


Artificial Intelligence in 
STEM Education

Artificial intelligence (AI) opens new opportunities for STEM education in K-12, higher education, and 
professional education contexts. This book summarizes AI in education (AIEd) with a particular focus on the 
research, practice, and technological paradigmatic shifts of AIEd in recent years.

The 23 chapters in this edited collection track the paradigmatic shifts of AIEd in STEM education, discussing 
how and why the paradigms have shifted, explaining how and in what ways AI techniques have ensured the 
shifts, and envisioning what directions next-generation AIEd is heading in the new era. As a whole, the book 
illuminates the main paradigms of AI in STEM education, summarizes the AI-enhanced techniques and 
applications used to enable the paradigms, and discusses AI-enhanced teaching, learning, and design in STEM 
education. It provides an adapted educational policy so that practitioners can better facilitate the application of 
AI in STEM education.

This book is a must-read for researchers, educators, students, designers, and engineers who are interested in 
the opportunities and challenges of AI in STEM education.
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Artificial Intelligence in STEM Education: 
Current Developments and Future Considerations

Fan Ouyang, Pengcheng Jiao, Amir H. Alavi, and Bruce M. McLaren

1.1 � Introduction

During the last decade, applications of artificial intel-
ligence (AI) methods in various academic fields have 
significantly increased due to the rapid develop-
ment of data processing and computing technolo-
gies. Artificial Intelligence in Education (AIEd) is a 
well-established, interdisciplinary field that uses AI 
methods to facilitate instruction, learning, and deci-
sion-making processes (Hwang et  al., 2020; Holmes 
et al., 2019; Roll & Wylie, 2016; O’Shea & Self, 1986; Self, 
2016). AIEd can assist instructors in various instruc-
tional processes, such as automatically evaluating 
students’ performance (Smith et al., 2019), providing 
recommendations and feedback to students (Bywater 
et  al., 2019), or identifying at-risk students (Holstein 
et al., 2018; Hung et al., 2017). AIEd can also support 
student learning processes, such as tutoring students 
(VanLehn, 2006, 2011), providing learning materials 
based on students’ need (Chen, et al., 2020), diagnos-
ing students’ strengths, weaknesses, and knowledge 
gaps (Liu et  al., 2017), supporting student self-reg-
ulated learning (Aleven et al, 2016; Azevedo et al, 
2008), or promoting collaboration between learners 
(Aluthman, 2016; Walker et al., 2009). AIEd can help 
administrators and managers monitor attrition pat-
terns across colleges or departments and make deci-
sions about their program developments (Hwang 
et  al., 2020). Different AI techniques (e.g., artificial 

neural networks, ANN; deep learning, DL) have been 
successfully deployed to provide intelligent learning–
teaching environments for building prediction mod-
els, learning recommendation, detecting behavior, 
etc. (Chen et al., 2020; Scruggs et al., 2020).

The emergence and continued work of AIEd has 
provided extensive opportunities for innovations 
in the field of science, technology, engineering, and 
mathematics (STEM) education (Xu & Ouyang, 2022). 
STEM education focuses on the integration of the 
subjects in STEM to improve students’ interdisciplin-
ary domain knowledge and understanding, as well 
as higher-order thinking and problem-solving skills 
(Kennedy & Odell, 2014; McLaren et al., 2010). STEM 
education usually faces challenges such as generating 
STEM problems, tracking students’ learning, and eval-
uating their performance. The implementation of AI 
within instructional systems has the potential to solve 
developmental challenges in STEM education through 
creating active, interactive, or adaptive learning envi-
ronments, automatically generating STEM problems 
and exercises, and evaluating or predicting students’ 
performances (Alabdulhadi & Faisal, 2021; Jeong et al., 
2019; Walker et  al., 2014). For example, Yannier et  al. 
(2020) introduced a mixed-reality AI system supported 
with computer vision algorithms to create and follow 
children’s active learning behaviors in STEM educa-
tion. In this book, Chapter 3 by Yannier et al. further 
introduces a new genre of Intelligent Science Stations, 
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a mixed-reality system that bridges the physical and 
virtual worlds to improve children’s inquiry-based 
STEM learning. In addition, intelligence tutoring sys-
tems (ITSs) equipped with machine learning (ML) 
techniques have been used to predict students’ learn-
ing preferences and time to complete specific tasks, 
and categorize them into clusters of similar properties 
to form learning groups (Alabdulhadi & Faisal, 2021). 
Yağci and Çevik (2019) proposed automatic AI-based 
algorithm models to predict the academic students’ 
achievements in science courses (physics, chemistry, 
and biology) and put forward suggestions to facilitate 
students’ successful learning.

Currently, AI-directed STEM education, 
AI-supported STEM education, and AI-empowered 
STEM education are known as three main paradigm 
shifts transforming AI in STEM. This opening chap-
ter discusses various aspects of these paradigm shifts 
supported by the AIEd frameworks. Their capacity to 
design AI-based STEM educational methods is high-
lighted. The chapter provides further insight into the 
advantages, disadvantages, and future trends of AI 
applications in STEM education.

1.2 � Paradigmatic Shifts of AI 
in STEM Education

AIEd has undergone several research, practice, and 
technological paradigmatic shifts in its brief history 
(Ouyang & Jiao, 2021). The first major shift is AI-directed 
(i.e., learner-as-recipient) education, which is based 
on behaviorism theory (Skinner, 1953, 1958). In this 
paradigm shift, the primary role of AI technology is 
to present STEM knowledge and/or course content to 

students, who receive the service of knowledge rep-
resentations and learning pathways provided by AI 
systems. For example, Stat Lady Intelligent Tutoring 
System (Shute, 1995), Cognitive Tutors (Koedinger 
et  al., 1997), and ASSISTment Builder (Razzaq et  al., 
2009) are categorized within this paradigm. The theo-
retical underpinning of the second paradigm called 
AI-supported (i.e., learner-as-collaborator) education 
is cognitive and social constructivism, in which the 
AI provides learning supports as the core component 
and students act as active collaborators to learn and 
progress. For example, dialogue-based tutoring sys-
tems (DTSs) (Pai et al., 2021) and exploratory learning 
environments (ELEs) (Rosé et al., 2019) are categorized 
in this paradigm. The theoretical underpinning of the 
third paradigm called AI-empowered (i.e., learner-as-
leader) education is complex adaptive system theory, 
in which AI serves as a dynamic agent for empow-
ering students’ active learning. Students in this par-
adigm can be effective leaders who actively interact 
with AI systems and dynamically adjust self-directed 
learning. Emerging concepts such as human-centered 
AI systems (Riedl, 2019), human–AI collaboration 
(Hwang et  al., 2020), or human-centered artificial 
intelligence in education (Yang et al., 2021) can be cat-
egorized into this paradigm.

Figure 1.1 shows the number of AIEd publications 
between 2010 and 2020. As seen, there has been a 
growing interest in studies related to all three para-
digmatic shifts. Interestingly, a large portion of 
these studies are dealing with AI-supported and 
AI-empowered paradigms (Figure 1.1).

Although these paradigmatic shifts are general edu-
cational frameworks, they can also be applied to STEM 
education more generally. This process involves grad-
ual reshaping of STEM education from the teacher-
directed instruction mode to the student-centered 

FIGURE 1.1
Number of publications related to AIEd under three theoretical paradigms.
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learning mode (see Figure 1.2). The following sections 
discuss the three paradigms of AIEd in STEM edu-
cation in more detail – about the applications of the 
three paradigms in STEM education, the current AI 
applications for STEM education under these three 
paradigms, and related design and research.

1.2.1 � Paradigm One: AI-Directed STEM Education

In the AI-directed paradigm, AI is equipped with 
the subject knowledge and guides the whole learn-
ing process in which the learner acts as a recipient 
to follow the AI-enabled learning path (Ouyang & 
Jiao, 2021). Behaviorism emphasizes prior systematic 
sequencing of learning content for the learner and 
guiding the learner to achieve an expected outcome 
(Skinner, 1953). For the AI-directed paradigm, learn-
ing is about helping learners reinforce their knowl-
edge through a programmed instruction pattern or 
learning path. For instance, when learners are learn-
ing new concepts, the pattern requires immediate 
feedback for incorrect responses and the presentation 
of stimuli to guide students to mastery (Greeno et al., 
1996; Schommer, 1990; Skinner, 1958). The student is 
required to respond to preprepared knowledge by 
following predetermined learning procedures and 
pathways and by continuously performing intended 
learning activities set by the AI until the desired goal 
is achieved (Burton et al., 2004; Holmes et al., 2019; 
Koschmann, 2009). Under the AI-directed paradigm, 
AI systems share similar characteristics to Skinner’s 
‘teaching machine’ (Skinner, 1958), which presents 
learners with logical subject matters and different 
learning pathways, that require learners to respond 
overtly, show they know the correct knowledge 
immediately, and move on to personalized learning 
paths (Burton et al., 2004).

For example, Shute (1995) introduces the Stat Lady 
Intelligent Tutoring System, which presents statistics 
content in a predefined order and requires learn-
ers to follow the learning sequence. Koedinger et al. 
(1997) use Cognitive Tutors in practical algebra cur-
riculums to help students understand and use mul-
tiple representations of information. Mitrovic (2003) 
presents a Web-enabled Intelligent SQL Tutor in an 
introductory database course to observe students’ 
actions and adapts to their knowledge and learn-
ing abilities. Moreover, Chin et al. (2010) and Biswas 
et al. (2016) use teachable agents that enable students 
to draw on the social metaphor of teaching to help 
them learn. Razzaq et  al. (2009) utilize ASSISTment 
Builder as a tool to support teachers to effectively cre-
ate, edit, test, and deploy tutor content in mathematics 
courses. McLaren et al. (2011) introduce a web-based 
intelligent tutor, namely, the Stoichiometry Tutor, to 
support students in chemistry learning. Overall, in 
the AI-directed paradigm, the AI directs the whole 
learning process, while the learner solves problems, 
engages in cognitive inquiry, and ultimately achieves 
learning goals by receiving AI services.

From the perspective of the AI-directed paradigm, 
the application of AI technologies in STEM education 
is a process of AI-reinforced instruction and learning. 
On the one hand, the instructor’s teaching in STEM 
education is released or replaced by AI techniques. 
In particular, AI usually serves as a tutoring platform 
or a pedagogical agent to help instructors deliver 
teaching materials and resources, impart informa-
tion and knowledge to students, and carry out teach-
ing activities (Anderson et al., 1990; Shute, 1995). For 
instance, the ACT Programming Tutor system gen-
erates a production rules database for programming 
knowledge and presents students with a personalized 
learning sequence by calculating the probability of 

FIGURE 1.2
The shifts of three paradigms of AIEd in STEM education.



6 ﻿Artificial Intelligence in STEM Education

them learning these rules (Anderson et al., 1990). On 
the other hand, a student’s learning in STEM educa-
tion is reinforced through behaviorism-oriented AI 
techniques. For example, intelligent tutors train and 
supervise students mastering knowledge, complet-
ing homework, and passing examinations (Chin et al., 
2010; Koedinger & Corbett, 2006; McLaren et al., 2011; 
Mitrovic et  al., 2001; VanLehn, 2011). Consequently, 
the AI-directed paradigm mainly utilizes AI technol-
ogy to represent knowledge in a certain instructional 
pattern or learning pathway, in order to impart course 
materials during instruction and learning in STEM 
education.

1.2.2 � Paradigm Two: AI-Supported STEM Education

The AI-supported paradigm indicates that the AI 
system loosens its control and acts as a learning sup-
port system, while the role of the learner changes to 
that of a collaborator working with the system, focus-
ing on the individual self-directed learning (Ouyang 
& Jiao, 2021). This paradigm assumes that learning 
occurs when learners interact with people, resources, 
and technology in the social environment in light of 
social constructivism learning (Bandura, 1986; Liu 
& Matthews, 2005; Vygotsky, 1978). According to 
this paradigm, the active and bidirectional interac-
tion between the learner and the AI system should 
be formed, optimizing the learner-centered learning 
context. In other words, the AI system continuously 
collects data from the learner during the learning 
process as incremental input to optimize the stu-
dent model, while the learner achieves better or more 
effective learning as a result of the interaction with 
the AI system (Baker & Smith, 2019; du Boulay, 2019; 
Rose et al., 2019). Overall, the AI-supported paradigm 
promotes learner-centered learning through effective 
interaction and ongoing collaboration between learn-
ers and the AI systems.

In STEM education, various AI implementations 
have been established to enable effective interaction 
between AI systems and learners, representative of 
which are dialogue-based tutoring systems (Pai et al., 
2021) and exploratory learning environments (Rosé 
et al., 2019). On the one hand, these AI systems accu-
rately understand the learner’s learning situation by 
tracking their learning process and collecting and 
analyzing multimodal data about the learner. For 
example, Gerard et  al. (2019) present a natural lan-
guage processing tool embedded in student scientific 
explanations in learning. This tool can automatically 
score students’ responses based on human-designed 
rubrics, adaptively guide students’ learning based on 
the scoring results, and provide real-time feedback 
to the teacher on learning status. On the other hand, 

sustained interaction between learners and the AI 
systems can improve understanding of the system’s 
decision-making process and appropriate adjustments 
for the upcoming learning activities. For example, 
Caballé et al. (2014) introduce a learning resource, the 
Collaborative Complex Learning Resource (CCLR), 
in a software engineering course. CCLR virtualizes 
the collaborative learning process, enabling students 
to observe how avatars discuss and collaborate, how 
discussion threads grow, and how knowledge is con-
structed, refined, and consolidated. Berland et  al. 
(2015) use a tool AMOEBA, with real-time analyses 
of students’ programming progressions, to support 
collaboration in a programming classroom setting in 
real time among middle and high school students. In 
summary, the learner follows the predefined learning 
path of the AI systems in the AI-directed paradigm, 
while in the AI-supported paradigm, the learner and 
the AI systems form a continuous mutual interaction, 
thus facilitating the development of learner-centered 
learning (Ouyang & Jiao, 2021).

From the perspective of Paradigm Two, major edu-
cational subjects (i.e., instructor, student) collaborate 
with the AI technologies to enhance the instruction 
and learning process. On the one hand, the instruc-
tional process in STEM education can be understood 
as a complementarity process between AI and the 
instructor. As an assistant, AI in STEM education 
can help instructors carry out instructional activities 
through automated question generation, assessment, 
feedback, and monitoring. For instance, Smith et  al. 
(2019) propose a multimodal computational model 
that enables a more accurate portrait of learners by 
automatically analyzing students’ writing and draw-
ing in science learning. Bywater et al. (2019) describe 
a teacher-responding tool based on natural language 
processing technology that automatically generates 
response suggestions to assist teachers in providing 
personalized feedback to students in a mathemat-
ics course. On the other hand, student’s learning in 
STEM education can be understood as a collaborative 
process between AI and students. The AI system acts 
as a support tool that does not dominate the learning 
process, while the student works with the system and 
thus focuses more on the individual student’s learn-
ing process. In this case, a collaborative relationship 
is established between AI techniques and students 
during STEM education. For example, Howard et al. 
(2017) created an intelligent dialogue agent that helps 
college students learn Computer Science concepts. 
This agent tracks the student’s learning behavior and 
tries to guide them toward more productive behavior. 
Di Mitri et al. (2021) introduced CPR Tutor, a real-time 
multimodal feedback system for cardiopulmonary 
resuscitation (CPR) training, to help students correct 
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mistakes and improve their learning performance. 
In this book, Chapter 15 by Zhu et al uses various 
machine learning methods (e.g., text classification, 
transition rate analysis and sequential pattern min-
ing, network analysis, and multilevel modeling) 
to understand the relationships between students’ 
learning outcomes and processes in terms of students’ 
discourse, multifaceted engagement, self-regulation, 
as well as evaluation behaviors during collaborative 
inquiry learning. In summary, the AI-supported par-
adigm focuses on using AI technologies to improve 
learners’ engaging and collaborative roles to support 
individualized learning in STEM education.

1.2.3 � Paradigm Three: AI-Empowered 
STEM Education

Driven by learner agency and instructor agency, 
the AI-empowered paradigm brings together mul-
tiple learners and instructors using AI as a support 
engine to empower quality instruction and learning. 
The complexity theory as the theoretical foundation 
of the AI-empowered paradigm holds education as a 
complicated intelligent system (Mason, 2008), which 
enhances learner intelligence through a collaborative 
approach between multiple agents. Moreover, stake-
holders in this system should realize that AI tech-
nology is part of a complex system that consists of 
teachers, students, and other humans from the point 
of view of system design and application (Riedl, 2019). 
Numerous emerging concepts are proposed to build 
synergistic collaboration in the complex system by 
considering human conditions, expectations, and con-
texts. These typical concepts include human–machine 
cooperation (Hoc, 2000), human-centered AI systems 
(Riedl, 2019), human–AI collaboration (Hwang et al., 
2020), human-centered artificial intelligence in edu-
cation (Yang et  al., 2021), etc. In the AI-empowered 
paradigm, AI enables augmented intelligence by pro-
viding learners and teachers with higher transpar-
ency of the learning process, more accurate feedback, 
and more practical advice (Riedl, 2019; Yang et  al., 
2021). AI systems support teachers in improving their 
understanding of the teaching and learning process, 
interpretation and personalized learning-oriented 
support, further enhancing student-centered learn-
ing activities (Baker & Smith, 2019; Holmes et al., 2019; 
Roll & Wylie, 2016). The learners, with empowerment 
of AI, lead their learning processes, hedge the risks 
of AI-automated decisions, and develop more effec-
tive learning (Gartner, 2019). Overall, the trends in 
the AI-empowered paradigm reflect the ultimate goal 
of AI applications in education, which is to enhance 
human intelligence, capability and potential (Gartner, 
2019; Law, 2019; Tegmark, 2017).

Human–machine cooperation systems can achieve 
the AI-empowered goal by integrating AI technolo-
gies and human decision-making in STEM education. 
On the one hand, emerging intelligent technologies 
(e.g., deep learning, brain–computer interfaces, etc.) 
facilitate the collection and analysis of multimodal 
data, while ensuring transparency and accuracy. For 
example, Arguedas et al. (2016) use a fuzzy logic model 
to provide emotional feedback in an online technol-
ogy course. In this way, students’ emotional data is 
collected by AI technologies to make a more accurate 
representation of their emotions, enabling students 
to be aware of their own emotions, assess these emo-
tions, and provide appropriate affective feedback. In 
turn, the role of AI has changed as human–artificial 
cognition has evolved (Hwang et  al., 2020). On the 
other hand, humans can dynamically optimize the 
decision-making process for teaching and learning 
through the AI’s intelligent, personalized feedback. 
For example, Yağci and Çevik (2019) use artificial neu-
ral networks to predict students’ academic achieve-
ments in science courses (physics, chemistry, and 
biology) and put forward suggestions to support stu-
dents. Holstein et al. (2019) use Lumilo, wearable, and 
real-time learning analytics glasses, to help teachers 
support students’ learning in AI-enhanced physical 
classrooms. In this book, Chapter 3 by Yannier et al. 
introduces a new genre of Intelligent Science Stations, 
a mixed-reality systems that bridge the physical and 
virtual worlds to improve children’s inquiry-based 
STEM learning. Chapter 21 by Hutt et al designs a 
new app that leverages user modeling techniques 
(e.g., behavior and affect-sensing) to direct interview-
ers to learners at critical, theory-driven moments as 
they learn with AIEd technologies in the classroom. 
The research uses machine learned models to gain 
a deeper insight into students’ behaviors and their 
motivations in a qualitative way, thus furthering AIEd 
research. In summary, in the AI-empowered para-
digm, emphasis is placed on generating adaptive, per-
sonalized learning through a synergistic interaction, 
integration, and collaboration between artificial intel-
ligence systems and human intelligence (Arguedas 
et al., 2016; Yağci & Çevik, 2019; Yannier et al., 2020).

From the perspective of Paradigm Three, the appli-
cations of AI in STEM education will transform into 
a new level, namely, AI-enhanced co-design pro-
cesses. Educational subjects (i.e., instructor, student) 
take agency and decide how to use AI technologies to 
enhance their instruction or learning processes and 
qualities (Bower, 2019). On the one hand, instructors 
take advantage of AI technologies to predict students’ 
performance, identify the potential risk students, and 
analyze students’ engagement, thereby improving 
STEM education (Hussain et al., 2018; Yağci & Çevik, 



8 ﻿Artificial Intelligence in STEM Education

2019; Yannier et al., 2020). For instance, Hussain et al. 
(2018) use machine learning techniques to analyze 
students’ engagement in an online social science 
course, and instructors can use the analysis results 
to adjust their teaching and thus promote students’ 
engagement. On the other hand, in STEM education, 
students can use the right AI technology to avoid 
decision-making risks and become the owners of their 
own learning. In this case, AI provides personalized 
learning path recommendations and correspond-
ing knowledge graphs to support student learning, 
based on the understanding of a student’s knowledge 
structure and learning preferences (Arguedas et  al., 
2016; Chi et al., 2018; Wang et al., 2017). For example, 
a knowledge graph presents connections between 
knowledge points and concepts through graph struc-
ture, enabling students to differentiate and master 
complex concepts in STEM education (Chi et al., 2018; 
Wang et  al., 2017). Based on the learner-centered 
principle, the AI-empowered paradigm uses AI tech-
nologies to make learners the center leader in STEM 
education, where learners become active participants 
rather than passive receivers.

1.3 � Discussion and Future Considerations

AI systems can truly revolutionize STEM education 
via reducing teacher burdens, personalizing learning 
experiences for students, and transforming the roles 
of teacher and student. Furthermore, AI technolo-
gies can free teachers and students from redundant, 
elementary tasks and focus on more advanced, com-
plicated tasks (Holstein et al., 2019; Hwang et al., 2020; 
VanLehn, 2011). For example, automatic evaluation 
techniques help reduce instructors’ assessment tasks, 
while automatic translation tools improve the effi-
ciency of students’ language learning (Xu & Ouyang, 
2021). AI applications can help instructors create and 
convey course content and materials (Razzaq et  al., 
2009) and provide students with tailored learning 
experiences, such as personalized tutoring (Mitrovic, 
2003; Yang & Zhang, 2019). These techniques can also 
work as a supplementary assistant to serve STEM 
education and help teachers and students understand 
the teaching and learning process and the environ-
ment by continuously tracking data on the learning 
process (Figaredo, 2020; Papamitsiou & Economides, 
2014). For example, AI-enabled algorithms and mod-
eling can be used to predict students’ learning perfor-
mance (Yağci & Çevik, 2019), while wearable devices 
can be utilized to track students’ learning behaviors 
(Holstein et  al., 2019). AI in STEM education can 

potentially transform the teacher–student relation-
ships from teacher-directed to student-centered 
learning. In traditional STEM courses, instruction 
refers to the effective transfer of teachers’ knowl-
edge and skills to students, which is characterized by 
teacher-directed, performance-oriented, and highly 
structured teaching model (DynaGloss, 1998). In con-
trast to the traditional modes where the teacher plays 
a substantial leadership role, designing and leading 
the teaching and learning process, the role of the 
teacher may shift to that of a supporter, collaborator, 
and facilitator in AI-enabled STEM education (Xu & 
Ouyang, 2021).

However, there are major challenges ahead of AI 
applications in STEM education, including the ambi-
guity of the responsibility of AI, overreliance on AI 
technologies, AI bias, and invasion of data privacy. 
When AI functions as a part in STEM education, it 
can partially take on human responsibilities but can 
hardly replace humans, as AI-empowered agents 
lack social competence and self-reflection even if 
they possess human-like intelligence. In STEM edu-
cation, instructors are expected to impart knowledge 
to students, proactively reflect on instructional strate-
gies, and adapt teaching appropriately based on the 
understanding of student learning (Collinson, 1996; 
Turner-Bisset, 2001). Peers can collaborate and com-
municate with students in different learning situa-
tions and establish interactions in social life (Muhisn 
et al., 2019). Therefore, relevant questions are raised: 
Can AI replace instructor responsibilities in STEM edu-
cation? Whether and how does the use of AI technol-
ogy improve the quality of STEM education and improve 
teaching?(Xu & Ouyang, 2021). Although AI can free 
teachers and students from redundant tasks in STEM 
education, it still lacks the ability to solve critical prob-
lems (Gary, 2019; Selwyn, 2016). For example, how to 
develop learners’ interest and motivation and foster a 
desire to learn. Hence, when using AI techniques in 
STEM education, teachers need to consider why and 
how they should use AI. Are the reasons for using AI 
to reduce their workload or improve efficiency? Will 
the use of AI technology lead to decreased students’ 
performance or other ethical issues? Third, privacy is 
a key challenge in applying AI in STEM education. 
To some extent, AI technologies such as educational 
data mining and learning analytics have the poten-
tial to enhance the teaching and learning process in 
STEM education. However, in the complex process 
of collecting, storing, transmitting, and using data, it 
may easily cause the disclosure of personal privacy 
or improper use of data (Zawacki-Richter et al., 2019). 
Before applying AI in STEM education, instructors 
should consider the risks of using technologies and 
pay attention to protecting students’ privacy.
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AI applications and research need to address the 
complexity of STEM education. The challenge is how 
to match the complexity of learning processes with 
the complexity of AI systems and the complexity of 
educational contexts (Ouyang & Jiao, 2021). AI technol-
ogy should be designed to offer constant communica-
tions with and updates to instructors and students, to 
align AI models with learners’ learning values, and 
to support the emergent, changing learning processes 
(Segal, 2019). Furthermore, AI applications should 
also consider how to empower stakeholders in reflect-
ing on teaching and learning processes and goals, 
and accordingly how to inform AI systems to adapt 
and lead an iterative cycle of design, instruction, and 
development.

Development of AIEd in STEM education has expe-
rienced paradigm shifts from the traditional teacher-
centered approach to the AI-enabled, learner-centered 
strategy (Ouyang & Jiao, 2021). The AI techniques 
have been thoroughly involved in AIEd to ensure 
such instructional changes, from designing teaching 
strategy using machine learning to predict learners’ 
performance, and from capturing learners’ responses 
using natural language processing (NLP) to analyz-
ing learners’ reactions using pattern recognition (PR) 
in teaching (Chen et  al., 2020; Ouyang & Jiao, 2021; 
Xu & Ouyang, 2021). According to the AI technique 
perspective, the characteristics of AI technologies and 
algorithms contain automaticity, intelligence, and self-
adapting, which might prompt another paradigmatic 
shift of AIEd in STEM education. In the future, AIEd 
can be developed for achievements in three main 
directions. The first direction is to apply AI tech-
niques to analyze multimodal data from the instruc-
tion and learning process. It has potential to eliminate 
misunderstandings between learners and instructors, 
eventually improving students’ learning quality and 
performance in STEM education (Belpaeme et al., 2018). 
The second direction is to build an AI-empowered 
virtual learning environment for the STEM educa-
tion to better represent and convey knowledge that is 
difficult to understand or practice in real-world envi-
ronments (Mystakidis et al., 2021). AI techniques not 
only can support the design and implementation of 
virtual environments, but also can provide learners 
with real-time feedback, personalized learning mate-
rials, and suggestions of learning paths. For example, 
the application of augmented reality (AR) in STEM 
education can spatially merge virtual and physical 
worlds with the support of digital devices (e.g., hand-
held devices, portable, glasses) (Riegler et  al., 2019). 
In AR-based STEM education, AI techniques have 
the potential to improve students’ understandings of 
abstract concepts and knowledge through visible and 
touchable artifacts (Ke & Hsu, 2015; Mystakidis et al., 

2021). Third, collaboration, inclusion, and equity are 
involved as a paradigm shift for AI in STEM educa-
tion. For example, Roscoe et  al. propose Chapter 23 
that AI algorithm models need to be disaggregated to 
include more nuanced variables and effects related to 
participants’ social identities. Tang et  al. in Chapter 
22 argued that AI applications designed and imple-
mented to support collaborative learning should be 
further strengthened, such as how AI supports group 
formation and students’ interactions.

1.4 � Structure of the Book

This opening chapter of the book presents an overview 
of recent advances in the area of AIEd. Underpinned 
by the AIEd paradigm frameworks, the chapter illus-
trates how AI in STEM can be observed through the 
three paradigmatic shifts of AI-directed STEM educa-
tion (learner-as-recipient), AI-supported STEM edu-
cation (learner-as-collaborator), and AI-empowered 
STEM education (learner-as-leader). The book is struc-
tured into five sections:

Section I: AI-Enhanced Adaptive, Personalized 
Learning

Section II: AI-Enhanced Adaptive Learning 
Resources

Section III: AI-Supported Instructor Systems 
and Assessments for AI and STEM Education

Section IV: Learning Analytics and Educational 
Data Mining in AI and STEM Education

Section V: Other Topics in AI and STEM 
Education

Section I: AI-Enhanced Adaptive, Personalized 
Learning, includes four chapters. The present chapter 
introduces Intelligent Science Stations. Experiments 
indicate that the automated reactive guidance, made 
possible by a specialized AI computer vision algo-
rithm, can provide personalized interactive feedback 
to children. Chapter 2 by Biswas and Hutchins com-
bines AI and machine learning methods to support 
curriculum and learning environment design in an 
earth sciences module, and then developed analyt-
ics to analyze middle school students’ learning per-
formance and behaviors in the environment. The 
integrated methods provide an understanding of 
students’ learning pathways as they transition from 
applying their conceptual knowledge to constructing 
computational models to solve an engineering design 
problem. Chapter 3 et al. by Yannier introduces a new 
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genre of Intelligent Science Stations, a mixed-reality 
system that bridges the physical and virtual worlds 
to improve children’s inquiry-based STEM learning. 
Chapter 4 by Rau presents a series of studies of sense-
making and perceptual fluency in problem-solving 
activities that enhances students’ learning of STEM 
content knowledge and describes how learning ana-
lytics reveal that prior knowledge affects students’ 
interaction with representational competency sup-
ports. Chapter 5 by Pacella et al. develops an Adaptive 
LEArning for Statistics (ALEAS) app to provide an 
adaptive learning environment that allows students 
to assess their own knowledge in statistics. Learners 
are assessed by two multivariate methods: (i) for each 
topic, a multidimensional latent-class IRT model is 
defined, in which dimensions corresponding to the 
students’ ability are measured; (ii) within each area, 
archetypal analysis allows integrating and comparing 
the students’ performances. Chapter 6 by Faramand 
et al. proposes a methodology of intelligent learning 
dashboard focusing on SPOL and discusses how to 
construct mechanisms for adaptive formative assess-
ment and student engagement detection with the 
state-of-the-art AI techniques, how to design and inte-
grate these technologies in intelligent learning dash-
boards, and how to include these mechanisms in the 
course learning design loop to ensure data collection 
and pedagogical connection.

Section II: AI-Enhanced Adaptive Learning 
Resources includes three chapters. Chapter 7 by 
Matsuda et al. proposes PASTEL, a pragmatic method 
to develop adaptive and scalable technologies for 
next-generation e-learning. PASTEL is a collection 
of methods to assist courseware developers to build 
adaptive online courseware. The chapter provides 
details about the PASTEL technology and results from 
its early-stage evaluations. Chapter 8 by Shin and 
Gierl introduces a technology-enhanced framework 
based on machine learning and natural language pro-
cessing techniques to understand and evaluate sci-
ence articles. The chapter reveals that the best model 
can identify an interpretable topic to accurately clas-
sify the science articles based on their curriculum 
standards. Chapter 9 by Demartini et  al. enhances 
the comprehension of teaching and learning within 
the educational domain by leveraging data gathered 
along the student learning life cycle. The integrated 
data mining and machine learning techniques make 
this conceptual platform an adaptative and innovative 
tool to develop reinforcement and personalization of 
educational experiences.

Section III: AI-Supported Instructor Systems and 
Assessments for AI and STEM Education includes 
four chapters. Chapter 10 by Uttamchandani et  al. 
proposes considerations that emerge in the design 

of orchestration assistant, an AI-supported teacher 
orchestration system. The theoretical possibilities are 
proposed for supporting pedagogy with AI. And pos-
sibilities are proposed when the teacher orchestration 
system is enacted, complicated, or transformed in the 
context of real classroom activity. Relevant design 
considerations are proposed for designing such 
AI-supported systems for teachers. Chapter 11 by 
Chiu et  al. reviews current approaches in education 
that use AI technologies to provide targeted learning 
opportunities for teachers. This chapter leverages the 
ICAP framework to discuss current and future direc-
tions for AI-based tools that put teachers in-the-loop, 
which provides automated feedback on teachers’ prac-
tices and improve students’ knowledge construction. 
Chapter 12 by Chen and Lu proposes an overview of 
the mainstream learner models that are commonly 
used in computer-based assessments for learning as 
well as recent advances in learning outcome model-
ing. Chapter 13 by Matsumura et al. develops an auto-
mated writing evaluation system (eRevise) to support 
argument writing. The chapter proposes that the AWE 
systems communicate the features of authentic tasks, 
provide information that is transparent, actionable, 
and fair, and open up avenues for student-centered 
classroom collaborations.

Section IV: Learning Analytics and Educational 
Data Mining in AI and STEM Education includes 
seven chapters. Chapter 14 by Li and Lajoie introduces 
a theory-driven learning analytics model, which has 
the potential to promote the evolution of STEM educa-
tion and research. This chapter presents an example 
study to illustrate how theory-driven learning analyt-
ics can be applied into practice in a STEM learning 
context. Chapter 15 by Zhu et al. discusses how learn-
ing analytics can be used to analyze students’ dis-
course and behaviors in technology-enhanced STEM 
learning environments. Machine learning methods 
such as text classification, transition rate analysis 
and sequential pattern mining, network analysis, 
and multilevel modeling are adopted to understand 
the learning outcomes and processes. Chapter 16 by 
Nawaz et  al. discusses the notion of task difficulty, 
how it is defined and operationalized in digital learn-
ing environments. This work further highlights how 
artificial intelligence and learning analytics offer 
opportunities to provide timely support to students 
when they experience task difficulties. Chapter 17 
by Xu integrates inquiry learning and Web3D tech-
nology into virtual experiments in order to improve 
learner experiences and learning quality. A general 
framework is proposed, which includes three applica-
tion branches: data collection and processing, learner 
modeling, and learning recommendation. Chapter 18 
by Fan et al. reviews recent developments of ensemble 
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learning machinery for propensity score matching 
and weighting. This work extends and improves the 
use of learning analytics for estimating treatment in 
the personalized medicine observational studies lit-
erature. Chapter 19 by McNamara et al. proposes that 
AI (and data science) can reveal nuanced patterns of 
student retention, persistence, and performance, but 
expertise in learning theory and psychological sci-
ences is needed to suggest mechanisms and explana-
tions for these patterns. Chapter 20 by Crossley et al. 
uses a widely used educational data mining technique 
– natural language processing – to extract linguistic 
attributes of students’ collaborative problem-solving 
and links it to their final science performance.

Section V: Other Topics in AI and STEM Education 
deals with qualitative research and collaborative learn-
ing practice in AI and STEM education. Chapter 21 by 
Hutt et al. designs a new app that leverages user mod-
eling techniques (e.g., behavior and affect-sensing) 
to direct interviewers to learners at critical, theory-
driven moments as they learn with AIEd technologies 
in the classroom. The research indicates that using 
machine learning models to optimize researcher time 
helps researchers gain a deeper insight into students’ 
behaviors and their motivations, thus furthering 
AIEd research. Chapter 22 by Tang et al. conducts a 
systematic literature review to understand the devel-
opment of AI to support computer-supported collab-
orative learning (CSCL) in STEM education from 2011 
to 2021. This review examines the overall trend of AI 
applications designed and implemented to support 
CSCL and evaluates the effects of proposed AI tech-
niques and applications in supporting group forma-
tion and students’ interaction. Chapter 23 by Roscoe 
et al. stresses the importance of AIEd to include more 
nuanced variables and effects related to demographic 
factors and social identities. This work also proposes 
that intersectional approaches are needed to repre-
sent learners’ multiple identities, associated power, or 
privilege and to interpret observed effects.

1.5 � Conclusions

This opening chapter presented an overview of recent 
advances in the area of AIEd and STEM education 
underpinned by the AIEd paradigm frameworks. We 
showed how AI in STEM can be observed through the 
three paradigmatic shifts of AI-directed STEM educa-
tion (learner-as-recipient), AI-supported STEM edu-
cation (learner-as-collaborator), and AI-empowered 
STEM education (learner-as-leader). We exam-
ined how AI applications are connected to existing 

educational and learning theories, the extent of which 
AI technologies influence teaching, and the differ-
ent roles of AI in education. The capacity of the three 
shifts to transform the AI-based STEM educational 
methods was further highlighted. We discussed the 
future AIEd practices and research in STEM educa-
tion from teacher-directed education to learner-cen-
tered learning, where learner agency, initiations, and 
lifelong learning are valued. Finally, summaries of the 
chapters included in this book are provided.
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