general purpose in their behavior? The classifiers may have incorporated idiosyncrasies of the 

particular data set that we used. These particularities include: a limited set of discussion topics, a 

particular cultural background (Israel and the U.K.), specific (and possibly varying) instructions the 
students received before the discussions started, and the age of the participants. Would the classifiers 

function equally well when used, for instance, in a school in the United States with completely 
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different discussion topics? Further research is necessary to investigate whether, and to what extent, 

the classifiers are transferable to different contexts. A related issue concerns the language of the 
contributions. Recall that language translation was done for the Hebrew discussion maps collected in 

Israel. It is, in general, necessary to have caution regarding conclusions based too strongly on 

translated text. The general, unanswered question is this: how would the system behave with 
classifiers trained (or given examples) in one language in classifying e-discussions in another 

language? It just so happened that the initial and best source of data came from Israel, even though our 

first objective was to standardize and evaluate English-language e-discussions. Testing the classifiers 

generated from the Israeli data against the maps collected in U.K. classrooms is in order, as well as 
developing classifiers from native English e-discussions. 

Fifth, we were unsuccessful in our plan to use the results of the simpler levels of the discussion 

graphs for classifications at the more complex levels. At the paired-shape level, we conducted some 
preliminary experiments using shape-level annotations as attributes for learning paired-shape 

classifiers: in some cases, we saw small improvements, in other cases no improvement at all. These 

experiments simulate a best-case scenario in which shape-level classifications are (virtually) 100% 

correct, since we used the human annotations rather than the automated classifications. There are 
several reasons why we did not follow up on this: (1) given that we only realized small improvements 

using “perfect” shape classifications we could not expect improvement using fallible real 

classifications, (2) since we always achieved better results for paired-shape classifiers than for shape 
classifiers, it seems unlikely we could have improved the better classifiers through the bootstrapping 

of worse ones, (3) paired-shape classifiers are based on the same data as shape-level classifiers, so it 

seems unlikely that reusing the same data in a different way would result in classification 
improvement, and (4) even if we could slightly improve the paired-shape classifiers’ accuracies using 

shape-level classifiers, we would have to pay with worse run-time performances, since running the 

more complex classifiers would always then require running of the less complex classifiers. At the 

cluster level, we also tried to use the results of the shape and paired-shape level within the cluster 
classifiers, but the overall results differed by a negligible amount in a series of preliminary 

experiments (+/-1% change in precision and recall (Mik�átko, 2007)). It is worth noting that the 

cluster level would also be subject to the additional computational overhead discussed above (i.e., the 
execution time of the cluster classifiers would increase if shape and paired-shape classifications would 

be required as part of cluster classification). Our general conclusion is that the idea of incorporating 

lower-level classifications as attributes of the higher-level classifications is not likely to improve 
results – and it may actually introduce problems such as the run-time issue; thus, we will abandon this 

direction in future work. 

Finally, the ultimate question we would like to answer is our second research question: do 

automatically identified contributions and patterns in student e-discussions help teachers in e-
moderating simultaneous, synchronous e-discussions? That is, will the ARGUNAUT system, and 

more specifically its deep alerts, really help teachers e-moderate multiple collaborating groups 

simultaneously? Put another way: are the deep alerts relevant and reliable enough to support teachers? 
While this is admittedly still an open question, there is at least some preliminary evidence that the 

ARGUNAUT system and approach will be successful. For instance, in a within-subject, 

counterbalanced study with two teachers, Wichmann et al. (2009) compared moderation with and 

without the support of ARGUNAUT’s basic awareness tools (i.e., the shallow alerts, e.g., the number 
and type of contributions made by students). Each teacher was asked to moderate three synchronous e-

discussions simultaneously, with as many as 4 students in each discussion, during each of their 
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moderation periods with and without support. They found that both teachers performed better on 60 

given tasks (e.g., who is the strongest collaborator in the discussion?) when given access to the 
awareness tools than when not given access to the tools. Schwarz and Asterhan (in press), in a design 

research study involving three moderators asked to simultaneously moderate as many as four groups 

of three students, evaluated the ability of the moderators to apply sophisticated e-moderation strategies 
(e.g., encouraging groups to open new perspectives) while dealing with the multiple, synchronous 

discussions. They were able to show, through protocol analysis, that it is possible for moderators to 

employ complex e-moderation strategies with the help of ARGUNAUT’s basic awareness tools. These 

results provide at least some indication that ARGUNAUT can support teachers as they e-moderate 
synchronous discussion groups in a classroom.  

But what about the added benefit of the deep alerts? As an adjunct to the Wichmann et al. (2009) 

study, an additional small study was conducted to explore this issue (Asterhan et al., 2008). A pre-
service teacher was asked to moderate a session consisting of two groups of six students each using a 

version of ARGUNAUT with no alerts (No-Alert condition) followed by an identical session using a 

version of ARGUNAUT with deep alerts (With-Alert condition). While knowledge-gain and task-

performance dependent measures did not vary across conditions, the teacher did spend less time 
finding answers in the With-Alert condition. This is important, since quick, real-time moderation is a 

fundamental goal of ARGUNAUT and just-in-time feedback is necessary to provide effective support 

for the learner. An additional illuminating observation was that in the With-Alert condition, the teacher 
initially insisted that students had not engaged in off-topic conversation, even though they had; it was 

not until the teacher saw the results of the Topic-Focus deep alert (see Table 1) that he realized off-

task conversation had, in fact, occurred. Taken together, these preliminary results suggest that (a) the 
ARGUNAUT system can be effective in supporting a teacher in e-moderating multiple, synchronous 

discussions, and (b) the deep alerts (i.e., the automated analysis) can be of additional benefit to the 

teacher in this task. Of course, these findings must be taken as preliminary and tentative, given the 

small size of the studies done so far, but the results are at least suggestive that the answer to the second 
research question will be affirmative. 

On the other hand, we have already anticipated some shortcomings in the deep alerts and have 

some clear ideas about how they might be extended to better support teachers (Scheuer & McLaren, 
2008). Most of the patterns found by the classifiers, especially shape and paired-shape classifications, 

are more descriptive than alerting in nature, that is, they point to general discourse patterns whose 

occurrence is not problematic per se. For instance, while teachers generally want their students to stay 
on-topic, should they intervene on every off-topic contribution? Such an intervention pattern would 

probably interrupt the flow of the discussion and cause more harm than good. But what if eight of ten 

total contributions are off-topic? In such a discussion something clearly is wrong and the teacher 

should probably intervene. These examples show that fine-grained patterns in isolation may have 
limited significance. However their aggregation may point to critical general situations, suggesting the 

need for teacher action. We have incorporated some simple aggregating indicators in the Moderators’ 

Interface to help with this; for instance, the Moderator’s Interface displays the total number of positive 
classifications per discussion, such that teachers can identify undesirable overall discussions at a 

glance (e.g., a discussion containing predominantly off-topic contributions). We envision going 

beyond simple aggregations, developing models on top of the classifications. The goal is to provide 

teachers with a clearer and more global picture by qualitatively summarizing the discussions. Such a 
model might define numeric conditions such as “If more than 30% of all links are part of argument-

counterargument clusters then the discussion qualifies as controversial.” A similar approach is taken 
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in the Group Leader Tutor (Israel & Aiken, 2007) that classifies the collaborative effort of a group 

along three dimensions by aggregating and combining counts of collaborative skills that have been 
displayed. Alternatively, one could use inductive inference. Labels might be assigned to complete 

discussions, and a machine-learned model computed that infers discussion-level classifications from 

shape and paired-shape classifications. 
Although simple numeric aggregations might be indicative of positive and negative classroom 

situations, they might also be misleading, since such approaches tend to lose the dynamic and fine-

grained aspects of discussion. For instance, a discussion may contain many Reasoned Claims, but on 

closer inspection there may be no interaction between students, that is, students may only respond to 
the original question shape (a case described in Scheuer & McLaren, 2008). One way to detect larger 

patterns, without using a simple aggregation approach, is a knowledge-engineering approach, in which 

complex graphical patterns are explicitly pre-defined based on shape and paired-shape classifications. 
A Graph Grammar formalism, such as described in Pinkwart, Ashley, Lynch, & Aleven (2008), may 

be an option here. Finally, we do not expect to detect all imaginable types of clusters automatically. In 

the end, the identification of some complex patterns will still be up to the teacher, who can 

qualitatively inspect the discussion maps with the aid of the highlighted alerts.  

RELATED WORK 

The closest research to ours is the work of Rosé and colleagues, who developed the text analysis tool, 
TagHelper (Rosé et al., 2008), also used in our work. Originally, they aimed at freeing corpus analysts 

from the tedious task of manually coding large amounts of data, rather than focusing on our objective: 

analyzing online discussions. In one application (Dönmez et al., 2005), they analyzed a corpus of 

1,250 coded text segments along multiple dimensions of argumentation in order to derive machine-
learned classifiers. Some of the phenomena in their work, like argument-counterargument chains and 

grounded claims, are quite similar to the categories we are interested in and have developed classifiers 

for. They achieved acceptable Kappa values of 0.7 or higher for six of seven dimensions. More 
recently, they developed an approach to providing dynamic support to dyads collaborating on a 

problem-solving task (Kumar, Rosé, Wang, Joshi, & Robinson, 2007). Similar to our approach, they 

perform online analysis of textual communication data, in their case, chat data. In contrast to our 
approach, their analysis results are not displayed to human teachers but are instead used to trigger 

automatic interventions, sent directly to students. An empirical study showed significant learning 

benefits in terms of analytical knowledge and conceptual understanding when the dynamic support 

was provided. The Rosé et al. work also differs from ours in that their automated analyses do not take 
into account structural or temporal data from the rich semantics of graphical discussions (i.e., typed 

shapes and links). They do, however, account for the more primitive structure and sequence of 

threaded discussions (Rosé et al., 2008). 
Goodman and colleagues (2005) also have applied a machine-learning approach to support 

collaborative problem solving in the EPSILON system. Peer groups work together on a problem in the 

domain of object modeling techniques (OMT). Their collaboration takes place within a shared 
whiteboard, similar to the shared workspaces of ARGUNAUT, in which diagrams (e.g., class 

diagrams) are constructed. Peers communicate via a text chat with a sentence opener interface; an 

agenda tool supports task management. In contrast to ARGUNAUT, dialogues are focused rather 

narrowly on a single domain (OMT) and on the coordination of task-related activities. The system 
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evaluates aspects concerning domain (e.g., domain knowledge of peers), task (e.g., progress in solving 

the task) and, similar to our objectives, possible problems in the collaboration process (e.g., 
unanswered questions). The sentence opener interface plays a critical role; it is used to automatically 

assign a dialogue act classification to each chat contribution. These dialogue acts are used as a meta-

level description of the discourse and serve as attributes for machine-learning analyses, bypassing the 
complicated task of natural language (or text) processing that we tackle in our work. The analysis 

approach of Goodman et al. (2005) differs to ours in other respects: our analysis is based on graphical 

argument diagrams, in which the relations between contributions are made explicit, that is, we know 

existing relations and their types; they analyze sequences of classified chat messages in which neither 
relations nor their types are explicitly represented. We apply automated shallow language processing 

techniques to approximate the content of messages; for the same purpose, they use simple human-

defined keyword lists. Another difference is how the analysis results are used: We support students 
indirectly via a moderator, whereas they follow more of an ITS-style approach: Some of the results are 

displayed immediately to the peers via meters, while direct support is provided by means of an 

artificial peer agent that verbally interacts with the participants.  

Soller’s work, also in the context of EPSILON, was concerned with the analysis of chat 
conversations that accompanied activities in a problem-solving environment (Soller, 2004). The chat 

tool was enhanced by a sentence-openers interface to structure users’ communication (the same one 

used by Goodman et al.) and to make automated analysis feasible, similar in some respects to how the 
pre-defined shapes and link types of ARGUNAUT make automated analysis tractable. The analysis of 

EPSILON aimed at identifying episodes in which students communicated their knowledge to their 

peers (“knowledge sharing episodes”) and episodes in which they failed to do so (“knowledge sharing 
breakdowns”). She computed machine-learned classifiers, more specifically, Hidden Markov Models 

(HMMs), from data annotated as knowledge sharing episodes and knowledge sharing breakdown 

episodes. In a second step, she investigated reasons for knowledge sharing breakdowns using 

multidimensional scaling (MDS) and clustering techniques. In this way she identified different 
patterns (clusters) of successful knowledge sharing and knowledge sharing breakdowns. The key 

differences to our work are: (1) Soller analyzes sequences of actions, whereas we analyze sub-graphs 

within a discussion map that are sometimes sequential, sometimes parallel, (2) the textual content of 
contributions is not analyzed in Soller’s work; it relies exclusively on dialogue acts, which are 

automatically inferred from the selected sentence openers, (3) she uses a sequential learning approach 

that can be applied to sequences of arbitrary length whereas our ML approach is currently restricted to 
single shapes and pairs, (4) a sequential learning approach captures dependencies between 

contributions naturally (because it assumes by design a sequential dependencies); our ML approach 

with flat representations requires a pre-processing step to encode sequential (and other) dependencies 

explicitly in its attribute space. On the other hand HMMs cannot be used to analyze graphical 
structures, such as the ones we are working with in ARGUNAUT. Also, Soller’s approach requires a 

pre-segmentation of knowledge-sharing sequences; a restriction that introduces a new potential source 

of error in actual practice. Furthermore, our machine learned classifiers are more reliable: Soller 
reports an accuracy of 74%, which we re-calculated to a Kappa of 0.47, considerably lower than our 

best six machine-learned classifiers. 

Ravi and Kim (2007) analyzed threads in a technical discussion board in order to call an 

instructor’s attention to threads that contain unanswered questions. They developed two classifiers 
(linear SVMs), one for detecting questions (QC), and a second for detecting answers (AC). They 

achieved accuracies of 88% (QC) and 73% (AC). Similar to our approach, they used shallow language 
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attributes, although somewhat more elaborated ones than the ones we used (e.g., in addition to uni- 

and bigrams they also use tri- and quadrograms). In addition to the classifiers they implemented a rule-
based thread profiler that assigns one of four typical profiles to threads (accuracies vary between 70% 

and 93%). A follow-up to this work, Kim et al. (2008) describe PedaBot, a threaded discussion system 

that scaffolds students’ discussions by retrieving messages from past discussions that are possibly 
relevant to the current context. Discussions are about technical topics (e.g., operating systems). The 

system is based on a text corpus (extracted from two text books), which has been analyzed to (1) 

determine relevant topics (corresponding to book chapters and sections), (2) determine relevant 

technical terms (corresponding to glossary entries) and (3) develop a topic profiler (a classic 
information retrieval term frequency–inverse document frequency (tf-idf) classifier that assigns topics 

to messages based on technical terms contained within them). The topic profiler, in conjunction with a 

further application of tf-idf term weighting, can then be used to fetch possibly relevant messages from 
prior discussions. The key differences between our approach and theirs are: (1) their analytical 

procedure is enhanced with domain knowledge (topics and technical terms) and hence is very domain-

specific; our approach, on the other hand, while likely tied somewhat to our “domain” is less strictly 

so, (2) the output of PedaBot and its predecessor is also more specific (i.e., a concrete message instead 
of an abstract classification) and (3) the development of the topic profiler did not require annotation 

efforts. Finally, as with the other prior work already mentioned, the Kim et al. work does not 

specifically take into account structure and temporal attributes to support its classification approach, as 
do both our machine learning and DOCE approaches. 

Jeong (2003; 2005; 2006) has developed a software tool called the Discussion Analysis Tool 

(DAT) that uses sequential analysis to capture and model sequences of speech acts. DAT models an 
online threaded conversation as a network of transitional probabilities, called a transitional state 

diagram, building the diagram from pre-labeled data. For example, in one diagram generated by DAT 

from real data a “challenge” act occurred with a probability of 0.52 after an “argument” was made, 

while an “explanation” followed an “argument” with a probability of 0.08. DAT has been used, for 
instance, to evaluate the interactions that are most likely to promote critical thinking (Jeong, 2003) and 

the effects of supportive language (e.g., I agree, ask questions) on subsequent group interactions 

(Jeong, 2006). DAT can also be used to evaluate whether threaded conversations deviate from a norm; 
it creates a Z-score matrix to show probabilities that were significantly higher or lower than expected 

in one state diagram compared to another. While Jeong shares our goal of analyzing collaborative, and 

argumentative, discussions, DAT is intended more as a post-hoc analysis tool for supporting various 
types of group interaction studies, and not for online “live” analysis. In particular, Jeong’s system does 

no language analysis; it depends on human post-hoc coding (or real-time labeling) to identify the 

individual acts. 

Sequential pattern mining algorithms (Agrawal & Srikant, 1995), which discover frequently 
occurring sequences of activities in a dataset, are an intriguing possibility for finding salient patterns 

of student collaboration. Such algorithms have, for instance, been used to account for both language 

and contextual attributes – to a reasonable degree of accuracy – in classifying email messages 
(Carvalho & Cohen, 2005). Sequential pattern mining algorithms have also been tried in collaborative 

learning scenarios. For instance, Kay, Maisonneuve, Yacef, and Zaïane (2006) used a variant of the 

Generalized Sequential Pattern Algorithm (GSP) (Srikant & Agrawal, 1996) to identify common 

interaction patterns in a source repository and Wiki log data from student software development 
projects. The authors’ goal was to build tools that can flag student interactions that are indicative of 

problems, so that the tools can later be used to assist students in recognizing problems in new 
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interactions. However, in contrast to log records, which contain simple events such as “file X was 

modified,” the ARGUNAUT discussion maps contain natural language and highly complex graph 
structures, thus making the Srikant and Agrawal approach far less likely to succeed. Furthermore, the 

Srikant and Agrawal approach is an unsupervised learning approach, searching for frequently 

occurring patterns, whereas our classifiers target predefined and pedagogically relevant categories. 
Furthermore, Rosé et al. (2008) were able to show that designing or selecting appropriate linguistic 

and contextual features may be more important than using sophisticated supervised sequential learning 

algorithms, such as those used in approaches like Carvalho and Cohen (2005).  

A more manual approach to pattern mining was also evaluated on the ARGUNAUT project 
(Harrer et al., 2007). Their tool was designed for mining user-specified sequences of actions in the 

discussions (i.e., pattern rules), such as “create shape”/“add link”/“modify text.” The tool was able to 

detect some commonly occurring patterns. However, this algorithm, which does exact-matching, was 
unable to detect patterns that differed in subtle and imprecise ways from one another. A key objective 

of our work on the DOCE algorithm was to develop a tool that could perform such inexact matching. 

CONCLUSION 

Students in classrooms around the world are starting to use visual argumentation tools for e-

discussions. A key goal of such tools is to help students learn to discuss and argue in a well-founded, 

rationale manner. In order to effectively e-moderate multiple, synchronous discussions, teachers need 
a tool that provides summarized feedback regarding the on-going e-discussions. The ARGUNAUT 

system represents an important step toward this goal; it is designed to support a teacher in e-

moderating multiple conversations through “alerts” that display interesting and critical events in the 

discussion, such as off-topic contributions, question-answer pairs and chains of opposition. The more 
advanced of ARGUNAUT’s alerts, based on advanced AI techniques, leverage the structure (e.g., the 

types of shapes used by students, the links between shapes), textual contributions made by students, 

and the temporal sequence of the contributions. 
While this project was driven by the real requirements of a new and emerging classroom 

paradigm, it was also guided by a basic research question: is it possible to automate the identification 

of salient contributions and patterns in student e-discussions? To address this research question, we 
undertook a systematic and empirical approach, described in full detail in this paper. First, we 

developed machine-learned classifiers that analyze structure, natural language text, and the temporal 

sequence of graphical discussions in order to classify single contributions and pairs of related 

contributions. After extensive experimentation, we were able to determine that six of the classifiers 
work successfully, closely emulating the annotations of humans who had earlier coded the e-

discussions. Since the classical supervised machine learning approach was not applicable to the 

variable nature of clusters of student contributions (i.e., arbitrary numbers of contributions, as in, for 
instance, a chain of opposition), we next developed a more flexible graph-matching algorithm, called 

DOCE, to find and identify clusters of variable size, given example clusters as input. Our initial 

empirical results at the cluster level also showed the feasibility and potential of this new approach: 
five of the clusters of interest achieved good enough results to be included in the live ARGUNAUT 

system. Our overall results, while obtained with relatively small sample sets and thus not providing a 

conclusive answer to the main research question, indicate that it is very likely that automated analysis 

of contributions and patterns in student e-discussions is possible. 
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Due to the positive results, we integrated all of the most successful classifiers, a total of eleven, 

via Web Service technology, into the overall ARGUNAUT system to provide teachers with tools to 
monitor and analyze discussions at different levels of granularity (shapes, paired-shapes, clusters). It is 

important to note that the classifiers are not bound to the ARGUNAUT system; the Web Services 

architecture allows us to use the classifiers in other e-discussion contexts. Next steps will include 
testing our classifiers more exhaustively, with more data, and in particular investigating accuracy in 

contexts in which the discussion data differs more significantly from our training data. Most critically, 

we need to determine how useful the provided alerts are for teachers in actual, fast-paced moderation 

scenarios. In particular, while we have started to address our second research question – do 
automatically identified contributions and patterns in student e-discussions help teachers in e-

moderating simultaneous, synchronous e-discussions? – there is still much work to do in this direction. 

Are the specific categories helpful enough for a teacher to improve his or her moderation? Are the 
predictions accurate enough? Is the summarization of activities at the right level to support fast-paced 

e-moderation? We suspect that the current alerts may identify too fine-grained patterns. As discussed 

above, we will next explore ways to derive higher-level characterizations based on aggregation and 

combinations of fine-grained patterns that highlight student problems more clearly.  
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