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Abstract. Digital learning games are thought to support learning by increasing 
enjoyment and promoting deeper engagement with the content, but few studies 
have empirically tested hypothesized pathways between digital learning games 
and learning outcomes. Decimal Point, a digital learning game that teaches dec-
imal operations and concepts to middle school students, has been shown in pre-
vious studies to support better learning outcomes than a non-game, computer-
based instructional system covering the same content. To investigate the under-
lying causes for Decimal Point’s learning benefits, we developed log-based de-
tectors using labels from text replay coding of the data from an earlier study. We 
focused on gaming the system, a form of behavioral disengagement that is fre-
quently associated with worse learning outcomes, and confrustion, an affective 
state that combines confusion and frustration that has shown mixed results related 
to learning outcomes. Results indicated that students in the non-game condition 
engaged in gaming the system at nearly twice the level of students in the game 
condition, and gaming the system fully mediated the relation between learning 
condition and learning outcomes. Students in the game condition demonstrated 
higher levels of confrustion during the self-explanation phase of the game, and 
while confrustion was not related to learning outcomes in the game condition, it 
was associated with better learning outcomes in the non-game condition. These 
results provide evidence that digital learning games may support learning by re-
ducing behavioral disengagement, and that the effects of confusion and frustra-
tion may vary depending on digital learning context. 
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1 Introduction 

1.1 Digital learning games and learning outcomes 

Most American children play digital games. The Common Sense Census [18] found 
that 66% of U.S. tweens and 56% of teens report playing digital games on any given 
day, with an average time of two or more hours per day among those who play. Recog-
nizing this enthusiasm for games, more than half of U.S. teachers ask their students to 
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use digital learning games in class at least once a week [22, 25]. Although data are still 
emerging on how digital learning game use has changed during the COVID-19 pan-
demic, Internet search intensity for online learning resources doubled in the early 
months of the pandemic [4] and interactive learning environment usage has increased 
[10]. The increased reliance on digital learning tools is not likely to abate even when 
face-to-face instruction can consistently be resumed, and the importance of digital 
learning games in educational settings seems likely to continue to grow in the future. 

A number of studies have found improved learning outcomes for digital learning 
games compared to non-game learning conditions [16, 58]. Several meta-analyses have 
also revealed motivational benefits of digital learning games, including benefits to self-
efficacy and attitudinal outcomes compared to more traditional instruction [54, 59]. 
Prior research has shown learning and engagement benefits from digital learning games 
in a variety of academic domains, including mathematics [27, 47, 53], science [13, 14], 
and language learning [57, 62]. However, designing games that teach academic topics 
is still a challenging task that is not always successful, and the educational effectiveness 
of digital learning games varies depending on a number of circumstances [19, 33, 37, 
60]. For instance, educational benefits are more likely to occur when games are specif-
ically designed based on cognitive theories of learning [44].  

In particular, there has been limited empirical evidence about what is effective for 
mathematics games, with a recent review finding only six methodologically sound ex-
periments that compared learning mathematical material in a game versus more con-
ventional media [37]. Of those six experiments, four produced positive results favoring 
game playing. In this paper, we focus on one of those games, Decimal Point [23, 38], 
which was designed in consultation with a mathematics education expert and based on 
theory and evidence about common student misconceptions regarding decimal mathe-
matics [26, 31, 56]. Like many digital learning games, Decimal Point was designed to 
support students’ learning after initial instruction on the relevant topics by providing 
engaging opportunities for additional practice. In a study involving more than 150 5th 
and 6th grade students, Decimal Point led to significantly more learning and was rated 
by students as significantly more engaging than a more conventional but still effective 
computer-based tutoring approach [38]. 

Experimental comparisons between digital learning games and conventional learn-
ing technology can establish digital learning games as effective (or not) at producing 
desired learning outcomes, but these methods do not get at the underlying reasons for 
the effects. Very few studies have tested specific cognitive or affective processes as 
potential mediators of learning from games compared to non-games. There is a general 
lack of understanding about how digital learning games support learning, and digital 
game designers often must work without empirical guidance for how to make learning 
games more effective. In some cases, this results in uninformed adoption of extrinsic 
rewards such as points, badges, and competition, which often do not foster productive 
learning processes [40, 41, 51]. Understanding how digital learning games support 
learning is essential for informing better digital learning game design. Additionally, 
teachers have limited class time available, and greater evidence of when and how stu-
dents learn from digital learning games—and especially how they might learn differ-
ently from games compared to non-games—will help inform teachers’ choices about 
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which digital learning games to incorporate into their teaching and how to enhance their 
students’ learning. 

This suggests a need to take a more detailed look at the underlying cognitive and 
affective mechanisms that lead to learning with games. The field of learning analytics 
provides tools to help in identifying the cognitive and affective processes that educa-
tional technology supports [6, 24, 28, 52, 55]. In the current study, we use behavioral 
data and learning analytics to examine the cognitive and affective pathways through 
which digital learning games operate to support learning outcomes. Specifically, we 
reanalyze an existing dataset [38] to assess two potential paths—gaming the system and 
confrustion—that might explain differences in learning processes and outcomes. 

 
1.2 Gaming the system and confrustion 

The last few decades have seen a surge in scholarship around student behaviors and 
emotions or affect while learning [6, 11, 42, 61]. Gaming the system—attempting to 
succeed in an interactive learning environment by exploiting properties of the system 
rather than by learning the material—has been a behavior of particular interest within 
computer-based game and tutoring contexts due to its negative relation with learning 
outcomes [7, 17, 39]. Gaming the system has both an immediate and long-term impact 
on learning and academic performance. One study investigating the effects of gaming 
using log data from a middle-school Cognitive Tutor mathematics curriculum found 
that gaming the system was associated with immediate poorer learning and an aggre-
gate negative impact on learning [7]. In addition, students who game the system in 
middle school mathematics are less likely to enroll in higher education [49] or to take 
a STEM job after college [3].  

Several studies have also found evidence that differences in learner emotions or af-
fect are associated with learning outcomes in both the short term [46] and long term 
[49]. Two affective states that have been of interest in affective computing research are 
confusion and frustration, which have both been found to be associated with student 
learning. Some studies have found strong positive correlations between confusion or 
frustration and learning [20, 35], while others have found strong negative correlations 
to learning [48, 50]. Whether confusion and frustration support or hinder learning may 
be related to whether the student has support or metacognitive skills to resolve their 
confusion and frustration [21, 36]. Learning context may also affect the relation be-
tween confusion or frustration and learning outcomes. Previous research that identified 
positive relations between confusion or frustration and learning was conducted in non-
game digital learning environments [20, 35]. Fewer studies have examined the relation 
between affect and learning in the context of digital learning games, where confusion 
and frustration may be more disruptive to game play, but at least one recent study using 
Decimal Point found a negative relation [39]. Confusion and frustration are often dif-
ficult to distinguish when judging only based on students’ interactions with educational 
technology. Due to this and to their similar relation with learning, a number of previous 
studies have investigated a combination of the two states instead, called “confrustion” 
[36, 39, 45]. 
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2 Method 

We obtained interaction and outcome data collected through Decimal Point in an ex-
periment first reported in [38]. We developed log-based detectors using labels from text 
replay coding of the data [8, 34]. We briefly describe the methods of the previous study; 
for a more detailed description of both the game and study, see [23] and [38]. 
 
2.1 Participants 

Students participated in the study as part of their normal math instruction at two middle 
schools in a northeastern major metropolitan area. A total of 213 students participated 
in the study, but 39 students (19 in the game condition and 20 in the non-game condi-
tion) were dropped from analyses for failing to complete the pretest, posttest, or delayed 
posttest. Of the remaining 174 students (97 female students, 76 male students, and 1 
missing gender information), 81 students were assigned to play Decimal Point, while 
93 students completed a non-game, computer-based instructional system covering the 
same content.  
 
2.2 Materials and Procedure 

Decimal Point is a single-player game with an amusement park metaphor targeting 5th 
and 6th grade students learning about decimal numbers. Decimal Point runs on the web, 
within a standard browser, and was developed using HTML/JavaScript and the Cogni-
tive Tutor Authoring Tools, or CTAT [2]. The materials are deployed on the web-based 
learning management system TutorShop [1], which logs all student actions. Decimal 
Point is composed of a series of 24 “mini-games” within a larger amusement park map. 
Forty-eight decimal problems (two problems for each of the 24 mini-games) were im-
plemented for the game. 

Decimal Point presents students with five types of mini-game problems: (1) ordering 
decimals; (2) number line placement; (3) decimal sequences; (4) sorting decimals into 
less-than and greater-than “buckets”; and (5) adding decimals (Fig. 1). After solving 
each problem, students are prompted to self-explain their answer by selecting from a 
multiple-choice list of possible explanations. For example, after an ordering problem, 
the student might see the following: “To order these decimals from smallest to largest, 
start by finding: a) the longest decimal; b) the decimal with the smallest tenths place 
value; c) the shortest decimal; or d) the decimal with the smallest hundredths place 
value.” This employs a well-established learning science principle that can promote 
deeper learning [15, 32]. To develop the game problem types, the developers surveyed 
problems students currently encounter in popular math curricula and designed mini-
games and tests to probe for decimal misconceptions [56]. 

Decimal Point has six characters that serve as guides and cheerleaders for the player 
throughout the game. These game elements provide fantasy [9], as well as giving the 
player a narrative context for why they are performing various problem-solving activi-
ties. The interface and feedback design presents students with problem-solving activi-
ties embedded playfully in the mini-game context. Students are prompted by the char-
acters to correct mistakes after an initial attempt. 
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Figs. 1 & 2. Decimal Point “Whac-A-Gopher” (left), an example of an ordering mini-game, and 
the non-game equivalent (right). 

The non-game control condition (Fig. 2) presented the same mathematical content, 
including both problem-solving and self-explanation elements, without the game fea-
tures or narrative. Problems were presented on a plain background in a manner con-
sistent with many intelligent tutoring systems. As with Decimal Point, students had to 
complete all problems in a predetermined sequence. In both the game and non-game 
versions, students were told immediately if their answers on the problem-solving and 
self-explanation questions were incorrect, and they could not advance to the next prob-
lem until they correctly answered the current problem. 

Students completed three isomorphic versions of a test on decimal number opera-
tions and concepts. Tests were administered before students completed the materials 
(pretest), immediately after completion (posttest), and a week after completion (delayed 
posttest). Versions of the test were counterbalanced across time points to control for 
any unintended variations in the tests. Each test contained 24 problems, including some 
problems with similar decimal number content to what was presented in the game and 
non-game systems and other problems that targeted underlying concepts related to dec-
imal number operations but not explicitly taught within the game and non-game. Stu-
dents could earn multiple points on some problems, with a total of 61 points possible 
for correctly answering all questions on the test. 

 
2.3 Detector construction 

Text replay coding has been used to identify learner behaviors and affect [8, 34]. In this 
method, coders base their affect coding on log data gathered on the students' interaction 
with the learning environment. Text replay coding involves breaking down the existing 
data set into text replays, or clips, each either spanning a specific amount of time, a 
specific number of transactions, or delineated by start or end events.  

Whereas our previous detectors were built using problem-level labels, the current 
study broke each problem or game level down into their two steps during the labeling 
process: problem solving and self-explanation. As such, text replay coding had to be 
conducted in four iterations: once each for gaming and confrustion in the problem-
solving step; and once each again for gaming and confrustion in the self-explanation  



6 

Table 1. Detector performance for gaming and confrustion detectors in the problem-solving 
and self-explanation steps. 

 Problem Solving Self-Explanation 
Gaming AUC=0.889, k=0.504 AUC=0.999, k=0.952 

Confrustion AUC=0.915, k=0.565 AUC=0.956, k=0.645 

 
step. In each iteration, text replay coding was conducted in three phases. In phase 1, 
two human coders coded a set of clips together in order to establish a labeling rubric. 
In phase 2, both coders coded another set of clips separately, in order to assess inter-
rater reliability. If the coders attained acceptable reliability, the coders moved on to 
phase 3. If not, the coders discussed the differences in their labeling, and then did an-
other round of phase 2 coding, repeating this process until they attained acceptable re-
liability. Two rounds of phase 2 coding were conducted for confrustion in the problem-
solving clips, and one round of phase 2 coding was conducted for the other three detec-
tors. For the problem-solving clips, the inter-rater reliability (IRR) kappa was 0.74 for 
both confrustion and gaming. Kappa was 0.62 and 0.88 for confrustion and gaming, 
respectively, in the self-explanation clips. Once in phase 3, the two coders divided the 
remaining clips and coded them separately. Since less confrustion was observed in the 
self-explanation clips, almost twice as many self-explanation clips as problem-solving 
clips needed to be coded to have enough data to build the model. In total, 800 problem-
solving clips and 1,500 self-explanation clips were coded and used to construct the 
automated affect detectors. Furthermore, clips were stratified to equally represent 
schools, problem type, and experiment condition. 

The labeled data were input into machine learning algorithms to emulate the coders’ 
judgments, based on prior studies that showed it was feasible to detect gaming [43] and 
confrustion [34] using this approach. The gaming and confrustion detectors were all 
built using the Extreme Gradient Boosting (XGBoost) classifier [12]. The classifier 
uses an ensemble technique that trains an initial, weak decision tree and calculates its 
prediction errors. It then iteratively trains subsequent decision trees to predict the error 
of the previous decision tree, with the final prediction representing the sum of the pre-
dictions of all the trees in the set. Four automated detectors were built in total, i.e., 
gaming in the problem-solving step, confrustion in the problem-solving step, gaming 
in the self-explanation step, and confrustion in the self-explanation step. Based on 10-
fold student-level cross-validation, we determined that the models could reliably pre-
dict the two constructs in both the problem-solving and self-explanation steps. Detector 
performance can be found in Table 1. The detectors were then applied to predict gaming 
and confrustion in the rest of the data set.  

3 Results 

Results were previously reported regarding the effect of the game compared to the non-
game on posttest and delayed posttest performance [38]. Specifically, analyses of co-
variance (ANCOVAs) revealed that students in the game condition outperformed   
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Table 2. Average probabilities of gaming the system and confrustion by condition for problem-
solving (PS) and self-explanation (SE) activities. 

 Gaming (PS) 
M (SD) 

Gaming (SE) 
M (SD) 

Confrustion (PS) 
M (SD) 

Confrustion (SE) 
M (SD) 

Game .14 (.099) .22 (.11) .18 (.086) .041 (.035) 
Non-game .27 (.12) .30 (.14) .15 (.056) .066 (.055) 

 
students in the non-game condition on posttest, F(1,172) = 11.50, p = .001, ηp2 = .063, 
and delayed posttest performance, F(1, 172) = 11.86, p = .001, ηp2 = .065. 

To understand the effect of the game on students’ cognitive and affective processes, 
we compared predicted rates of gaming the system and confrustion among students 
playing the game against those completing the non-game version. We examined rates 
during problem solving and rates while completing the self-explanation questions sep-
arately (Table 2). Students using the non-game demonstrated almost double the levels 
of gaming the system while problem solving as students playing the game, and this 
difference was significant, F(1, 173) = 57.64, p < .001, ηp2 = .25. On self-explanation 
questions, students in the non-game also showed significantly higher levels of gaming 
the system, F(1, 173) = 17.87, p < .001, ηp2 = .09, and confrustion, F(1, 173) = 12.40, 
p = .001, ηp2 = .07. In contrast, students using the non-game condition show signifi-
cantly lower levels of confrustion during the problem-solving portion, F(1, 173) = 5.77, 
p = .017, ηp2 = .03. 

To understand how these cognitive and affective processes related to posttest per-
formance, we assessed a regression model predicting posttest scores with pretest scores, 
gaming probabilities for problem solving and self-explanation, and confrustion proba-
bilities for problem solving and self-explanation (Table 3). The resulting model pre-
dicted 68.9 percent of the variance. Within the model, pretest scores, gaming the system 
for problem-solving questions, and gaming the system for self-explanation questions 
were all significant predictors of posttest scores. We assessed the same model predict-
ing delayed posttest scores. The resulting model predicted 66.1 percent of the variance 
and, within the model, pretest scores and gaming the system on problem-solving were 
again significant predictors of delayed posttest scores; additionally, confrustion on self-
explanation emerged as a significant predictor. 

Table 3. Regression models predicting posttest and delayed posttest scores with pretest scores, 
gaming probabilities, and confrustion probabilities. 

 Posttest Delayed posttest 
Overall model R2 =.70, F(5,168)=77.60, p < .001 R2 =.67, F(5,168)=68.54, p < .001 

Pretest β = .48, p < .001 β = .45, p < .001 

Gaming (PS) β = -.30, p < .001 β = -.42, p < .001 

Gaming (SE) β = -.16, p = .005 β = -.077, p = .19 

Confrustion (PS) β = -.017, p = .77 β = .062, p = .20 

Confrustion (SE) β = .042, p = .36 β = .12, p = .012 
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Finally, we wanted to understand whether differences in cognitive or affective pro-
cesses explained the effect of the game on learning outcomes. Given that gaming the 
system on problem-solving questions predicted learning outcomes at posttest and de-
layed posttest and that levels of gaming differed across conditions, we examined 
gaming the system on problem-solving questions as a mediator between condition and 
each test (posttest and delayed posttest; Fig. 3). We used the PROCESS macro for SPSS 
statistical software [30], which applies 5000 bootstrap estimates to create confidence 
intervals, to test the indirect effect of condition (game = 0, non-game = 1) on posttest 
and delayed posttest with gaming the system on problem-solving questions as the me-
diator. Pretest scores were included as a covariate. Results indicated that students in the 
non-game condition had significantly greater probabilities of gaming the system, a = 
.70, p < .001. Gaming the system was negatively associated with performance on the 
posttest regardless of condition, b = -.37, p < .001, and there was no direct effect of 
condition on posttest performance when controlling for gaming the system, c = -.07, p 
= .48. Consistent with our mediation prediction, the indirect effect of condition on post-
test through gaming the system was significantly different than zero, ab = -.26, 95% CI 
[-.12, -.064]. Similar results were found for the delayed posttest: gaming the system 
was negatively associated with performance on the delayed posttest, b = -.42, p < .001, 
and there was no direct effect of condition on delayed posttest performance when con-
trolling for gaming the system, c = -.062, p = .56. Again, the indirect effect of condition 
on delayed posttest through gaming the system was significantly different than zero, ab 
= -.29, 95% CI [-.44, -.18].  

Given the mixed results regarding confrustion in prior literature and in our findings, 
we examined whether the relation between confrustion and learning might differ be-
tween the game and non-game contexts. To do this, we tested game condition as a  
moderator of the relation between confrustion and each test (posttest and delayed post-
test) while controlling for pretest. Moderation analyses in PROCESS showed no sig-
nificant interaction between confrustion on problem-solving questions and condition 
when predicting posttest, b = -15.70, p = .26, 95% CI  [-43.24, 11.84], or delayed post-
test, b = -22.29, p = .13, 95% CI  [-51.44, 6.85]. However, there was a significant in-
teraction between confrustion on self-explanation questions and condition when pre-
dicting posttest, b = 69.66, p = .003, 95% CI  [23.73, 115.58], and inclusion of the  

 
Fig. 3. The mediation model showing path standardized coefficients for a mediation analysis of 
learning condition on posttest through gaming the system on problem-solving questions.  
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interaction term explained significantly more variance in the model, ΔR2 = .018, F(1, 
169) = 8.97, p = .003. While confrustion was not related to posttest performance in the 
game condition (b = -18.90, p = .34), it was positively related to posttest performance 
in the non-game condition (b = 50.76, p < .001; Fig. 4). There was a similar interaction 
predicting delayed posttest, b = 47.63, p = .049, 95% CI  [.32, 94.94], and inclusion of 
the interaction term again explained significantly more variance in the model, ΔR2 = 
.009, F(1, 169) = 3.95, p = .049. As with the posttest, confrustion was not related to 
delayed posttest performance in the game condition (b = 10.16, p = .62), but it was 
positively related to delayed posttest performance in the non-game condition (b = 57.79, 
p < .001; Fig. 5).  

   
Figs. 4 & 5. Interaction of confrustion (SE) items and condition predicting posttest (left) and 
delayed posttest score (right). Scores were calculated using the regression equation for low (16th 
percentile), medium (50th percentile), and high (84th percentile) values of confrustion. 

4 Discussion and Conclusion 

Although digital learning games continue to grow in use, relatively few studies have 
empirically assessed differences in cognitive and affective processes between games 
and non-game, computer-based systems covering the same content. This paper presents 
a promising approach using educational data mining to build log-based detectors that 
can capture such differences. Results showed that the positive effect of learning with 
the game was fully mediated by students’ lower levels of gaming the system when 
playing the game. Gaming the system has been consistently associated with negative 
short-term and long-term outcomes, ranging from lower achievement in the task where 
gaming is measured to reduced likelihood of enrolling in college or choosing a STEM-
related job [3, 7, 49]. While it is not surprising that gaming the system was associated 
with worse performance in Decimal Point, it is an important and novel finding that the 
game reduced students’ tendencies to game the system compared to the non-game ver-
sion and that this reduction in gaming explained differences in learning outcomes. 
Gaming the system is considered a form of behavioral disengagement, and digital learn-
ing games are thought to increase students’ engagement through game features such as 
fantasy and narrative context. Results appear to support the idea that introducing en-
gaging features can reduce students’ disengaged behaviors and thereby enhance learn-
ing, though causality cannot be inferred from these data.  

0

10

20

30

40

Low
confrustion

Medium
confrustion

High
confrustion

Po
st

te
st

 sc
or

e

Game
Non-Game

0

10

20

30

40

Low
confrustion

Medium
confrustion

High
confrustion

Po
st

te
st

 sc
or

e

Game
Non-Game



10 

Confrustion did not consistently predict learning outcomes, but these results are sim-
ilar to prior research finding conflicting relations between confusion or frustration and 
learning. We found that confrustion on self-explanation questions played a different 
role in learning depending on whether students were working in the game or non-game 
context. In the game, confrustion did not predict learning outcomes, while in the non-
game, greater levels of confrustion on self-explanation questions were associated with 
better learning outcomes. When students experience confusion or frustration while 
learning, it can trigger productive cognitive and metacognitive processes such as trying 
a different strategy and monitoring progress [21]. Students experiencing confrustion in 
the non-game may have engaged in these productive strategies to resolve their confrus-
tion and ultimately gain more from the self-explanation process. On the other hand, 
confrustion may be less beneficial in a game setting because it feels disruptive to the 
engaging, playful interactions students expect from a game.  

This work suggests several fruitful avenues for further advancing researchers’ and 
developers’ understanding of how digital learning games support learning. While our 
results suggest that differences in gaming the system could explain many of the benefits 
of games, there are a variety of other cognitive and affective processes that might also 
play a role. Developing additional detectors for constructs such as boredom, delight, 
engaged concentration, and carelessness could identify additional pathways that medi-
ate the effect of digital learning games on learning. These detectors should also be ap-
plied to log data from other digital learning games and, ideally, non-game, computer-
based controls. Given the large number of game features present across the diversity of 
digital learning games [9], it is important to explore whether gaming the system is re-
duced by a variety of games or if this mechanism is related to specific game features 
present in Decimal Point. Future research could explore how manipulating other game 
features, such as agency, might influence students’ behavioral interactions and affective 
states [29]. Ultimately, understanding the connection between specific game features, 
cognitive and affective learning processes, and learning outcomes will provide digital 
learning game designers and teachers with a much more robust set of tools for deter-
mining when and how to implement digital learning games to best support students’ 
learning. For example, if particular game features are especially effective at reducing 
problematic behaviors and affect (e.g., gaming, anxiety), a game with those features 
could be deployed when the context or content is likely to elicit those behaviors and 
affective states. 

5 Acknowledgements 

This work was supported by the National Science Foundation Award #DRL-1661121. 
The opinions expressed are those of the authors and do not represent the views of NSF. 
Thanks to Jimit Bhalani, John Choi, Kevin Dhou, Darlan Santana Farias, Rosta Far-
zan, Jodi Forlizzi, Craig Ganoe, Rick Henkel, Scott Herbst, Grace Kihumba, Kim 
Lister, Patrick Bruce Gonçalves McLaren, and Jon Star for important contributions 
to the development and early experimentation with Decimal Point. 
 



11 

6 References 

1. Aleven, V., McLaren, B.M., & Sewall, J.: Scaling up programming by demonstration for 
intelligent tutoring systems development: An open-access website for middle school math-
ematics learning. IEEE Transactions on Learning Technologies, 2(2), 64-78 (2009). 

2. Aleven, V., McLaren, B. M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S., Ringenberg, 
M., & Koedinger, K. R.: Example-tracing tutors: Intelligent tutor development for non-pro-
grammers. International Journal of Artificial Intelligence in Education, 26(1), 224-269 
(2016). 

3. Almeda, M. V., & Baker, R. S.: Predicting student participation in STEM careers: The role 
of affect and engagement during middle dchool. Journal of Educational Data Mining, 12(2), 
33-47 (2020). 

4. Bacher-Hicks, A., Goodman, J., & Mulhern, C.: Inequality in household adaptation to 
schooling shocks: Covid-induced online learning engagement in real time. National Bureau 
of Economic Research, No. w27555 (2020). 

5. Baker, R. S.: Gaming the system: A retrospective look. Philippine Computing Journal, 6(2), 
9-13 (2011). 

6. Baker, R. S., De Carvalho, A. M. J. A., Raspat, J., Aleven, V., Corbett, A. T., & Koedinger, 
K. R.: Educational software features that encourage and discourage “gaming the system”. In 
Proceedings of the 14th International Conference on Artificial Intelligence in Education, pp. 
475-482 (2009). 

7. Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z.: Off-task behavior in the 
cognitive tutor classroom: when students "game the system." In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, pp. 383-390 (2004). 

8. Baker, R. S., Corbett, A. T., & Wagner, A. Z.: Human classification of low-fidelity replays 
of student actions. In Proceedings of the Educational Data Mining Workshop at the 8th In-
ternational Conference on Intelligent Tutoring Systems, pp. 29-36 (2006). 

9. Bedwell, W. L., Pavlas, D., Heyne, K., Lazzara, E. H., & Salas, E.: Toward a taxonomy 
linking game attributes to learning: An empirical study. Simulation & Gaming, 43(6), 729-
760 (2012). 

10. BrightBytes, Inc.: 2020 Remote learning survey research results, 
https://www.brightbytes.net/rls-research, last accessed 2021/2/12. 

11. Calvo, R. A., & D'Mello, S.: Affect detection: An interdisciplinary review of models, meth-
ods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37 (2010). 

12. Chen, T., & Guestrin, C.: Xgboost: A scalable tree boosting system. In Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
pp. 785-794 (2016). 

13. Cheng, M. T., Chen, J. H., Chu, S. J., & Chen, S. Y.: The use of serious games in science 
education: A review of selected empirical research from 2002 to 2013. Journal of Computers 
in Education, 2(3), 353–375 (2015).  

14. Cheng, M. T., Rosenheck, L., Lin, C. Y., & Klopfer, E.: Analyzing gameplay data to inform 
feedback loops in The Radix Endeavor. Computers & Education, 111, 60–73 (2017). 

15. Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C.: Eliciting self-explanations im-
proves understanding. Cognitive Science, 18(3), 439-477 (1994). 

16. Clark, D. B., Tanner-Smith, E., & Killingsworth, S.: Digital games, design, and learning: A 
systematic review and meta-analysis. Review of Educational Research, 86(1), 79-122 
(2016). 

17. Cocea, M., Hershkovitz, A., & Baker, R. S.: The impact of off-task and gaming behaviors 
on learning: immediate or aggregate?. In Proceeding of the 2009 Conference on Artificial 



12 

Intelligence in Education: Building Learning Systems that Care: From Knowledge Repre-
sentation to Affective Modelling, pp. 507-514, IOS Press (2009). 

18. Common Sense Media. The common sense census: Media use by tweens and teens, 
https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-
tweens-and-teens, last accessed 2021/2/12. 

19. Crocco, F., Offenholley, K., & Hernandez, C.: A proof-of-concept study of game-based 
learning in higher education. Simulation & Gaming, 47(4), 403-22 (2016). 

20. D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A.: Confusion can be beneficial for learn-
ing. Learning and Instruction, 29, 153-170 (2014). 

21. Di Leo, I., Muis, K. R., Singh, C. A., & Psaradellis, C.: Curiosity… Confusion? Frustration! 
The role and sequencing of emotions during mathematics problem solving. Contemporary 
Educational Psychology, 58, 121-137 (2019). 

22. Fishman, B., Riconscente, M., Snider, R., Tsai, T., & Plass, J.: Empowering educators: Sup-
porting student progress in the classroom with digital games. Ann Arbor: University of 
Michigan. gamesandlearning.umich.edu/agames (2014). 

23. Forlizzi, J., McLaren, B., Ganoe, C., McLaren, P., Kihumba, G., & Lister, K.: Decimal Point: 
Designing and developing an educational game to teach decimals to middle school students. 
In: Busch, C. (ed.) Proceedings of the 8th European Conference on Games Based Learning 
(ECGBL-2014), 128-135 (2014). 

24. Gagnon, D. J., Harpstead, E., & Slater, S.: Comparison of off the shelf data mining method-
ologies in educational game analytics. Proc. EDM, 38-43 (2019). 

25. Gamesandlearning.org http://www.gamesandlearning.org/2014/06/09/teachers-on-using-
games-in-class/, last accessed 2021/2/12. 

26. Glasgow, R., Ragan, G., Fields, W.M., Reys, R., & Wasman, D.: The decimal dilemma. 
Teaching children mathematics, 7(2), 89-93 (2000). 

27. Habgood, M.P.J., & Ainsworth, S.E.: Motivating children to learn effectively: Exploring the 
value of intrinsic integration in educational games. Journal of the Learning Sciences, 20(2), 
169-206 (2011). 

28. Harpstead, E., MacLellan, C. J., Aleven, V., & Myers, B. A.: Using extracted features to 
inform alignment-driven design ideas in an educational game. Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, 3329-3338, ACM (2014). 

29. Harpstead, E., Richey, J. E., Nguyen, H., & McLaren, B. M.: Exploring the subtleties of 
agency and indirect control in digital learning games. In Proceedings of the 9th International 
Conference on Learning Analytics & Knowledge, 121-129, ACM (2019). 

30. Hayes, A. F.: Introduction to mediation, moderation, and conditional process analysis: A 
regression-based approach. Guilford Publications (2017).  

31. Irwin, K.C.: Using everyday knowledge of decimals to enhance understanding. Journal for 
Research in Mathematics Education, 32(4), 399-420 (2001). 

32. Johnson, C. I., & Mayer, R. E.: Adding the self-explanation principle to multimedia learning 
in a computer-based game-like environment. Computers in Human Behavior, 26, 1246-1252 
(2010). 

33. Ke, F.: Designing and integrating purposeful learning in game play: A systematic re-
view. Educational Technology Research and Development, 64(2), 219-44 (2016). 

34. Lee, D. M. C., Rodrigo, M. M. T., Baker, R. S., Sugay, J. O., & Coronel, A.: Exploring the 
relationship between novice programmer confusion and achievement. In International con-
ference on affective computing and intelligent interaction (pp. 175-184). Springer, Berlin, 
Heidelberg (2011). 



13 

35. Lehman, B., D'Mello, S., Strain, A., Mills, C., Gross, M., Dobbins, A., ... & Graesser, A. 
Inducing and tracking confusion with contradictions during complex learning. International 
Journal of Artificial Intelligence in Education, 22(1-2), 85-105 (2013). 

36. Liu, Z., Pataranutaporn, V., Ocumpaugh, J., & Baker, R.: Sequences of frustration and con-
fusion, and learning. In Educational Data Mining (2013). 

37. Mayer, R. E.: Computer games in education. Annual Review of Psychology. 70:531–49 
(2019). 

38. McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J.: A computer-based game that 
promotes mathematics learning more than a conventional approach. International Journal of 
Game-Based Learning (IJGBL), 7(1), 36-56 (2017).  

39. Mogessie, M., Richey, J. E., McLaren, B. M., Andres-Bray, J. M. L., & Baker, R. S.: Con-
frustion and gaming while learning with erroneous examples in a decimals game. In Inter-
national Conference on Artificial Intelligence in Education, pp. 208-213, Springer, Cham 
(2020). 

40. Nicholson, S.: A user-centered theoretical framework for meaningful gamification. Games+ 
Learning + Society, 8(1), 223-230 (2012). 

41. Nicholson, S.: Two paths to motivation through game design elements: Reward-based gam-
ification and meaningful gamification. Proceedings of the iConference 2013, pp. 671-672 
(2013). 

42. Paquette, L., Baker, R. S., & Moskal, M.: A system-general model for the detection of gam-
ing the system behavior in CTAT and LearnSphere. In International Conference on Artificial 
Intelligence in Education, pp. 257-260, Springer, Cham (2018). 

43. Paquette, L., de Carvahlo, A., Baker, R., & Ocumpaugh, J.: Reengineering the feature dis-
tillation process: A case study in detection of gaming the system. In Educational Data Min-
ing (2014). 

44. Parong, J, Wells, A., & Mayer, R. E.: Replicated evidence towards a cognitive theory of 
game-based training. Journal of Educational Psychology, 112(5), 922-937 (2020). 

45. Richey, J. E., Andres-Bray, J. M. L., Mogessie, M., Scruggs, R., Andres, J. M., Star, J. R., 
Baker, R. S., & McLaren, B. M.: More confusion and frustration, better learning: The impact 
of erroneous examples. Computers & Education, 139, 173-190 (2019a). 

46. Richey, J. E., McLaren, B. M., Andres-Bray, M., Mogessie, M., Scruggs, R., Baker, R., & 
Star, J.: Confrustion in learning from erroneous examples: Does type of prompted self-ex-
planation make a difference?. In International Conference on Artificial Intelligence in Edu-
cation, pp. 445-457, Springer, Cham (2019b). 

47. Riconscente, M. M. Results from a controlled study of the iPad fractions game Motion Math. 
Games and Culture, 8(4), 186-214 (2013).  

48. Rodrigo, M.M.T., Baker, R.S., Jadud, M.C., Amarra, A.C.M., Dy, T., Espejo-Lahoz, 
M.B.V., Lim, S.A.L., Pascua, S.A.M.S., Sugay, J.O., & Tabanao, E.S.: Affective and be-
havioral predictors of novice programmer achievement. Proceedings of the 14th ACM-
SIGCSE Annual Conference on Innovation and Technology in Computer Science Educa-
tion, 156-160 (2009).  

49. San Pedro, M.O.Z., Baker, R.S.J.d., Bowers, A.J., Heffernan, N.T.: Predicting college en-
rollment from student interaction with an intelligent tutoring system in middle school. Pro-
ceedings of the 6th International Conference on Educational Data Mining, 177-184 (2013). 

50. Schneider, B., Krajcik, J., Lavonen, J., Salmela-Aro, K., Broda, M., Spicer, J., et al.: Inves-
tigating optimal learning moments in U.S. and Finnish science classes. Journal of Research 
in Science Teaching, 53(3), 400–421 (2015). 

51. Seaborn, K., & Fels, D. I.: Gamification in theory and action: A survey. International Journal 
of Human-Computer Studies, 74, 14-31 (2015). 



14 

52. Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., & Fernández-Manjón, B.: Application of 
learning analytics in educational videogames. Entertainment Computing, 5(4), 313-322 
(2014). 

53. Siew, N. M., Geofrey, J., & Lee, B. N.: Students’ algebraic thinking and attitudes towards 
algebra: The effects of game-based learning using Dragonbox 12+ app. Electronic Journal 
of Mathematics & Technology, 10(2) (2016). 

54. Sitzmann, T.: A meta-analytic examination of the instructional effectiveness of computer-
based simulation games. Personnel Psychology, 64, 489–528 (2011).  

55. Slater, S., Ocumpaugh, J., Baker, R., Scupelli, P., Inventado, P.S., & Heffernan, N.: Seman-
tic features of math problems: Relationships to student learning and engagement. Proceed-
ings of the 9th International Conference on Educational Data Mining, 223-230 (2016).  

56. Stacey, K., Helme, S., & Steinle, V.: Confusions between decimals, fractions and negative 
numbers: A consequence of the mirror as a conceptual metaphor in three different ways. In 
M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International 
Group for the Psychology of Mathematics Education, pp. 217-224, Utrecht, PME (2001). 

57. Suh, S., Kim, S.W., & Kim, N.J.: Effectiveness of MMORPG-based instruction in elemen-
tary English education in Korea. Journal of Computer Assisted Learning, 26, 370-378 
(2010).  

58. Tokac, U., Novak, E., & Thompson, C. G.: Effects of game-based learning on students' 
mathematics achievement: A meta-analysis. Journal of Computer Assisted Learning, 35(3), 
407-420 (2019). 

59. Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M.: 
Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Ed-
ucational Computing Research, 34(3), 229-243 (2006). 

60. Wouters, P., & van Oostendorp, H.: (Eds.). Instructional techniques to facilitate learning and 
motivation of serious games. New York: Springer (2017). 

61. Wu, C. H., Huang, Y. M., & Hwang, J. P.: Review of affective computing in education/learn-
ing: Trends and challenges. British Journal of Educational Technology, 47(6), 1304–1323 
(2015). 

62. Yip, F.W.M., & Kwan, A.C.M.: Online vocabulary games as a tool for teaching and learning 
English vocabulary. Educational Media International, 43, 233-249 (2006). 


